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Abstract--The DIRECT represents a novel approach for 3-D 

Time-of-Flight (TOF) PET reconstruction. Its novelty stems from 

the fact that it performs all iterative predictor-corrector 

operations directly in image space. The projection operations 

now amount to convolutions in image space, using long TOF 

(resolution) kernels.  While for spatially invariant kernels the 

computational complexity can be algorithmically overcome by 

replacing spatial convolution with multiplication in Fourier 

space, spatially variant kernels cannot use this shortcut. 

Therefore in this paper, we describe a GPU-accelerated approach 

for this task. However, the intricate parallel architecture of GPUs 

poses its own challenges, and careful memory and thread 

management is the key to obtaining optimal results. As 

convolution is mainly memory-bound we focus on the former, 

proposing two types of memory caching schemes that warrant 

best cache memory re-use by the parallel threads. In contrast to 

our previous two-stage algorithm [1], the schemes presented here 

are both single-stage which is more accurate.    

 
Index Terms—CUDA, DIRECT, GPU, TOF 

I. INTRODUCTION 

IRECT (Direct Image Reconstruction for TOF) [2] is an 

approach for TOF reconstruction that is a more efficient 

alternative to traditional list-mode and binned TOF PET 

reconstruction approaches [3]. In these latter approaches, the 

events are binned by their LOR (Line of Response) and arrival 

time to form a set of histo-projections, one for each angular 

view. In DIRECT, on the other hand, the events are first sorted 

into a (sub)set of angular views and then deposited for each 

view into a dedicated histo-image, each having the same 

lattice configuration and the same resolution as the 

reconstructed image. Here, each corrective update involves 

simple 3D convolutions using the system response (SR) 

kernel, which can be performed efficiently in Fourier space 

when the SR kernel is spatially invariant. However, in 

practical applications the SR kernel is not spatially invariant – 

its width increases up-to 40% towards the edge of the scanner. 

This prohibits the use of efficient Fourier-space methods to 
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accelerate the convolution operations. Since the SR kernel is 

typically quite large (having FWHM 45mm in TOF direction 

for 300ps resolution and 5 - 6mm in LOR direction) a spatial 

convolution within a 144×144×62 matrix and 120 views can 

be prohibitively expensive for clinical application. We seek to 

overcome this challenge by GPU-acceleration [4][5], using 

their massively parallel computations to meet this challenge.  

 In general, mapping a CPU-based algorithm to the GPU and 

achieving 1-2 orders of speed-up is typically not 

straightforward. An especially critical component in GPUs is 

the memory, which is organized into a hierarchy, with some of 

it on-chip but the majority of it off-chip (but on-board). The 

former is orders of magnitudes faster. As it takes 100s of clock 

cycles to bring off-chip data into on-chip memory, it is of 

utmost importance to re-use these data among the parallel 

threads as much as possible. Also, since on-chip memory is 

quite small, on the order of KB, careful occupancy planning of 

this limited resource is equally important.  

 Since the long DIRECT kernels may traverse the image 

space at arbitrary angles, data access at these off-axis 

orientations is non-sequential. In [1] we presented a two-stage 

scheme that, for these off-axis directions, first resampled the 

data into a storage pattern aligned with the convolution 

direction of the long kernels. This allowed linear access in on-

chip (shared) memory. By subtracting the smoothing effects of 

the interpolation (sampling) kernel from the convolution 

kernel, we were able to mitigate the blurring effects of the 

interpolation kernel into the convolution. This 2-stage scheme 

was about 10 times faster than the 1-stage scheme and only a 

small amount of artifacts could be observed.  

In the current paper, we chose to go a different route with 

fewer artifacts, if any, using a 1-stage method that does not 

require resampling. Here we aimed for a method that loads the 

data into on-chip memory in such a way that it allows linear 

access at any angle, using a dedicated addressing scheme. For 

this, we investigated two types of on-chip memory: (i) shared 

memory and (ii) texture memory cache.  

Our paper is organized as follows. Section 2 discusses 

relevant GPU details, Section 3 outlines our scheme, and 

Section 4 presents results and conclusions.  
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Fig. 1. Pipeline for proposed forward- and backward-projection scheme. 
.  

II. SOME NOTES ON GPU ARCHITECTURE 

We have implemented all methods on a NVIDIA 480 GTX 

GPU with 1.5GB off-chip memory. This GPU has 480 CUDA 

cores organized into 15 Streaming Multiprocessors (SM) of 32 

processors each. Important for our purposes are the size and 

access of the memory. Each SM has 64KB of on-chip memory 

that can be configured as 48KB of shared memory with 16KB 

of L1 cache, or as 16KB of shared memory with 48KB of L1 

cache. Each SM also has a dedicated 768KB L2 texture cache. 

An important texture memory feature is that it is specifically 

designed to allow fast 2D memory access. It achieves this by 

storing 2D data along a space-filling curve which greatly 

improves access locality. All other GPU memories simply use 

linear addressing and so do not support fast 2D access.  

With regards to shared memory bandwidth, a somewhat 

theoretical estimate is to assume that every clock-tick (the 

GTX 480 operates at 1,401 MHz) produces 16 (a half-warp) 4-

byte data (from 32 banks) per SM and then multiply this 

number by 15 (the total number of SMs). This yields 

1.344TB/s. Less detailed information is available to make 

such estimates for the texture cache. The texture fill rate is 

rated as 34 (bi-linearly interpolated) Gtextels/s, but this 

number likely includes off-chip memory as well. Nevertheless, 

there are many factors that can limit memory bandwidth in 

practice, both for shared and for texture memory, such as bank 

conflicts and the aforementioned optimized 2D access for 

texture memory and possibly cache. We therefore chose to 

implement and optimize for the application at hand methods 

that use shared memory as well as texture memory.    

III. METHODS 

Fig.1 shows the pipeline of our scheme for forward- and 

backward-projection in DIRECT TOF PET. For each iteration 

step from a given view direction, there are four stages: (i) 

create the 2D projection mask; (ii) create the 3D point cloud, 

(iii) build the look-up table, and (iv) load the data and perform 

the forward or backward projection.  

The projection mask is used to index and retrieve, from 

global memory, the list of voxels located along an 

approximate linear path that aligns with the long axis of the 

convolution kernel at the current view direction (Fig. 2a). The 

width of the kernel (LOR) determines the thickness of the path 

of retrieved voxels (Fig. 2b), which are then stored into on-

chip memory. The computation targets are the voxels 

connected by the line in Fig. 2a. Each such voxel becomes a 

parallel thread, processing the data within the kernel‟s point 

cloud (Fig. 2b) and weighing each by the Gaussian kernel 

represented by the lookup table.  We do this for every slice in 

parallel and also compute the z-extent of the 3D-kernel in 

parallel as well, which we then accumulate in a second step 

(Fig. 2c). Since we can store data for only 1-2 such lines at a 

time, due to limitations of the memory, we end up, in our case, 

with  62·3=186 CUDA blocks, with 168 threads each.  

We note that both point cloud and lookup table are simple 

masks and do not require interpolation. Therefore, when 

stored in 1D texture memory, they can be retrieved with fast 

1D texture fetches during the processing. In the following we 

motivate and describe each of these components in detail. 

A. Create 2D Projection Mask 

As mentioned, for general view directions, it is typical to have 

poor memory locality for forward- and backward-projections. 

Moreover, computing variant kernel resolutions along LOR 

directions will increase the overall computational burden 

exponentially. To solve these problems, we introduce a 2D 

projection mask of the same size as the input volume slice at 

each view direction. The mask consists of several lists based 

on the LOR distance so that elements in each list can share the 

same radial resolution with less error. The error is determined 

by the distance between lists. The distance is chosen to have 

less than or equal to 1 pixel distance within elements in a list. 

For example, for 0 and 90 degrees, the distance between 

elements is 1 pixel, which is the typically the grid size. To 

improve memory locality, the elements are sorted in the TOF 

distance ascending order.   

B. Create 3D Cloud for variant kernel 

The variant kernel for DIRECT TOF PET has non-symmetric 

(in radial direction), ellipsoidal shape. Constructing each 

kernel for a position will increase the overall computational 

burden exponentially. To solve this problem, we introduce a 

3D cloud, which can fit in all possible non-symmetric, 

ellipsoidal, variant kernels. The value for a point within a 

cloud is determined by the distance from the center of the 

cloud to the point in TOF, LOR, and z-axis directions. The 

distance can be pre-computed and used as index to fetch a 

corresponding look up table. The cloud points are sorted in the 

TOF distance ascending order, layer by layer, to minimize the 

number of access to volume data in projection stage.    

C. Build Look-up Table for variant kernel 

There are three look-up tables (LUTs) according to the TOF, 

LOR, and z-axis directions. Since we know the exact TOF, 

LOR and z distance from the created cloud points, we only 

need a finite number of kernel values in each direction. In the 

TOF- and z-axis directions, their resolutions are invariant and 
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Fig. 3. Pseudo code for two different implementation methods in projection. „Run‟ is for parallel loop. „For‟ is for sequential loop.  
.  

Run each block (take a volume slice) 
   Read volume data from global memory & 
   Store in shared memory 
   __sync() 
   Run lists do projection  
      Run list elements  
      Compute radial resolution 
      Set output to zero 
      For cloud points // to avoid bank conflicts 
         Fetch look up table from texture memory 
         Compute shared memory index 
         Read a volume point from shared memory 
         Accumulate output 
      End cloud points 
      Write output to global memory 
   End list elements 
   __sync() 
   Update shared memory for next lists  
   __sync()  
   End lists 
End block       
(a) Method 1: Using shared memory 

.  
(b) Method 2: Using texture cache 

.  

Run each block (take a list) 
   Run list elements  
      Compute radial resolution 
      Set output to zero 
      Run cloud points  
         Fetch look up table from texture memory 
         Read volume data from texture memory 
         Accumulate output 
      End cloud points 
      Write output to shared memory 
      __sync() 
      Parallel sum reduction 
      __sync() 
   Write output to global memory 
   End list elements                 
End block       

thus their kernel values can be stored in a 1D array. The length 

of the array is determined by the number of cloud points. For 

the LOR direction, there are as many different resolutions as 

the number of lists in a projection mask. Thus, the kernel 

values for radial direction can be stored in a 2D array having 

same length with TOF (and z-axis) LUT.  

D. Projection 

To improve memory locality, (forward- and backward-) 

projection for a voxel proceeds list by list in a projection 

mask. Also, to minimize the number of accesses to volume 

data, the projection proceeds cloud layer by layer and its 

results are stored in different places; after completing the 

projection, the results are combined into a volume, which have 

the same size than the input volume (Fig. 2c).       

IV. IMPLEMENTATION 

As mentioned, we have explored our method with regards to 

the on-chip cache/memory used: shared memory and texture 

cache. The former allows for better user management.  

Fig. 3a shows the pseudo code for the shared memory 

implementation. The advantage of using shared memory is 

that we can manipulate caches of very low latency, as low as 

registers. This allows us to achieve minimum access to the 

input volume data by fetching the data first and then updating 

the data after completing the projection for a list. Moreover, 

accessing volume data stored in shared memory can be as fast 

as accessing to registers as long as there are no bank conflicts. 

To maximize the ability of the shared memory, in our scheme 

each CUDA block takes a volume slice and a cloud layer, and 

all threads in a block run several lists and its elements in 

parallel but the projection for each such element proceeds in 

sequence (along the line) to avoid bank conflicts. Because we 

store the list elements in TOF distance-ascending order, all 

threads are guaranteed to access different banks in shared 

memory.    

Fig. 3b shows the pseudo code for the texture memory 

implementation. The advantage of using texture cache is that 

we are free from indexing problems when fetching volume 

data into texture memory. Also, we can use the fastest cache 

(shared memory) for other purposes. It allows this method to 

have a higher degree of parallelism, on the granularity of 

cloud points. Each thread computes one cloud point 

multiplication, which are then summed via fast parallel 

reduction to achieve the projection result for a target voxel 

along the line.    

There is a difference in computational overhead for forward 

and backward projection. In the forward projection, the kernel 

resolution in the LOR direction needs to be computed for each 

cloud point. We can do this by moving the „compute radial 
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resolution‟ line inside the cloud point loop in Fig.3. Because 

of this, it is obvious that forward projection is slower than 

backward projection in DIRECT TOF PET. 

 
Table 1. Two different methods for projection stage 

Method 1 Method 2 

Shared memory Texture cache 

Need to compute index No need to compute index 

Partial parallelized Fully parallelized 

V. RESULTS AND CONCLUSION 

As mentioned in Section 2, we tested our algorithm on a 

NVIDIA GTX 480 GPU. The volume size of the test was 

144× 144×62. The projection kernel was 45mm along the TOF 

direction, 5-6mm along the radial direction, and 5mm along 

the z-direction of the Gaussian FWHM (the corresponding 

cloud size has at most 29×5×3 voxels). The most time-

consuming stage is the projection stage. All other stages took 

about 0.00003 seconds each, which is a trivial time compared 

to the time for the projection stage.  

In our experiments the forward projection was slower than 

backward projection by factors of about 0.9 and 0.7 for 

method 1 and method 2, respectively. Further, method 2 was 

faster than method 1 by factors of about 1.5 and 1.8 for 

forward projection and backward-projection, respectively. 

In our test case, the number of threads in the projection 

stage was about 23,000 for method 1 and 6,856,000 for 

method 2. Thus, there were about 300 times as many threads 

for the latter due to its better memory cache usage. In addition, 

the native 2D indexing of the texture caches alleviated the 

need for extra index computing to fetch the volume data. All 

of these aspects combined favors method 2 over method 1.  

If we run a DIRECT reconstruction with 120 views, a 144× 

144×62 volume, method 2 will require approximately 24 

seconds per iteration, while the FFT based approach on a 

2.8GHz Dell Precision T5500 single processor takes about 40 

seconds per iteration for the considered 62 slices (31 seconds 

for the 48 slices reported in [6]). It is important to note, 

however, that the FFT based approach assumes a spatially 

invariant kernel, while our GPU implementation can widen the 

kernel width towards the edges of the detector and hence is 

spatially variant which prohibits the log(n) acceleration of 

FFTs.  

In current work, we are working on expanding our 

algorithm to also incorporate the tilt case and we are 

incorporating the presented implementations into the DIRECT 

reconstruction framework.  

 
Table 2. Time performance  

Time [sec] Forward Backward 

Method 1 0.16213 0.14077 

Method 2 0.10932 0.07612 
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