

1

Abstract--The DIRECT represents a novel approach for 3-D

Time-of-Flight (TOF) PET reconstruction. Its novelty stems from

the fact that it performs all iterative predictor-corrector

operations directly in image space. The projection operations

now amount to convolutions in image space, using long TOF

(resolution) kernels. While for spatially invariant kernels the

computational complexity can be algorithmically overcome by

replacing spatial convolution with multiplication in Fourier

space, spatially variant kernels cannot use this shortcut.

Therefore in this paper, we describe a GPU-accelerated approach

for this task. However, the intricate parallel architecture of GPUs

poses its own challenges, and careful memory and thread

management is the key to obtaining optimal results. As

convolution is mainly memory-bound we focus on the former,

proposing two types of memory caching schemes that warrant

best cache memory re-use by the parallel threads. In contrast to

our previous two-stage algorithm [1], the schemes presented here

are both single-stage which is more accurate.

Index Terms—CUDA, DIRECT, GPU, TOF

I. INTRODUCTION

IRECT (Direct Image Reconstruction for TOF) [2] is an

approach for TOF reconstruction that is a more efficient

alternative to traditional list-mode and binned TOF PET

reconstruction approaches [3]. In these latter approaches, the

events are binned by their LOR (Line of Response) and arrival

time to form a set of histo-projections, one for each angular

view. In DIRECT, on the other hand, the events are first sorted

into a (sub)set of angular views and then deposited for each

view into a dedicated histo-image, each having the same

lattice configuration and the same resolution as the

reconstructed image. Here, each corrective update involves

simple 3D convolutions using the system response (SR)

kernel, which can be performed efficiently in Fourier space

when the SR kernel is spatially invariant. However, in

practical applications the SR kernel is not spatially invariant –

its width increases up-to 40% towards the edge of the scanner.

This prohibits the use of efficient Fourier-space methods to

Sungsoo Ha and Klaus Mueller are with the Center for Visual Computing,

Computer Science Department, Stony Brook University, NY 11794 USA (e-
mail: {sunha, mueller}@cs.sunysb.edu).

Samuel Matej is with the Department of Radiology, University of

Pennsylvania, Philadelphia, PA 19104 USA (e-mail:
matej@mail.med.upenn.edu).

accelerate the convolution operations. Since the SR kernel is

typically quite large (having FWHM 45mm in TOF direction

for 300ps resolution and 5 - 6mm in LOR direction) a spatial

convolution within a 144×144×62 matrix and 120 views can

be prohibitively expensive for clinical application. We seek to

overcome this challenge by GPU-acceleration [4][5], using

their massively parallel computations to meet this challenge.

 In general, mapping a CPU-based algorithm to the GPU and

achieving 1-2 orders of speed-up is typically not

straightforward. An especially critical component in GPUs is

the memory, which is organized into a hierarchy, with some of

it on-chip but the majority of it off-chip (but on-board). The

former is orders of magnitudes faster. As it takes 100s of clock

cycles to bring off-chip data into on-chip memory, it is of

utmost importance to re-use these data among the parallel

threads as much as possible. Also, since on-chip memory is

quite small, on the order of KB, careful occupancy planning of

this limited resource is equally important.

 Since the long DIRECT kernels may traverse the image

space at arbitrary angles, data access at these off-axis

orientations is non-sequential. In [1] we presented a two-stage

scheme that, for these off-axis directions, first resampled the

data into a storage pattern aligned with the convolution

direction of the long kernels. This allowed linear access in on-

chip (shared) memory. By subtracting the smoothing effects of

the interpolation (sampling) kernel from the convolution

kernel, we were able to mitigate the blurring effects of the

interpolation kernel into the convolution. This 2-stage scheme

was about 10 times faster than the 1-stage scheme and only a

small amount of artifacts could be observed.

In the current paper, we chose to go a different route with

fewer artifacts, if any, using a 1-stage method that does not

require resampling. Here we aimed for a method that loads the

data into on-chip memory in such a way that it allows linear

access at any angle, using a dedicated addressing scheme. For

this, we investigated two types of on-chip memory: (i) shared

memory and (ii) texture memory cache.

Our paper is organized as follows. Section 2 discusses

relevant GPU details, Section 3 outlines our scheme, and

Section 4 presents results and conclusions.

Sungsoo Ha, Samuel Matej and Klaus Mueller

Efficiently GPU-Accelerating Long Kernel

Convolutions in 3-D DIRECT TOF PET

Reconstruction via Memory Cache Optimization

D

2

Create

2D projection mask

Create

3D point cloud
Build

Look-up table

Input volume data

View direction

Variant kernel info

Projected

volume data

(Forward- or Backward)

Projection

Combine output slices

Fig. 1. Pipeline for proposed forward- and backward-projection scheme.
.

II. SOME NOTES ON GPU ARCHITECTURE

We have implemented all methods on a NVIDIA 480 GTX

GPU with 1.5GB off-chip memory. This GPU has 480 CUDA

cores organized into 15 Streaming Multiprocessors (SM) of 32

processors each. Important for our purposes are the size and

access of the memory. Each SM has 64KB of on-chip memory

that can be configured as 48KB of shared memory with 16KB

of L1 cache, or as 16KB of shared memory with 48KB of L1

cache. Each SM also has a dedicated 768KB L2 texture cache.

An important texture memory feature is that it is specifically

designed to allow fast 2D memory access. It achieves this by

storing 2D data along a space-filling curve which greatly

improves access locality. All other GPU memories simply use

linear addressing and so do not support fast 2D access.

With regards to shared memory bandwidth, a somewhat

theoretical estimate is to assume that every clock-tick (the

GTX 480 operates at 1,401 MHz) produces 16 (a half-warp) 4-

byte data (from 32 banks) per SM and then multiply this

number by 15 (the total number of SMs). This yields

1.344TB/s. Less detailed information is available to make

such estimates for the texture cache. The texture fill rate is

rated as 34 (bi-linearly interpolated) Gtextels/s, but this

number likely includes off-chip memory as well. Nevertheless,

there are many factors that can limit memory bandwidth in

practice, both for shared and for texture memory, such as bank

conflicts and the aforementioned optimized 2D access for

texture memory and possibly cache. We therefore chose to

implement and optimize for the application at hand methods

that use shared memory as well as texture memory.

III. METHODS

Fig.1 shows the pipeline of our scheme for forward- and

backward-projection in DIRECT TOF PET. For each iteration

step from a given view direction, there are four stages: (i)

create the 2D projection mask; (ii) create the 3D point cloud,

(iii) build the look-up table, and (iv) load the data and perform

the forward or backward projection.

The projection mask is used to index and retrieve, from

global memory, the list of voxels located along an

approximate linear path that aligns with the long axis of the

convolution kernel at the current view direction (Fig. 2a). The

width of the kernel (LOR) determines the thickness of the path

of retrieved voxels (Fig. 2b), which are then stored into on-

chip memory. The computation targets are the voxels

connected by the line in Fig. 2a. Each such voxel becomes a

parallel thread, processing the data within the kernel‟s point

cloud (Fig. 2b) and weighing each by the Gaussian kernel

represented by the lookup table. We do this for every slice in

parallel and also compute the z-extent of the 3D-kernel in

parallel as well, which we then accumulate in a second step

(Fig. 2c). Since we can store data for only 1-2 such lines at a

time, due to limitations of the memory, we end up, in our case,

with 62·3=186 CUDA blocks, with 168 threads each.

We note that both point cloud and lookup table are simple

masks and do not require interpolation. Therefore, when

stored in 1D texture memory, they can be retrieved with fast

1D texture fetches during the processing. In the following we

motivate and describe each of these components in detail.

A. Create 2D Projection Mask

As mentioned, for general view directions, it is typical to have

poor memory locality for forward- and backward-projections.

Moreover, computing variant kernel resolutions along LOR

directions will increase the overall computational burden

exponentially. To solve these problems, we introduce a 2D

projection mask of the same size as the input volume slice at

each view direction. The mask consists of several lists based

on the LOR distance so that elements in each list can share the

same radial resolution with less error. The error is determined

by the distance between lists. The distance is chosen to have

less than or equal to 1 pixel distance within elements in a list.

For example, for 0 and 90 degrees, the distance between

elements is 1 pixel, which is the typically the grid size. To

improve memory locality, the elements are sorted in the TOF

distance ascending order.

B. Create 3D Cloud for variant kernel

The variant kernel for DIRECT TOF PET has non-symmetric

(in radial direction), ellipsoidal shape. Constructing each

kernel for a position will increase the overall computational

burden exponentially. To solve this problem, we introduce a

3D cloud, which can fit in all possible non-symmetric,

ellipsoidal, variant kernels. The value for a point within a

cloud is determined by the distance from the center of the

cloud to the point in TOF, LOR, and z-axis directions. The

distance can be pre-computed and used as index to fetch a

corresponding look up table. The cloud points are sorted in the

TOF distance ascending order, layer by layer, to minimize the

number of access to volume data in projection stage.

C. Build Look-up Table for variant kernel

There are three look-up tables (LUTs) according to the TOF,

LOR, and z-axis directions. Since we know the exact TOF,

LOR and z distance from the created cloud points, we only

need a finite number of kernel values in each direction. In the

TOF- and z-axis directions, their resolutions are invariant and

3

T
O

F

Fig. 2. Three critical stages
.

List 0

List 1

List 4

List 5

List 2 List 3

(a) 2D Projection Mask
.

LOR (max)

3
D

 c
lo

u
d

(c) Projection
.

(b) 3D point cloud
.

z=0

z=1

z=2

Do projection for a cloud‟s layer by layer for a volume slice

Cloud layer

z=0

z=1

z=2

Combine

Fig. 3. Pseudo code for two different implementation methods in projection. „Run‟ is for parallel loop. „For‟ is for sequential loop.
.

Run each block (take a volume slice)
 Read volume data from global memory &
 Store in shared memory
 __sync()
 Run lists do projection
 Run list elements
 Compute radial resolution
 Set output to zero
 For cloud points // to avoid bank conflicts
 Fetch look up table from texture memory
 Compute shared memory index
 Read a volume point from shared memory
 Accumulate output
 End cloud points
 Write output to global memory
 End list elements
 __sync()
 Update shared memory for next lists
 __sync()
 End lists
End block
(a) Method 1: Using shared memory

.
(b) Method 2: Using texture cache

.

Run each block (take a list)
 Run list elements
 Compute radial resolution
 Set output to zero
 Run cloud points
 Fetch look up table from texture memory
 Read volume data from texture memory
 Accumulate output
 End cloud points
 Write output to shared memory
 __sync()
 Parallel sum reduction
 __sync()
 Write output to global memory
 End list elements
End block

thus their kernel values can be stored in a 1D array. The length

of the array is determined by the number of cloud points. For

the LOR direction, there are as many different resolutions as

the number of lists in a projection mask. Thus, the kernel

values for radial direction can be stored in a 2D array having

same length with TOF (and z-axis) LUT.

D. Projection

To improve memory locality, (forward- and backward-)

projection for a voxel proceeds list by list in a projection

mask. Also, to minimize the number of accesses to volume

data, the projection proceeds cloud layer by layer and its

results are stored in different places; after completing the

projection, the results are combined into a volume, which have

the same size than the input volume (Fig. 2c).

IV. IMPLEMENTATION

As mentioned, we have explored our method with regards to

the on-chip cache/memory used: shared memory and texture

cache. The former allows for better user management.

Fig. 3a shows the pseudo code for the shared memory

implementation. The advantage of using shared memory is

that we can manipulate caches of very low latency, as low as

registers. This allows us to achieve minimum access to the

input volume data by fetching the data first and then updating

the data after completing the projection for a list. Moreover,

accessing volume data stored in shared memory can be as fast

as accessing to registers as long as there are no bank conflicts.

To maximize the ability of the shared memory, in our scheme

each CUDA block takes a volume slice and a cloud layer, and

all threads in a block run several lists and its elements in

parallel but the projection for each such element proceeds in

sequence (along the line) to avoid bank conflicts. Because we

store the list elements in TOF distance-ascending order, all

threads are guaranteed to access different banks in shared

memory.

Fig. 3b shows the pseudo code for the texture memory

implementation. The advantage of using texture cache is that

we are free from indexing problems when fetching volume

data into texture memory. Also, we can use the fastest cache

(shared memory) for other purposes. It allows this method to

have a higher degree of parallelism, on the granularity of

cloud points. Each thread computes one cloud point

multiplication, which are then summed via fast parallel

reduction to achieve the projection result for a target voxel

along the line.

There is a difference in computational overhead for forward

and backward projection. In the forward projection, the kernel

resolution in the LOR direction needs to be computed for each

cloud point. We can do this by moving the „compute radial

4

resolution‟ line inside the cloud point loop in Fig.3. Because

of this, it is obvious that forward projection is slower than

backward projection in DIRECT TOF PET.

Table 1. Two different methods for projection stage

Method 1 Method 2

Shared memory Texture cache

Need to compute index No need to compute index

Partial parallelized Fully parallelized

V. RESULTS AND CONCLUSION

As mentioned in Section 2, we tested our algorithm on a

NVIDIA GTX 480 GPU. The volume size of the test was

144× 144×62. The projection kernel was 45mm along the TOF

direction, 5-6mm along the radial direction, and 5mm along

the z-direction of the Gaussian FWHM (the corresponding

cloud size has at most 29×5×3 voxels). The most time-

consuming stage is the projection stage. All other stages took

about 0.00003 seconds each, which is a trivial time compared

to the time for the projection stage.

In our experiments the forward projection was slower than

backward projection by factors of about 0.9 and 0.7 for

method 1 and method 2, respectively. Further, method 2 was

faster than method 1 by factors of about 1.5 and 1.8 for

forward projection and backward-projection, respectively.

In our test case, the number of threads in the projection

stage was about 23,000 for method 1 and 6,856,000 for

method 2. Thus, there were about 300 times as many threads

for the latter due to its better memory cache usage. In addition,

the native 2D indexing of the texture caches alleviated the

need for extra index computing to fetch the volume data. All

of these aspects combined favors method 2 over method 1.

If we run a DIRECT reconstruction with 120 views, a 144×

144×62 volume, method 2 will require approximately 24

seconds per iteration, while the FFT based approach on a

2.8GHz Dell Precision T5500 single processor takes about 40

seconds per iteration for the considered 62 slices (31 seconds

for the 48 slices reported in [6]). It is important to note,

however, that the FFT based approach assumes a spatially

invariant kernel, while our GPU implementation can widen the

kernel width towards the edges of the detector and hence is

spatially variant which prohibits the log(n) acceleration of

FFTs.

In current work, we are working on expanding our

algorithm to also incorporate the tilt case and we are

incorporating the presented implementations into the DIRECT

reconstruction framework.

Table 2. Time performance

Time [sec] Forward Backward

Method 1 0.16213 0.14077

Method 2 0.10932 0.07612

REFERENCES

[1] S. Ha, Z. Zhang, S. Matej, K. Mueller, "Efficiently GPU-Accelerating

Long Kernel Convolutions in 3-D DIRECT TOF PET Reconstruction

via a Kernel Decomposition Scheme," IEEE Medical Imaging
Conference, Knoxville, TN, October, 2010.

[2] S. Matej, S. Surti, S. Jayanthi. M. Daube-Witherspoon. R. Lewitt, J.

Karp, “Efficient 3-D TOF PET reconstruction using view-grouped histo-
image: DIRECT-direct image reconstruction for TOF,” IEEE Trans Med

Imaging, 28(5):739-51, 2009.

[3] L. Popescu, S. Matej, R. Lewitt, “Iterative image reconstruction using
geometrically ordered subsets with list-mode data,” IEEE Medical

Imaging Conference, M9-211, pp. 3536-3540, 2004.

[4] F. Xu, K. Mueller, “Accelerating popular tomographic reconstruction
algorithms on commodity PC graphics hardware.” IEEE Trans. On

Nuclear Science, 52(3):654-663, 2005

[5] F. Xu, K. Mueller, “Real-Time 3D Computed Tomographic
Reconstruction Using Commodity Graphics Hardware,” Physics in

Medicine and Biology, 52:3405-3419, 2007.

[6] M. E. Daube-Witherspoon, S. Matej, M. E. Werner, S. Surti, and J. S.
Karp, “Comparison of listmode and DIRECT approaches for time-of-

flight PET reconstruction,” IEEE Nuclear Science Symposium and

Medical Imaging Conference, M09-256, Knoxville, TN, 2010

Fig. 5. Selected sample: projected volume slice at 30 degrees view
.

(a) Forward
.

(b) Backward
.

Fig. 4. Time performance comparison

