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    Abstract– The image quality of low-dose CT scans typically 
suffers greatly from the limited utilization of X-ray radiation. 
Although the harmful effects to patient health are reduced, the 
low quality of the reconstructions makes diagnostics difficult. In 
previous work, we have demonstrated a method that can restore 
a low-dose image by ways of a database of reference images. This 
database stored a set of pre-aligned non- and pre-corrupted 
reference CT images to support a matched-reference non-local 
means (MR-NLM) filtering approach. While effective, the need to 
store images with many different types of corruptions and 
alignments greatly impeded system scalability. In this current 
work, we have significantly simplified the database which now is 
comprised of just a set of regular-dose patient scans. Our present 
scheme performs both alignment and artifact generation on the 
fly and uses a sophisticated image and feature matching scheme 
to find good candidates to support our MR-NLM filtering scheme. 

I. INTRODUCTION 

n recent years a growing amount of research has been 
dedicated to low-dose CT, motivated by the need to 

minimize the radiation exposed to patients while maximizing 
the clarity of the reconstructed images to facilitate accurate 
diagnoses. The adverse low-dose conditions greatly challenge 
conventional CT reconstruction algorithms, both analytical 
and iterative. They usually result in images with severe noise 
artifacts and reduced feature detail. To solve this conundrum, 
one type of approach enforces better image quality directly in 
the reconstruction process [6][12][17], while another improves 
the image quality in a post-processing de-noising step [7]. Our 
paper belongs to the second category. 

Neighborhood filters, in particular non-local means (NLM) 
[1] have shown great promise for the restoration of noisy low-
dose CT imagery [17]. To filter a pixel pi with NLM, its 
updated value is determined by the values of pixels pj inside a 
local neighborhood around pi, called search window. Here, the 
contribution of a pj to pi depends on the similarity between 
small regions around them, called patches. Recently, to extend 
the search space beyond the current image, some medical 
imaging researchers have devised schemes that utilize prior 
scans of the same patient to search for high-quality updates 
[7][15][16]. We extended these ideas in [18], proposing an 
approach that utilized an image database of different patients 
which eliminated the need for a prior patient scan. The scheme 
achieved good artifact mitigation for low-dose scans acquired 
from only 45 noise-free projections or 60 noisy projections 
with SNR=10. The database itself contained pairs of artifact-
free and artifact-matched reference images. We found that 
much better filtering results could be achieved by using the 
latter to find good NLM matches for a contaminated target 
pixel, but then replacing the noisy target pixel by the 
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corresponding value from the artifact-free counterpart. We 
therefore called this method Matched Reference-Based Non-
Local Means (MR-NLM). A shortcoming of this 
implementation was that the database could grow rather large 
since all images needed to be pre-aligned to the target image 
and also had to contain all possible types of artifacts for 
matching. In the current paper, we have aimed to reduce these 
problems and establish a more general framework.  

Our present framework embodies a database of regular-dose 
patient CT scans with no pre-alignment and prior artifact 
simulation needed. Such scans are commonly available in 
clinical practice. For image restoration the only assumption we 
make is that the low-dose CT condition is known. This is 
reasonable since CT scans are typically obtained following a 
known reconstruction routine under some geometry 
configuration with a specific number of projections and 
mA/kV setting. In the current work we use fan-beam filtered 
backprojection (FBP) with a limited number of projections 
with Gaussian noise to simulate the low-dose conditions, but 
in practice any reconstruction setting can be supported. Our 
new method still applies the effective MR-NLM scheme, only 
now we perform alignment and artifact generation on the fly, 
assisted by a much more sophisticated image and feature 
matching scheme. We therefore call our framework simply 
Database-Assisted CT Image Restoration (DA-CTIR). 

The overall workflow of our method is illustrated in Fig. 1. 
It consists of three major components: 
• Offline database construction: given an image database, 

we create the global image feature descriptor G for each 
image and build up the global feature database. A visual 
vocabulary V is also learned. 

• Online prior search: for the input image I, generate G(I) 
with V and use it to query the global feature database to 
find the M nearest neighbors (NN) as regular-dose priors. 
The priors have the most similar artifact-free content to I.   

• Online de-noising: align the regular-dose priors to the 
input image as registered priors (CRP) and corrupt them 
with the low-dose condition (DRP) to form the prior pairs 
<CRPi, DRPi>. Finally a refined MR-NLM is performed. 

    The organization of the paper is as follows. In section II, we 
describe the methodology including all technical details. 
Experimental results are presented in section III, followed by 
conclusions and future work in section IV.  

II. METHODOLOGY 

A. Local Image Feature Descriptor 

Image matching is a fundamental operation in computer vision 
and image processing and is often used for scene matching 
and object recognition. An image is usually represented as a 
high dimensional vector to describe the distinct salient 
properties of the image. In other words, an image feature 
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Figure 1: Workflow of the framework:  offline database construction, online prior search and online de-noising. 

descriptor is employed to map one image from 2D image 
space to high-D image feature space where image matching is 
performed. For instance, the GIST descriptor [11] is an 
aggregated multi-scale oriented edge histogram of the image 
in a coarse spatial resolution. The Haralick texture features [5] 
describe the global image statistics based on co-occurrence 
matrices with different pixel distance values. Although these 
methods have been shown to work effectively in many 
applications, they are sensitive to image rotation, distortion 
and appearance of noise which usually occur in our case. 
    The scale-invariant feature transform (SIFT) feature 
descriptor [9], on the contrary, solves these concerns. It 
captures the histogram of edges in a local neighborhood at 
multiple levels of scale, characterizes salient local and 
transform-invariant image structures and encodes contextual 
information. A SIFT feature descriptor is usually a 128-D 
vector encoding 8-orientation histograms of edges over 4×4 
blocks with each block of size 4×4, serving as a local 
descriptor of the image. In its original definition, only 
keypoint locations are selected. However, it was shown that 
dense SIFT vectors on a regular spaced grid work better and 
are more robust [8][10]. Here we also exploit this dense 
feature scheme so that each image is represented by a fixed 
number of SIFT vectors.  
    In this work, we chose a grid spacing of 8 pixels. So for 
image size 2562, 32×32 SIFT vectors are generated while for 
image size 5122 there are 64×64 SIFT vectors. 

B. Spatial Pyramid Based Global Image Feature Descriptor  

To form a global image feature descriptor, traditional dense 
SIFT algorithms follow the bag-of-feature method [3]. It 
includes the following steps to combine the local feature 
vectors into a single one:  
• Extract the local feature descriptors. Generate a set of 

SIFT local feature descriptors {S0, S1, .., SN-1} to represent 
each image. 

• Build the visual vocabulary. Randomly select the local 
feature descriptors of all images in the database and 
perform k-means clustering to learn K cluster centers as 
visual words {V0, V1, …, VK-1} and so form the visual 
vocabulary V of the database. 

• Label the local feature descriptors to the visual words. 
For each image, its local feature descriptors are assigned 
to their corresponding closest visual words.  

• Perform vector quantization to generate a global 
feature descriptor. Quantize each image’s visual words 
to form histogram series {H0, H1, ..,, HK-1} of that image. 
By concatenating the weighted histogram series, a global 
descriptor is formed.   

One drawback of this method is that the feature’s location 
information in the original 2D image space is discarded. To 
make use of the spatial information and keep track of it in 
multi-resolution, we exploit a spatial pyramid scheme [8] to 
implement a “stronger” feature description. The multi-
resolution layers are formed by recursively subdividing the 
image space into a×a blocks. In a layer L, for each block, only 
the feature vector extracted from that block is aggregated to 
the histogram of its specific visual word. In this way, the 
clustering is still performed in the feature space while the 
histogram pyramid is built in 2D image space. The weight to 
each histogram is inversely proportional to its block width. 

In this work, for clustering we tried several k values and 
empirically chose k=50 for all databases. This number is 
relatively small compared to other papers (where k=200) 
which is due to the fact that CT scans are not as complicated 
as natural images. We set L=1 (two layers) and a=5 to prevent 
the splitting of significant body structures [4]. Therefore, for 
image size 2562 its global vector dimension is 1,300 while for 
image size 5122 it is 2,600. 



 

C. Histogram Intersection and Multiple kd-Trees Based 
Vector Matching 

In the online prior search, given the learned visual vocabulary 
V and the computed local features of the target scan, the task 
of the visual word assignment is to find the nearest visual 
word Vj for each local feature Si in SIFT vector space (128-D). 
When processing a set of query images with a large number of 
dense SIFT vectors, this process could be time consuming. To 
speed up, we exploit the commonly used kd-tree as the nearest 
neighbor searching data structure. A kd-tree is a binary tree 
that recursively partitions and stores the nodes in k-
dimensional space. Counting the number of visited tree nodes 
is used to measure the complexity of querying the tree. 

To handle the query for high-D nodes such as a SIFT vector 
and reduce backtracking, we employ a multiple principal 
component kd-trees method denoted PKD-trees to perform fast 
approximate search [13]. In essence, data is first projected 
onto a PCA-reduced sub-space and arbitrary rotations to data 
are applied to create multiple trees with different structures. 
The search order among trees is organized by multithreading. 
The maximum number of visited nodes is pre-set. We use a 
Householder matrix as the transformation matrix to speedup 
arbitrary rotations, and 6 trees are built to accommodate data 
reduced to 30 dimensions for SIFT vectors. 

In the same part, after generating a global feature vector for 
the target scan, vector matching is performed to search for 
similar priors in the database that anatomically characterize 
the same content as the target scan but may contain scale, 
rotation, and deformation variance. We found that histogram 
intersection performs better than a Euclidean distance measure. 
Therefore we implemented the matching with spatial pyramid 
based histogram intersection which is counted block-wise and 
visual word-wise and summed up to form a single value [8].   

D. Online Denoising 

Once the regular-dose prior (or reference) scans have been 
found, the online de-noising process can be executed. We first 
register the prior scans with the target scan using the SIFT-
flow registration algorithm [10] to make sure the 
neighborhoods of any pixel position are roughly aligned. Then 
we reconstruct the artifact matched prior images using the 
same low-dose condition.  
    The MR-NLM follows the standard NLM filtering scheme 
but using a pair of artifact-free and artifact-matched registered 
prior images <CRP, DRP> [18]. More specifically, the weight 
generation is conducted by comparing patches from the target 
image and artifact-matched prior images, while the pixel value 
summation is performed in the corresponding locations in the 
artifact-free reference images using the weights. The equation 
of MR-NLM is as follows: 
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Here x is the location of the target pixel and y are the locations 
of the candidate pixels with values py. Wx is the search window 
around x, and P is the patch size of each pixel. The patch 
similarity is measured by the Gaussian weighted L2 distance 

between two patch vectors with t representing the index within 
a patch and Ga being a Gaussian kernel with standard 
deviation a. h controls the overall smoothness of the filtering. 
The superscript crp indicates that the pixels originate from the 
artifact-free registered prior CRP, while drp denotes the 
degraded artifact matched registered prior DRP. 

In order to further improve de-noising accuracy and enable 
more efficient computations, we use three refinement 
strategies. The first two are redundancy control methods 
designed originally for traditional NLM: (1) reduce patch 
redundancy by applying PCA to high-D patch space and 
project patches to a lower dimensional sub-space accordingly 
[14], (2) reduce search window redundancy by discarding 
unrelated pixels whose mean and variance values are different 
enough from the central pixel of the search window in the 
target image [2], and (3) consider multiple pairs (3 in the 
experiments) of reference images to broaden the search range. 

 In this paper, both search and patch windows are of size 
7×7. For the Gaussian kernel, its standard deviation a = 1 and 
the smoothing parameter h is chosen to bring best results. 

III.   RESULTS 

We constructed two databases: a head database (48 2562 

images) by mixing the NIH Visible Human Head (15 images) 
with a CT cadaver head (33 images) and a human lung 
database of two patients (150 5122 images). The images were 
not pre-aligned. Their original reconstructions were utilized in 
three different ways. (1) They served as the basis for a high-
quality projection simulation in fan-beam geometry (fan angle 
= 20°). We then picked a subset of these projections with 
Gaussian random noise propagated and reconstructed them 
under the current low-dose condition. (2) We used them to 
generate an experimental target scan subject to restoration. To 
create a new scan different from any image in the database, 
the selected scan was first deformed or rotated (to mimic a real 
clinical situation), projected, and then reconstructed with the 
studied low-dose condition. (3) We used the deformed 
uncorrupted scan to represent the gold standard for evaluation.  

A. Performance of the Global Image Feature Descriptor 

This experiment was conducted to test the performance of the 
global image feature descriptor under low-dose conditions. In 
Fig. 2, both a head scan and a human lung scan were 
simulated (neither was in the database). I(b) was created by 
reconstructing a CT head scan after a twirl-like deformation 
(see I(a)) with 45 projections of SNR 15, and II(b) was created 
by reconstructing a human lung scan after rotation 5º ccw (see 
II(a)) with 60 projections of SNR 20. Ideally, the adjacent 
slices in the same dataset should be found as reference images. 
The three matched prior images for the head scan are shown as 
Fig. 2 (c), (d) and (e) and are consistent with our expectations. 
The case for the lung scan is similar. It confirms that moderate 
deformations and low-dose artifacts (both streak and noise) do 
not affect the global feature descriptor to express the 
underlying anatomical content of the CT images. 

B. Performance of PKD-trees Data Structure 

For the visual words learned in the first experiment, 6-PKD-
tree data structures were created for matching dense SIFT 



 

Figure 2: Results with (I) a CT head database and (II) a human lung database. 

I: (a) ideal                     (b) input                 (c) prior 1                (d) prior 2                  (e) prior 3         (f) basic DA-CTIR        (g) refined  

II:      (a) ideal human lung                          (b) input scan                                (c) basic DA-CTIR                    (d) refined DA-CTIR 

  

 

Figure 3: 6-PKD-tree error rate. 

vectors to the visual words. Two configurations for reducing 
the dimension of the vectors were set: full 128 and 30. By 
generating a head scan with various changes such as rotation, 
resizing, Gaussian noise and affine transform, we extracted 
100,000 SIFT vectors from it. As an approximated search, the 
error rate versus the maximum number of visited nodes M was 
tested for both dimension settings and is plotted in Fig. 3. 
When M is above 200, the error rate is lower than 10%. We 
also observe that dimension reduction of the data does not 
affect the querying accuracy when the vector is sparse. 

C. Performance of Refined MR-NLM 

We tested the de-noising effect for both a head image and a 
human lung scan. In Fig. 2, I(f) and I(g) are the de-noised head 
image without and with refinement. The lung results are 
shown as II(c) and II(d) for without and with refinement 
respectively. For both cases, the basic method restored fine 
details well. The refined result keeps the same (sometimes 
better as the area labeled in the box) quality level but reduces 
the computational complexity greatly. 
 

IV.  CONCLUSIONS AND FUTURE WORKS   

In this paper, we proposed a general framework for high 
quality restoration of low-dose CT scans with a general CT 
image database. A spatial pyramid based global image feature 
descriptor, a local feature matching PKD-trees and a refined 
MR-NLM scheme were presented. As future work, PKD-trees 
used for global feature vector, GPU acceleration for faster 

execution and a more complete database will be tested.   
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