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Fig. 1. The visual interface of our D-BIAS tool. (A) The Generator panel: used to create the causal network and download the debiased
dataset (B) The Causal Network view: shows the causal relations between the attributes of the data, allows user to inject their prior in
the system (C) The Evaluation panel: used to choose the sensitive variable, the ML model and displays different evaluation metrics.

Abstract— With the rise of AI, algorithms have become better at learning underlying patterns from the training data including ingrained
social biases based on gender, race, etc. Deployment of such algorithms to domains such as hiring, healthcare, law enforcement, etc.
has raised serious concerns about fairness, accountability, trust and interpretability in machine learning algorithms. To alleviate this
problem, we propose D-BIAS, a visual interactive tool that embodies human-in-the-loop AI approach for auditing and mitigating social
biases from tabular datasets. It uses a graphical causal model to represent causal relationships among different features in the dataset
and as a medium to inject domain knowledge. A user can detect the presence of bias against a group, say females, or a subgroup, say
black females, by identifying unfair causal relationships in the causal network and using an array of fairness metrics. Thereafter, the
user can mitigate bias by refining the causal model and acting on the unfair causal edges. For each interaction, say weakening/deleting
a biased causal edge, the system uses a novel method to simulate a new (debiased) dataset based on the current causal model while
ensuring a minimal change from the original dataset. Users can visually assess the impact of their interactions on different fairness
metrics, utility metrics, data distortion, and the underlying data distribution. Once satisfied, they can download the debiased dataset
and use it for any downstream application for fairer predictions. We evaluate D-BIAS by conducting experiments on 3 datasets and
also a formal user study. We found that D-BIAS helps reduce bias significantly compared to the baseline debiasing approach across
different fairness metrics while incurring little data distortion and a small loss in utility. Moreover, our human-in-the-loop based approach
significantly outperforms an automated approach on trust, interpretability and accountability.

Index Terms—Algorithmic Fairness, Causality, Debiasing, Human-in-the-loop, Visual Analytics

1 INTRODUCTION

When computer systems discriminate based on an individual’s inherent
characteristic such as gender, or acquired traits such as nationality,
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which are protected classes under law and are irrelevant to the decision
making process, it constitutes algorithmic bias. A simple way to deal
with this problem can be to remove the sensitive attribute such as race
before training the machine learning (ML) model. However, algorith-
mic bias can still persist via proxy variables such as zipcode that are
correlated with the sensitive attribute. Recent years have seen a huge
surge in research papers that deal with this problem. These papers have
largely focused on pure algorithmic means to detect and remove bias at
different stages of the ML pipeline. However, fairness is contextual and
thus cannot be achieved using fully automated methods [40]. More-
over, existing techniques are largely black boxes, offering only limited
insight on the proxy variables and how bias is mitigated. Finally, they
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Fig. 2. This figure shows how D-BIAS fits into the typical ML pipeline.
D-BIAS allows users to act on the raw data and returns its debiased
version which can be fed into a ML model for fairer predictions.

are also limited in providing capabilities that allow users to actively
steer and control the debiasing process. Given this limited transparency
and human control, accountability and trust become a major concern.

To address these needs, we hypothesize that a human-in-the-loop
(HITL) approach is the way forward. A human expert can determine
what fairness means in a given context. Such domain knowledge can
be incorporated effectively via the HITL approach and hence improve
perceived fairness. Introducing a human into the loop will only be
effective when a person can understand the underlying state of the
system and provide useful feedback. Hence, this approach is naturally
inclined towards interpretability. On the trust aspect, people are more
likely to trust a system if they can tinker with it, even if it meant making
it perform imperfectly [14]. Human interaction is a core part of the
HITL approach, so it might instill more trust. Lastly, this approach
should also foster accountability as the human has a much bigger role
to play, which can significantly impact the results.

We present D-BIAS, a visual interactive tool that embodies a HITL
approach for bias identification and mitigation. Given a tabular dataset
with meaningful column names as input, D-BIAS assists users in au-
diting the data for different biases and then helps generate its debiased
version (see Fig. 2). It uses a graphical causal model as a medium
for users to visualize the causal structures inherent in the data and to
inject their domain knowledge. We have made use of causal models
since discrimination is inherently causal, and causal models can also
be easy to interpret [24,46,49]. Apart from causal model, D-BIAS also
includes multiple statistical fairness metrics to help identify bias. Users
can choose to compare between two groups based on a single variable
say gender (Male, Female) or a combination of attributes say race and
gender (Black Females, White Males). Thereafter, they can inject their
domain knowledge by acting on the edges of the causal network, for
instance by deleting or weakening biased causal edges. Since the causal
model encodes the data-generating mechanism, any user intervention
modifies that process. Following each change, the system generates a
new dataset based on the current causal model while keeping track and
visualizing the impact of the user interventions on utility, data distortion
and various fairness metrics. Users can interact with the system until
they are satisfied with the outcome and then download the debiased
dataset for use in any downstream ML application to achieve fairer
predictions. The major contributions of our work are:

• A novel human-in-the-loop method to debias tabular datasets.
• An end-to-end visual interactive tool for algorithmic bias identifi-

cation and mitigation.
• A demonstration of the effectiveness of our tool in reducing bias

using three datasets.
• A user study to evaluate our tool on human-centric measures like

usability, trust, interpretability, accountability, etc.

2 BACKGROUND AND RELATED WORK

2.1 Bias Identification
The existing literature on bias identification mostly revolves around dif-
ferent fairness metrics. Numerous fairness metrics have been proposed
which capture different facets of fairness, such as group fairness, indi-
vidual fairness, counterfactual fairness, etc. [4, 5, 16, 28, 33]. Another
way to classify fairness metrics can be on the level they operate on. For
eg., dataset based metrics are solely computed using the dataset and

are independent of any ML model, such as statistical parity difference.
On the other hand, classifier based metrics are computed over the pre-
dictions of a trained ML model, such as false negative rate difference.
So far, there is not a single best fairness metric. Moreover, some of the
fairness metrics can be mutually incompatible, i.e., it is impossible to
optimize different metrics simultaneously [27]. In line with existing
visual tools [5, 46], our tool also uses a diverse set of fairness metrics
to present a more comprehensive picture.

Many fairness metrics solely focus on the aggregate relationship
between the sensitive attribute and the output variable. This can lead
to misleading conclusions as the aggregate trend might disappear or
reverse when accounting for other relevant factors. A prime example
of this phenomenon, also known as Simpson’s paradox [35], is the
Berkeley Graduate Admission dataset [6]. There it appeared as if the
admission process was biased against women since the overall admit
rate for men (44%) was significantly higher than for women (30%) [2].
However, this correlation/association did not account for the fact that
women typically applied for more competitive departments than men.
After correcting for this factor, it was found that the admission process
had a small but statistically significant bias in favor of women [6].
Causal models can be an effective tool for dealing with such a situation
as they can decipher the different intermediate factors (indirect effects)
along with their respective contributions behind an aggregate trend.
Hence, our tool also employs causal model for bias identification.

2.2 Bias Mitigation
The existing literature on algorithmic bias mitigation can be broadly cat-
egorized into the three different stages in which they operate within the
ML pipeline, namely pre-processing, in-processing and post-processing.
In the pre-processing stage, the dataset is modified such that the bias
with respect to an attribute or set of attributes is reduced or elimi-
nated [10, 22, 25, 36, 48]. This can be achieved by either modifying
the output label [25, 26] or by modifying the input attributes [10, 48].
In the in-processing stage, the algorithm is designed to take in biased
data but still generate unbiased predictions. This can be achieved by
tweaking the learning objectives such that accuracy is optimized while
discrimination is minimized [3]. Finally, in the post-processing stage,
predictions from ML algorithms are modified to counter bias [29]. Our
work relates closely with the pre-processing stage where we make
changes to the input attributes and the output label.

There is also a growing set of work at the intersection of bias mitiga-
tion and causality [11,43,50]. The general idea is to generate the causal
network, modify it, and then simulate debiased data. These approaches
fully rely on automated techniques to yield the true causal network,
and assume a priori knowledge about fair/unfair causal relationships.
Our work draws inspiration from this line of work and presents a more
general solution where human domain knowledge is leveraged to refine
the causal network and generate the debiased dataset.

2.3 Visual Tools
Recent years have seen visual tools like Silva [46], FairVis [8], Fair-
RankVis [44], DiscriLens [42], FairSight [1], WordBias [18], etc. which
are all aimed at tackling algorithmic bias. Although most of these tools
are focused on bias identification, a few of them, such as FairSight, also
permit debiasing. However, the debiasing strategy used in such tools is
fairly basic, like eliminating proxy variable(s). Simple measures like
this can lead to high data distortion and can have a high negative impact
on data utility. Our work relates more closely with Silva which also
features a graphical causal model in its interface. Using an empirical
study, it showed that users can interpret causal networks and found
them helpful in identifying algorithmic bias. However like most other
visual tools, Silva is limited to bias identification. Our work advances
the state of the art by presenting a tool that supports both bias identifi-
cation and mitigation, with our debiasing strategy being more nuanced
and sensitive toward data distortion.

3 METHODOLOGY

The workflow of our system can be understood from Fig. 3. A detailed
discussion for each stage follows next.



Fig. 3. The workflow of D-BIAS has 4 parts: (1) The default causal model is inferred using the PC algorithm and SEM. Here, dotted edges represent
undirected edges (2) Refine stage - the default causal model is refined by directing undirected edges, reversing edges, etc. (3) Debiasing stage - the
causal model is debiased by deleting/weakening biased edges (4) The debiased causal model is used to simulate the debiased dataset.

3.1 Generating the Causal Model
A causal model generally consists of two parts: causal graph (skeleton)
and statistical model. Given a tabular dataset as input, we first infer
an initial causal graph (directed acyclic graph) using a popular causal
discovery algorithm, namely the PC algorithm [13, 39]. This algorithm
relies on conditional independence tests and a set of orientation rules
to yield the causal graph (for details, see appendix B). Each node in
the causal graph represents a data attribute and each edge represents a
causal relation. For example, a directed edge from X to Y signifies that
X is the cause of Y, i.e., a change in X will cause a change in Y. The PC
algorithm provides qualitative information about the presence of causal
relationship between variables. To quantitatively estimate the strength
of each causal relationship, we use linear structural equation models
(SEM) where a node is modeled as a linear function of its parent nodes.

y =
parents(y)

∑
i

βixi + ε (1)

In the above equation, variable y is modeled as a linear combina-
tion of its parents xi, their regression coefficients (βi) and the intercept
term (ε). If y is a numerical variable, we use linear regression else
we use the multinomial logit model to estimate the values of βi and
ε . Here, βi represents the strength of causal relation between xi and y.
We repeat this modeling process for each node with non-zero parent
nodes. Such nodes that have at least one edge leading into them are
termed as endogenous variables. Other nodes correspond to exogenous
variables or independent variables that have no parent nodes. In Fig. 3
(Refined Causal Model), s and a are exogenous variables while b, c and
y are endogenous variables. Here, y will be modeled as a function of
its parent nodes, i.e., a, b and c. Similarly, b and c will be modeled as
function of s. After this process, we arrive at a causal graph whose dif-
ferent edges are parameterized using SEM. This constitutes a Structural
Causal Model (SCM) or simply causal model (see Fig. 3 (1)).

This causal model, generated using automated algorithm, might have
some undirected/erroneous causal edges due to different factors like
sampling bias, missing attributes, etc. To achieve a reliable causal
model, we have taken a similar approach as Wang and Mueller [41]
where we leverage user knowledge to refine the causal model via oper-
ations like adding, deleting, directing, and reversing causal edges (see
Fig. 3 (2)). For every operation, the system computes a score (Bayesian
Information Criterion (BIC)) of how well the modified causal model
fits the underlying dataset. Similar to [41], our system assists the user
in refining the causal model by providing the difference in BIC score
before and after the change. A negative BIC score suggests a better
fit. After achieving a reliable causal model, we enter into the debiasing
stage where any changes made to the causal model will reflect on the
debiased dataset (see Fig. 3 (3)).

3.2 Auditing and Mitigating Social Biases
From a causal perspective, discrimination can be defined as an unfair
causal effect of the sensitive attribute (say, race) on the outcome vari-
able (say, getting a loan) [34]. A direct causal path from a sensitive
variable to the output variable constitutes disparate treatment while an
unfair indirect path via some proxy attribute (say, zipcode) constitutes
disparate impact [12]. A direct path is certainly unfair but an indi-
rect path may be fair or unfair (as in the case of Berkeley Admission
dataset [35]). Our system computes all causal paths and lets the user

decide if a causal path is fair or unfair. If a causal path is unfair, the user
should identify which constituting causal relationship(s) are unfair and
act on them. The user can do this by deleting or weakening such biased
causal relationships to reduce/mitigate the impact of the sensitive at-
tribute on the outcome variable. For example, in Fig.3 (Refined Causal
Model), s is the sensitive attribute and y is the outcome variable. Here,
the user deletes the edge s→ b and weakens the edge s→ c (shown as a
thin edge). Once the user has dealt with the biased causal relationships,
we achieve what we call the Debiased Causal Model.

Algorithm 1 Generate Debiased Dataset
1: D← Original Dataset
2: G(V,E)← refined causal model
3: Ea← set of edges added during the debiasing stage
4: Em← subset of E that were deleted/strengthened/weakened during

the debiasing stage
5:
6: for each e in Ea do
7: n←node pointed by head of e
8: retrain linear model for n as a function of its parents
9: end for

10:
11: Vsim← /0 // Attributes that need to be simulated
12: for each e in (Em∪Ea) do
13: n←node pointed by head of e
14: Vsim←Vsim +n+all descendent nodes(n)
15: end for
16: Vsim← remove duplicates(Vsim)
17:
18: Ddeb← /0 // Debiased Dataset
19: for each v in topological sort(V) do
20: if v present in Vsim then
21: Ddeb[v]← generate values based on Equation 2
22: else
23: Ddeb[v]← D[v]
24: end if
25: end for
26:
27: // Rescale values for the simulated attributes
28: for each v in Vsim do
29: if v is a categorical variable then
30: Ddeb[v]← rescale values based on Algorithm 2
31: else
32: // v is a numeric variable
33: µ,σ2← mean(D[v]),variance(D[v])
34: µdeb,σ

2
deb← mean(Ddeb[v]),variance(Ddeb[v])

35: Ddeb[v]← µ +(Ddeb[v]−µdeb)/σdeb ∗σ

36: end if
37: end for
38: Result Ddeb

3.3 Generating the Debiased Dataset
We simulate the debiased dataset based on the debiased causal model
(see Fig. 3 (4)). The idea is that if the user weakens/removes biased
edges from the causal network, then the simulated dataset might also
contain less biases. The standard way to simulate a dataset based



Algorithm 2 Rescale Categorical Variable v
1: D[v]← categorical variable v in the original dataset
2: prob mat← probability matrix for v computed using Eq. 2
3:
4: lr← 0.1 // learning rate
5: iterations← 0
6: loop
7: // DPD: Discrete Probability Distribution
8: distori← DPD( D[v] )
9: distdeb← DPD( argmax(prob mat) )

10: diff← ∑‖(distori−distdeb)/distdeb‖
11: scale factor← 1+ lr ∗∑(distori−distdeb)/distdeb)
12: prob mat← scale factor * prob mat
13: distdeb← DPD( argmax(prob mat) )
14: new diff← ∑‖(distori−distdeb)/distdeb‖
15: if new diff > diff or iterations > 50 then
16: break
17: end if
18: iterations← iterations + 1
19: end loop
20: Ddeb[v]← argmax(prob mat)
21: Result Ddeb[v]

on a causal model is to generate random numbers for the exogenous
variables [38]. Thereafter, each endogenous variable is simulated as a
function of its parent nodes (variables) in the causal network. In this
work, we have adapted this procedure to suit our needs, i.e., simulating a
fair dataset while having minimum distortion from the original dataset.

Our approach to generate the debiased dataset, as illustrated in
Algorithm 1, can be broken down into 4 steps. At step 1 (lines 6–9),
we focus on the set of edges added during the debiasing stage (Ea). We
retrain regression models corresponding to each of the target nodes of
Ea. This will update the weights (regression coefficients (βi)) for all
edges leading into any target node of Ea. At step 2 (lines 11–16), we
identify the set of nodes (attributes) that need to be simulated (Vsim).
Unlike the standard procedure, we only simulate selective nodes that
are directly/indirectly impacted by the user’s interaction to minimize
distortion. This set includes the target nodes of all edges that the user
has interacted with along with their descendent nodes. For example,
in Fig. 3(3), the user deletes the edge s→ b and weakens the edge
s→ c. So, we will only simulate variables b, c and y. At step 3 (lines
18–25), we actually simulate all nodes that are a part of Vsim using
Equation 2. All other nodes are left untouched and their values are
simply copied from the original dataset into the debiased dataset. It
should be noted that all parent nodes must be simulated before their
child node as the values for a node are computed using their parent
nodes. So, we simulate all endogenous variables in a topological order.
For eg., in Fig. 3(4), nodes b and c will be simulated before node y.

y =
parents(y)

∑
i

αiβixi + ε +
parents(y)

∑
i

(1−αi)βiri (2)

In the above equation, node y is simulated as a sum of 3 terms. The
first term is the weighted linear combination of parent nodes. Here, αi is
the scaling factor that has a default value of 1 and can range between [0,
2] as determined by user interaction. Strengthening an edge, sets αi >1;
weakening an edge, sets αi <1. For example, if the user weakens the
edge between node xi and y by -35%, then αi=0.65, strengthening it by
+35% will set αi=1.35, and deleting it will set αi=0. The second term
is the intercept that was computed when the regression model for y was
last trained. The third term adds randomness in proportion to the degree
to which the user has altered an incoming edge. Here, ri is a normal
random variable that has a similar distribution as xi (ri ∼N (µxi ,σ

2
xi
)).

This term adds fairness as it is random and alleviates distortion for y.
Fig. 4 illustrates the case where the node Job has a single parent

node (Gender). Let’s say that the user chooses to delete this edge
(α=0). Going the conventional route (without the third term), the
attribute Job will be reduced to a constant value (the intercept (ε))

Fig. 4. Illustration of the data debiasing process using a toy example
where the node Job is caused by a single variable, namely gender. Green
color marks the proportion of females who got the job (Y) or not (N).

which is undesirable. Adding the (third) random term generates the
Job distribution below the ‘+’ node which is far more balanced (fair)
in terms of Gender than the ‘Original’ distribution on the top right.
However, the number of people getting the job (or not) is distorted
compared the ‘Original’ distribution.

This is corrected in Step 4 (lines 27–37) in Algorithm 1, where we
rescale each simulated variable so that its distribution is close to its
original distribution. For numerical variable(s), we simply standardize
values to their original mean and standard deviation. For categorical
variable(s), the model returns a set of probability scores corresponding
to each possible output label for each data point. We iteratively scale
such a probability matrix so that the resulting debiased distribution
inches toward the original distribution (see Algorithm 2). We continue
this process until a fixed number of iterations or when the difference
between original and debiased distribution starts increasing. In Fig.
4, we observe that the resulting ‘Debiased’ distribution matches the
‘Original’ distribution in terms of Job allocation, while maintaining
gender parity. It should be noted that simulating each attribute adds
a corresponding modeling error to the process. This modeling error
is typically small but it can potentially overpower the impact of the
user’s intervention, especially when a user makes a small change, say
weakening an edge by 5%. In such a case, the results may not be in
strict accordance with the user’s expectations.

3.4 Evaluation Metrics
Once the debiased dataset is generated, it can be evaluated using dif-
ferent metrics that operate at the dataset level and the classifier level.
For the second case, the debiased dataset is used to train a ML model
chosen by the user, and a set of metrics are computed over the model’s
predictions. Here, the idea is to evaluate the downstream effects of
debiasing. All the evaluation metrics can be grouped into three broad
categories, namely utility, fairness and distortion. It should be noted
that there might be a trade-off among the three categories. For eg.,
reducing bias might cause high data distortion or lower utility. For
comparison, we have used a baseline debiasing strategy which just
removes the sensitive attribute(s) from the dataset.

Fairness. Our tool presents a diverse set of 5 popular fairness
metrics, namely statistical parity difference (Parity diff), individual
fairness (Ind. bias), accuracy difference (Accuracy diff), false negative
rate difference (FNR diff) and false positive rate difference (FPR diff)
[5]. Two of these metrics operate at the dataset level (Parity diff,
Individual bias) and the rest operate on the classifier’s predictions.
Here, Ind. bias is defined as the mean percentage of a data point’s
k-nearest neighbors that have a different output label. A lower value for
Ind. bias is desirable as it means that similar data points have similar
output labels. For the 4 other fairness metrics, we compute some
statistic for the two groups say males and females, and then report their
absolute difference. This statistic can be ML model dependent, such
as accuracy, or model independent, such as the likelihood of getting
a positive output label. Lower values for such metrics suggests more
equality between groups. For computing model based metrics, we omit
the sensitive attributes(s) and perform 3-fold cross validation using the
user-specified ML model with 50:50 train test split ration, and then
report the mean absolute difference between groups across the 3 folds.

Utility. The utility of ML models is typically measured using met-



Fig. 5. Logs view highlighting the changes made to the causal network
for the Adult Income dataset. Dotted lines represent deleted edges and
nodes in grey represent the impacted nodes.

rics like accuracy, F1 score, etc. In our context, we are interested in
measuring the utility of a ML model when it is trained using the de-
biased dataset instead of the original dataset. To compute the utility
for the original dataset, we perform 3-fold cross validation using the
user-specified ML model and report the mean accuracy and F1 score.
For the debiased dataset, we follow a similar procedure where we train
the user-specified ML model using the debiased dataset. However, we
use the outcome variable from the original dataset as the ground truth
for validation. Sensitive attribute(s) are removed from both datasets be-
fore training. Ideally, we would like the utility metrics for the debiased
dataset to be close to the corresponding metrics for the original dataset.

Data Distortion. Data distortion is the magnitude of deviation of the
debiased dataset from the original dataset. Since the dataset can have a
mix of continuous and categorical variables, we have used the Gower
distance [21] metric. We compute the distance between corresponding
rows of the original and debiased dataset, and then report the mean
distance as data distortion. This metric is easy to interpret as it has a
fixed lower and upper bound ([0,1]). It is 0 if the debiased dataset is
the same as the original while higher values signify higher distortion.
Lower values for data distortion are desirable.

4 THE D-BIAS TOOL

4.1 Generator Panel
This is the first component of the tool the user interacts with (see
Fig.1 (A)). The user starts off by choosing a dataset from its dropdown
menu. The user then selects the label variable which should be a binary
categorical variable as we are considering a classification setting. Next,
the user selects all nominal variables which is required for fitting the
SEM model. Lastly, the user chooses a p-value and clicks the ‘Causal
Model’ button to generate the causal network. Here, the p-value is used
by the PC algorithm to conduct independence tests. We set p = 0.01
for all our demonstrations. It can be changed to 0.05 or 0.10 for smaller
datasets. The ‘Debiased Data’ button downloads the debiased dataset.

4.2 Causal Network View
This is the most critical piece of the interface where the user will spend
most of the time (see Fig.1(B)). The center of this view contains the
actual causal network which is surrounded by 4 panels on all sides.

Causal Network. All features in the dataset are represented as nodes
in the network and each edge represents a causal relation. The width
of an edge encodes the magnitude of the corresponding standardized
beta coefficient. It signifies the feature importance of the source node
in predicting the target node. The color of an edge encodes the sign of
the corresponding standardized beta coefficient. Green (red) represents
positive (negative) influence of the source node on the target node. If
an edge is undirected, it does not have a beta coefficient and is colored
orange. Finally, gray color encode edges that represent relationships
which can not be represented by a single beta coefficient. This occurs
when the target node is a categorical variable with more than 2 levels.

The causal network supports many interactions to enhance the user’s
overall experience and productivity. It supports operations like zooming
and panning. The user can move nodes around if they are not satisfied

Fig. 6. The visual interface for selecting subgroups (Group A and B).
Each column consists of a list of bar charts/histograms representing
all attributes in the dataset. By default, all bars are colored gray. The
user can click on multiple bars to select a subgroup. Selected bars are
colored blue. Each bar is filled in proportion of their representation in the
selected subgroup as a ratio of the entire dataset. In this picture, Group
A consists of individuals who went to elite universities and whose age
lies between 24-40. It represents 18% of the dataset.

with the default layout. On clicking a node, all directly connected edges
and nodes are highlighted. Similarly, on clicking an edge, its source
and target nodes are highlighted. Moreover, clicking a node or an edge
also visualizes their distribution in the Comparison View (see Sect. 4.3).

Top panel. The panel right above the causal network (as shown
above) allows the selection of an edge by choosing the source and
target nodes. Next to the dropdown menus are a series of buttons which
allow a user to inject their prior into the system. Going from left to
right, they represent operations like adding an edge, deleting an edge,
reversing the edge direction and directing an undirected edge. The
toggle at the end represents the current stage (Refine/Debias) and helps
transitioning from one to the other.

Left panel. The bar to the left of the causal network shows the
change in BIC score. This bar is updated each time the user performs
operations like directing an undirected edge, adding/deleting an edge,
etc. A negative value means that the change made to the causal network
is in sync with the underlying dataset; positive values mean the opposite.
Negative (positive) values are represented in green (red).

Right panel. The panel to the right of the causal network offers four
functionalities. Going from top to bottom, they represent zooming in,
zooming out, reset layout and changing weight of an edge. The slider
at the bottom gets activated when the user clicks on an edge during
the debiasing stage. It allows the user to weaken/strengthen an edge
depending on the selected value between -100% to 100%. Moving
the slider changes αi and also impacts the effective beta coefficient for
the selected edge (αiβi). This change manifests visually in the form
of proportional change in the corresponding edge width. Moving the
slider to -100% will result in deletion of the selected edge.

Bottom panel. As shown below, the bottom panel offers 4 func-
tionalities. The “Find Paths” button triggers depth first traversal of
the causal graph to compute all directed paths between the source and
target node as selected in the top panel. This will be especially helpful
when the graph is big and complex. All the computed paths are then
displayed below the bottom panel. A user can click on a displayed path
to highlight it and see an animated view of the path going from the
source to the target node. The “Logs” button highlights changes made
to the causal network during the debiasing stage (see Fig.5). All edges
are hidden except for the newly added edges, deleted edges and edges
that were weakened/strengthened. Nodes impacted by such operations



Fig. 7. Case study: Adult Income dataset (a) Causal model generated using automated techniques (b) Refined causal model (c) Clicking the Gender
node visualizes its distribution as a bar chart (d) Bivariate distribution between Gender and Marital Status (e) All paths from Gender to Income in the
refined causal model (f) Debiased causal model (g) Evaluation metrics to compare our results against the baseline debiasing approach.

(Vsim) are highlighted in grey.
If a user is interested in knowing the exact beta coefficients for

all edges, the edge weights toggle will help in doing just that. By
default, it is set to ‘hide’ to enhance readability. If turned to ‘show’,
the beta coefficients will be displayed on each edge. The filter slider
helps user focus on important edges by hiding edges with absolute beta
coefficients less than the chosen value.

4.3 Evaluation Panel
This panel, at the right (see Fig.1(C)), provides different options and
visual plots for comparing and evaluating the changes made to the orig-
inal dataset. From the top left, users can select the sensitive variable
and the ML algorithm from their respective dropdown menus. This se-
lection will be used for computing different fairness and utility metrics.
For the sensitive variable, the dropdown menu consists of all binary
categorical variables in the dataset along with a Custom Group option.
Selecting the Custom Group option opens a new window (see Fig. 6)
which allows the user to select groups composed of multiple attributes.
This interface facilitates comparison between intersectional groups say
black females and white males.

Clicking the “Evaluate Metrics” button triggers the computation of
evaluation metrics that are displayed on the right half of this panel
(Performance View). It also visualizes the relationship between the
sensitive attribute or selected groups and the outcome variable using a
4-fold display [17] on the left half of this panel (Comparison View).

Comparison View. This view comprises two plots aligned vertically
where the top plot represents the original dataset and the bottom plot
represents the debiased dataset. This view has two functions. It first aids
the user in the initial exploration of different features and relationships.
When a node or edge is clicked in the causal network, the summary
statistics of the corresponding attributes is visualized (see Fig. 7(c) for
an example). For binary relationships, we use either a scatter plot, a
grouped bar chart or an error bar chart depending on the data type of the
attributes. The second function of the Comparison View is to visualize
the differences between the original and the debiased dataset. Initially,
the original data is the same as the debiased data and so identical
plots are displayed. However, when the user injects their prior into the
system, the plots for the original and debiased datasets start to differ.
We added this view to provide more transparency and interpretability
to the debiasing process and also help detect sampling bias in the data.

When the user clicks the “Evaluate Metrics” button, the Comparison
View visualizes the binary relation between the sensitive attribute or
selected groups and the outcome (label) variable via the 4-fold plot [17]

as shown in Fig.1(C), left panel). We chose a 4-fold display over a more
standard brightness-coded confusion matrix since the spatial encoding
aids in visual quantitative assessments. The left/right half of this display
represents two groups based on the chosen sensitive variable (say males
and females) or as defined in the Custom Group interface, while the
top/bottom half represents different values of the output variable say
getting accepted/rejected for a job. Here, symmetry along the y-axis
means better group fairness.

Performance View. This view houses all the evaluation metrics as
specified in Sec.3.4. It uses a horizontal grouped bar chart to visualize
2 utility and 5 fairness metrics. Lower values for the fairness metrics
mean better fairness. Higher values for utility metrics means better
utility. Data distortion is visualized using a donut chart. On hovering
over any of these charts, a tooltip shows the exact values.

5 CASE STUDY

We demonstrate the utility of our tool for bias identification and miti-
gation using the Adult Income dataset. Each data point in the dataset
represents a person described by 14 attributes recorded from the US
1994 census. Here, the prediction task to classify if a person’s income
will be greater or less than $50k based on attributes like age, sex, edu-
cation, marital status, etc. We chose this dataset as it is widely used in
the algorithmic fairness literature [3, 10, 20]. Here, we have chosen a
random sample of 3000 points from this dataset for faster computation.

Generating the causal network. We start off by selecting the Adult
Income dataset from the respective dropdown menu in the Generator
panel. We select Income as the label variable and Work class, Marital
Status, Race, Gender, Income as the nominal variables. Next, we
click on the Causal Model button which generates the default causal
model (see Fig. 7 (a)). Here, we examine different edges of the causal
model and act on them as needed to reach to a reliable causal model.
We start with the 7 undirected edges encoded in orange. We direct
edges based on our domain knowledge like Hours per Week→ Income,
Education→ Income, Education→ Hours per week, etc. After each of
these operations, we observe a green bar in the left panel of the Causal
Network View. This indicates that the resulting causal model is a better
fit over the underlying dataset. Next, we examine other directed edges.
Many of them align with our domain knowledge like Capital Gain→
Income, Age→ Income, etc. However, we found a couple of them to
be counter-intuitive, namely Capital Gain→ Education and Marital
Status→ Gender. In a causal relation, cause always precedes effect.
Hence, immutable personal characteristics like sex, race, etc., which are
assigned at birth, can not be the effect of a later life event like marriage
or work class. So, in this case, we chose to reverse both these edges to



Fig. 8. The above picture shows the impact of 3 types of user interaction as captured by the 4-fold display. Due to space constraints, we have only
shown a subset of the causal network which connects the Gender node with the Income node. For details, please refer to the description in Section 5.

get to the refined causal model (see Fig. 7(b)).
Auditing for social biases. Once we have reached a reliable causal

model, we start auditing for different kinds of biases. We click on
different nodes and edges to explore their distributions. For eg., clicking
the Gender node visualizes its distribution in the Comparison View. We
observe that females are underrepresented in the dataset (895 females vs
2105 males) (see Fig. 7 (c)). Given this representation bias and the fact
that gender pay gap is a well-known issue, we decided to investigate
further. We found an indirect path from Gender to Income via Hours
per week. This indicates a possible disparity in income based on gender.
To probe further, we click the “Evaluate Metrics” button with Gender
as the sensitive variable to compute different fairness metrics. We
observe significant gender bias as captured by metrics like Accuracy
diff (14%), FPR diff (22%), FNR diff (17%), etc. The 4-fold display for
the original data in Fig. 8 (A) reveals that only 12% of the females earn
more than $50k compared to 31% for males. Thus there is a significant
income disparity based on gender. To have a more comprehensive
understanding of the issue, we search for all possible paths by selecting
Gender and Income as the source and target from the Top panel and
then clicking the “Find Paths” button from the bottom panel. This
populates 4 different causal paths below the bottom panel (see Fig. 7
(e)). We will now focus on the different causal relationships in these
paths and try to make minimal changes to achieve more fairness.

Bias mitigation. To mitigate gender bias, we first enter the debiasing
stage by flipping the Stage toggle from Refine to Debias. From here on,
any changes to the causal network will simulate a new debiased dataset.
Among the 4 paths we previously discovered, the top 2 paths have a
common causal edge, i.e., Gender→Marital status. On clicking this
edge, we find that most males in the dataset are married while most
females are single (see Fig. 7(d)). This pattern indicates sampling
bias. Ideally, we would like no relation between these attributes so we
delete this causal edge. Next, we assess the remaining two causal paths.
Based on our domain knowledge, we find the causal edge Hours per
week→ Income to be socially desirable, and the edges Gender→Work
class and Gender→ Hours per week to be socially undesirable. We
delete the two biased edges to get to the debiased causal model (see Fig.
7(f)). To verify all changes made so far, we click on the Logs button.
As shown in Fig. 5, it shows 3 dotted lines for the removed edges and
highlight the impacted attributes.

Lastly, we click on the “Evaluate Metrics” to see the effect of our
interventions. The 4-fold display for the debiased data in Fig. 8(C)
shows that the disparity between the two genders has now decreased
from 19% to 6% (compare Fig. 8(A)). The percentage of females who
make more than $50k have undergone a massive growth of 75% (from
12% to 21%). Moreover, as shown in Fig. 7(g), we find that all fairness
metrics have vastly improved, with only a slight decrease in the utility

metrics and an elevated distortion (12%). These results clearly indicate
the efficacy of our debiasing approach.

Partial debiasing. Considering the tradeoff between different met-
rics, one might choose to debias data partially based on their context,
i.e., weaken biased edges instead of deleting them or keeping certain
unfair causal paths from the sensitive variable to the label variable
intact. For eg., one might choose to delete the edge Gender→ Marital
status and weaken the edges Gender → Work class and Gender →
Hours per week by 25% and 75%, respectively. On evaluation, we find
this setup to sit somewhere between the original and the fully debiased
case (see Fig. 8 (B)). It performs better on fairness than the original
dataset (gap: 9% vs 19%) but worse than the full debiased version (gap:
9% vs 6%). Similarly, it incurs more distortion than the original dataset
but less than the full debiased version (11% vs 12%).

Intersectional groups. D-BIAS facilitates auditing for biases
against intersectional groups using the “Custom Group” option from
the sensitive variable dropdown. Here, we choose Black Females and
White Males as the two groups. At the outset, there is a great disparity
between the groups as reflected in the 4-fold display and the fairness
metrics (see Fig. 1). As these subgroups are defined by Gender and
Race, we focus on the unfair causal paths from these nodes to the label
variable (Income). For debiasing, we first perform the same operations
we did for gender debiasing. Thereafter, we reduce the impact of race
by deleting the edges Race→Work class and Race→Marital status
which we deem as socially undesirable. On evaluation (see Fig. 1),
we find a significant decrease in bias across all fairness metrics for
the debiased dataset compared to the conventional debiasing practice
(blue bars) which just trains the ML model with the sensitive attributes
(here Gender and Race) simply removed. Finally, the two 4-fold dis-
plays reveal that the participation of the disadvantaged group more than
doubled, while the privileged group experienced only a modest loss.

Exacerbating bias. The flexibility offered by D-BIAS to refine the
causal model can be misused to increase bias as well. Bias can be
exacerbated by strengthening/adding biased causal edges and weaken-
ing/deleting other relevant causal edges. For eg., one can exacerbate
gender bias by strengthening the edges Gender→Marital status and
Marital status→ Income by a 100%. On evaluation, we find that the
proportion of females making >$50k has shrunk to just 1% while the
proportion of males has surged to 38%. In effect, this has broadened
the gap between males and females making more than $50k by about
2x from 19% to 37% (see Fig. 8 (D)).

Results. Apart from the Adult Income dataset, we also tested our
tool using the synthetic hiring dataset and the COMPAS recidivism
dataset (see appendix D for details). The evaluation metrics for all
3 datasets after full debiasing are reported in Table 1. As we can
observe, our tool is able to reduce bias significantly compared to the



Table 1. Evaluation metrics to compare the debiased dataset generated using our tool against the baseline debiasing approach for different datasets.

Dataset Sensitive version ML model Accuracy F1 Parity Individual Accuracy FNR FPR Data
attribute difference Bias difference difference difference Distortion

Synthetic Hiring Gender baseline SVM 77% 0.59 11.12 19.09 4.14 14.26 6.82 0%
debiased 77% 0.60 1.66 12.93 2.99 1.37 3.63 6%

Adult Income Gender baseline Logistic 82% 0.69 19.32 17.92 14.35 17.98 22.53 0%
debiased Regression 75% 0.63 6.24 4.8 0.88 2.33 1.9 12%

COMPAS Race baseline Random 67% 0.64 12.07 33.9 0.17 23.07 16.89 0%
debiased Forest 63% 0.59 11.12 2.19 0.44 0.68 1.55 13%

baseline approach across the 3 datasets for a small loss in utility and
data distortion. These results validate the potential of HITL approach
in mitigating bias. It is interesting to observe that the F1 score for the
synthetic hiring dataset is slightly higher than the baseline approach.
However, this is line with the existing literature [20] where similar
instances have been recorded.

6 USER STUDY

We conducted a user study to evaluate two primary goals: (1) usability
of our tool, i.e., if participants can comprehend and interact with our
tool effectively to identify and mitigate bias, (2) compare our tool with
the state of the art in terms of human-centric metrics like accountability,
interpretability, trust, usability, etc.

Participants. We recruited 10 participants aged 24-36; gender: 7
Male and 3 Female; profession: 8 graduate students and 2 software
engineers. The majority of the participants are computer science ma-
jors with no background in data visualization or algorithmic fairness.
80% of the participants trust AI and ML technologies in general. The
participation was voluntary with no compensation.

Baseline Tool. For an even comparison, we looked for existing tools
with a visual interface that support bias identification and mitigation.
This led us to IBM’s AI Fairness 360 [5] toolkit whose visual interface
can be publicly accessed online1. However, we didn’t go further with
this toolkit as the baseline (control group) because it has a significantly
different look and feel which is difficult to control for. Instead, we
took inspiration from this toolkit and built a baseline visual tool (not
to be confused with the baseline debiasing strategy) which mimics its
workflow but matches the design of our D-BIAS tool (see Fig.9).

IBM’s AI Fairness toolkit allows the user to choose from a set of
fairness enhancing interventions with varying impact on the evaluation
metrics. However, this study is focused on other important aspects such
as trust, accountability, etc. So, in order to have a tightly controlled
experiment, we imagine a hypothetical automated debiasing algorithm
whose performance exactly matches the peak performance of our tool
for all evaluation metrics. Here, peak performance refers to the state
where all unfair causal edges are deleted.

Using the baseline tool is quite simple (see appendix E). The user
first selects the dataset, label variable, etc. They can then audit for
different biases by selecting the sensitive attribute and then clicking
on the ‘Check bias’ button. This will compute and present a set of
fairness metrics in the same fashion as the D-BIAS tool. Lastly, the
user can click the ‘Debias & Evaluate’ button to debias the dataset
and generate its evaluation metrics. A small lag is introduced before
displaying evaluation metrics to mimic a real debiasing algorithm.

Study design. We conducted a within subject study where each
participant was asked to use the baseline tool and D-BIAS in random
order. The study was conducted remotely, i.e., each participant could
access and interact with the tools via their own machine. For each
tool, a small tutorial was given using the Synthetic Hiring dataset2 to
demonstrate the workflow and features of the tool. Each participant

1https://aif360.mybluemix.net/data
2We generated a synthetic hiring dataset fraught with gender and racial bias

to better evaluate our tool. For details, please refer to appendix C .

was then given some time to explore and interact with each system.
Next, the participants were asked to identify and mitigate bias for the
Adult Income dataset. For the D-BIAS tool, participants were also
asked to complete a set of 5 tasks to evaluate usability. Each task was
carefully designed to cover our testing goals and had a verifiable correct
solution. Tasks included: generate a causal network, direct undirected
edges, identify if bias exists with respect to an attribute, identify proxy
variables and finally debias the dataset. After using each tool, the
participants were asked to answer a set of survey questions. Lastly,
we collected subjective feedback from each participant regarding their
overall experience with both the tools. Throughout the study, partic-
ipants were in constant touch with the moderator for any assistance.
Participants were encouraged to think aloud during the user study.

Survey Design. Each participant was asked to answer a set of 13
survey questions to quantitatively measure usability, interpretability,
workload, accountability and trust. All of these questions can be an-
swered on a 5-point Likert Scale. To capture cognitive workload, we
selected two applicable questions from the NASA-LTX task load in-
dex [23], i.e., “How mentally demanding was the task? and “How
hard did you have to work to accomplish your level of performance?”.
Participants could choose between 1 = very low to 5 = very high. For
capturing usability, we picked 3 questions from the System Usability
Scale (SUS) [7]. For e.g., “I thought the system was easy to use”, “I
think that I would need the support of a technical person to be able
to use this system”. Participants could choose between 1 = Strongly
disagree to 5 = Strongly agree. To capture accountability, we asked two
questions based on previous studies [9, 19]. For e.g., “The credit/blame
for mitigating bias effectively is totally due to” (1 = System’s capability,
5 = My input to the system). To capture interpretability, we consulted
Madsen Gregor scale [30] and adopted 3 questions for our application.
For e.g., “I am satisfied with the insights and results obtained from the
tool?”, “I understand how the data was debiased?” Answers could lie
between 1 = Strongly disagree to 5 = Strongly agree. For measuring
trust, we referred to McKnight’s framework on Trust [31, 32] and other
studies [15, 19] to come up with 3 questions for our specific case. For
e.g., “I will be able to rely on this system for identifying and debiasing
data” (1 = Strongly disagree, 5 = Strongly agree).

Results. Despite not having a background in algorithmic fairness
or data visualization, all participants were able to complete all 5 tasks
using the D-BIAS tool. This indicates that our tool is easy to use.

The survey data was analyzed to calculate usability, interpretability,
workload, accountability and trust ratings for each tool by each partici-
pant. The mean ratings along with their standard deviations are plotted
in Fig.10. Using t-test, we found statistically significant differences
for all measures with p<0.05. We found that D-BIAS outperforms
the baseline tool in terms of trust, accountability and interpretability.
However, it lags in usability and cognitive workload. So, if someone is
looking for a quick fix or relies on ML algorithms more than humans,
automated debiasing is the way to go. Conversely, if trust, account-
ability or interpretability is important, D-BIAS should be the preferred
option. Looking at these results in conjunction with the results reported
in Table 1, we find that our tool enhances fairness while fostering
accountability, trust and interpretability.

Subjective feedback. After the study, we gathered feedback from



Fig. 9. Baseline visual tool used as a benchmark in the user study.

each participant about what they liked or disliked about D-BIAS. Most
participants liked the overall design, especially the causal network.
We got comments like “Interface is user friendly”, “Causal network
gives control and flexibility”, “Causal network is very intuitive and
easy to understand”, “Causal network is a great way to understand
relationships between features”. Most participants agreed that after a
tutorial session, it should be fairly easy for even non-experts to play
with the system. Another important aspect which received a lot of
attention was our human-in-the-loop approach. Participants felt that
they had a lot more control over the system and that they could change
things around. One of the participants commented “It feels like I have a
say”. Some of the participants said they felt more accountable because
the system offered much flexibility and that they had a choice to make.

Many of the participants strongly advocated for D-BIAS over the
baseline tool. For e.g., “D-BIAS better than automated debiasing any
day”, “D-BIAS hand’s down!”. Few of the participants had a more
nuanced view. They were of the opinion that the baseline tool might
be the preferred option if someone is looking for a quick fix. We also
received concerns and suggestions for future improvement. Two of
the participants raised concern about the tool’s possible misuse if the
user is biased. Another participant raised concern about scalability for
larger datasets. Most participants felt that adding tooltips for different
UI components especially the fairness metrics will be a great addon.
Two participants wished they could see the exact changes in CSV file
in the visual interface itself.

7 DISCUSSION, LIMITATIONS, AND FUTURE WORK

Efficacy. The efficacy of our tool depends on how accurately the
causal model captures the underlying data generating process and the
ensuing refining/debiasing process. As our tool is based on causal
discovery algorithms, it inherits all its assumptions such as the causal
markov condition and its limitations like sampling biases, etc. [37].
For eg., Caucasians had a higher mean age than African Americans in
the COMPAS dataset. So, the PC algorithm falsely detected a causal
edge between Age and Race (see appendix D.2). From our domain
knowledge, we can deduce that this error is due to sampling bias.
Ideally, one should use such an insight to gather additional data points
for the under sampled group. However, it may not always be possible.
In such cases, our tool can be leveraged to remove such patterns in
the debiasing stage. We dealt with a similar case (Gender→Marital
status) for the Adult Income data (see Sec. 5).

Fig. 10. Mean user ratings from the survey data along with their standard
deviation for different measures.

It is also worth noting that our tool is able to reduce disparity between
the privileged and the unprivileged group but it may not be able to close
the gap entirely. This can be due to missing proxy variables whose
influence is unaccounted for or maybe because linear models are too
simple to capture the relationship between a node and its parents. Future
work might use non-linear SEMs and causal discovery algorithms like
Fast Causal Inference (FCI) that can better deal with missing attributes.

Scalability. As the size of the dataset increases in terms of features
and rows, scalability can become an issue. With dataset size, the time
to generate a causal network, debiasing data, finding paths between
nodes and computing evaluation metrics will all increase proportion-
ally. Among all these steps, the process to generate the default causal
network might be the most computationally expensive. So, future work
should employ GPU-based parallel implementation of PC algorithm
like cuPC [47] or use inherently faster causal discovery algorithms like
F-GES [45] to better scale to larger datasets. On the front end, the
causal network will become big and complex as the number of features
increase. With limited screen space, the user might find it difficult to
comprehend the causal network. To alleviate this issue, we have im-
plemented different visual analytics techniques like zooming, panning,
filtering weak edges, finding paths, etc. Future work might optimize
graph layout algorithm and explore other visual analytics techniques
like node aggregation to help navigate larger graphs better [45].

Applications. In this paper, we have emphasized how our tool can
help identify and remove social biases. However, our approach and tool
is not limited to social biases. Our tool can incorporate human feedback
to realize policy and institutional goals as well (see appendix D.1).
For eg., one might strengthen the edge between the nodes Education
and Income to implant a policy intervention where people with higher
education are incentivized. A ML model trained over the resulting
dataset is likely to reflect such policy intervention in its predictions.
Next, we plan to extend our HITL methodology to tackle biases in other
domains such as word embeddings.

Human factors. Involving a human in the loop for identifying and
debiasing data is a double edged sword. On one hand, it is a key strength
of our tool as it provides real world domain knowledge and fosters
accountability and trust. On the other hand, it can also be its main
weakness if the human operating this tool intentionally/unconsciously
injects social biases. A user can misuse the system in two ways. Firstly,
the user can choose to ignore the social biases inherent in the dataset
by not acting on the unfair causal edges. Such behaviour renders the
system ineffective. Secondly, a biased user can explicitly introduce
their own biases in the system by adding/strengthening unfair causal
edges. Since this is a human aided tool, the biases that are inherent to
the human user cannot be avoided. Hence, we recommend choosing
the user responsibly. Moreover, we can always check the system logs
and hold the person responsible for their action/inaction.
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APPENDIX

F

A IMPLEMENTATION

D-BIAS is implemented as a web application built over
python based web framework Flask. To generate the causal
network, we used two R based libraries, i.e., pcalg [1]
for the PC Algorithm and MXM [2] for the conditional
independence test. For accessing these R based libraries in
python, we used the open source python framework cdt [3]
and made some modifications to suit our needs. For the
front end, we have used javascript based open source graph
library Cytoscape.js [4] for rendering the causal network.
Additionally, we used libraries like D3.js, Plotly.js, Bootstrap,
noUiSlider, etc. for rendering different visual components.

B CAUSAL DISCOVERY

Randomized controlled trials (RCTs) have been used across
disciplines to establish causal relations [5]. However, con-
ducting such experiments can cost a lot of money, time or
might simply be impossible [5]. Moreover, in this work, we
are dealing with observational data which renders RCTs
ineffective. Hence, we have relied on a popular alternative,
namely Causal Discovery Algorithms (CDAs). Given obser-
vational data, CDAs find causal relationships among differ-
ent attributes in the dataset [5]. Causal relations returned by
CDAs can be graphically represented via a directed acyclic
graph (DAG), also known as causal graph, where each node
represents a data attribute and each edge represents a causal
relation. For example, a directed edge from X to Y signify
that X is the cause of Y, i.e., a change in X will cause a change
in Y. The set of causal discovery algorithms can be broadly
classified into constraint based methods such as PC [6], Fast
Causal Inference (FCI), etc., and score based algorithms such
as Greedy Equivalence Search (GES) [7], Fast GES [8], etc.
Among the set of possible causal DAGs, constraint based
CDAs rely on clever schedule of conditional independence
tests whereas score based CDAs rely on some fitness metric
like BIC score to filter to the final causal graph.

In this work, we have used PC algorithm [6] as it can
handle mixed data types and provide asymptotically correct
results. PC algorithm, named after its inventors Peter Spirtes
and Clark Glymour, is a constraint based CDA. PC algo-
rithm starts with a complete undirected graph where each
node is an attribute in the tabular dataset. Thereafter, it starts
filtering edges based on conditional independence tests. For
example, if nodes X and Y are unconditionally independent,
then the edge X → Y is removed. Here, the tabular dataset
can consist of numeric and categorical attributes so we have
used the Symmetric Conditional Independence Test which can
deal with mixed data types [9]. After filtering, it uses a
set of orientation rules to direct edges. Each directed edge

Fig. 1. Data generating mechanism for the synthetic hiring dataset. Each
node, colored in gold, represents a feature in the dataset; each arrow
represents a causal relation between features.

represents a causal relationship from cause to effect. PC
algorithm returns a partially directed acyclic graph, i.e., a
DAG with some undirected edges.

It should be noted that causal discovery algorithms
operate under a set of assumptions and have their own
limitations. For example, PC algorithm assumes that no
confounders (direct common cause of two variables) are
missing from the dataset. In a practical setting, such factors
can lead to an imperfect causal graph. One way to refine
such causal graphs is by injecting domain knowledge. In
line with existing work [10], [11], [12], we have employed
a visual analytics approach to augment CDAs with human
knowledge to get to the true causal graph.

C SYNTHETIC HIRING DATASET

We generated a synthetic hiring dataset fraught with gender
and racial bias to test our tool. Unlike real world datasets,
we exactly know the underlying data generation process
for a synthetic dataset. This helps better gauge the overall
performance of our tool.

This dataset consists of 4,000 rows and 9 columns (3
numeric and 6 categorical). Each row represents a job can-
didate with features like gender, work experience, age, etc.
The output variable ‘Job’ represents whether a candidate
got the job or not. We generated the exogenous variables
such as race, gender, age, etc. by drawing random samples
from different distributions. Here, we used binomial dis-
tribution for categorical variables and uniform distribution
for numeric variables. Thereafter, each endogenous variable
is generated as a linear function of its parent nodes. The
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Fig. 2. Different steps for the case study of the Synthetic Hiring dataset (a) Causal model generated using automated techniques (b) Refined causal
model (c) Clicking the Gender node visualizes its distribution as a bar chart (d) Bivariate relation between Major and Gender for the original dataset
(e) Bivariate relation between Major and Gender for the debiased dataset (f) Debiased causal model (g) Evaluation metrics to compare our results
against the baseline debiasing approach.

inter-dependencies between all features is represented in
Figure 1. In an effort to mimic the real world challenges, we
introduced sampling bias for the gender variable such that
there are more males than females. Moreover, we introduced
a latent confounding variable (scholastic aptitude), i.e., a
relevant variable that is missing from the dataset.

D CASE STUDY

In this section, we demonstrate the efficacy of our tool in
examining and mitigating algorithmic bias for two other
datasets, i.e., synthetic hiring dataset and COMPAS dataset.

D.1 Hiring Dataset
Jane works as a Data Scientist for a big software company.
Her company receives an abundance of job applications
each day. It is virtually impossible to manually go through
each of those applications, so she’s tasked with building an
AI tool that can filter out weak applications. Learning from
Amazon’s example [13], she’s aware that such recruiting
tools can be discriminatory towards minorities and pose
serious challenges for her organization. Hence, she decides
to use D-BIAS to check if there exists some bias in the
training data, and if so, mitigate its effects by debiasing the
data before moving forward with the tool.

Generating the causal network. Jane uploads the syn-
thetic hiring dataset into the system which contains records
of past applicants profiles and whether they got the job. She
selects Job as the label variable and chooses Gender, Race,
Major, Grade Point Average, College Rank, Job as the nominal
attributes. Next, she clicks on the “Causal Model” button to
generate the causal network with p=0.01 (see Figure 2(a)).
As we are dealing with a synthetic dataset, we can compare
the auto-generated causal network using PC algorithm with
the ground truth (see Figure 1). On comparison, we observe
that the automated causal discovery algorithm was able

to correctly identify many causal relations such as Work
experience → Job and SAT score → College rank; there are
other causal relations which were correctly identified but
whose direction could not be determined like Age → Work
experience. Moreover, there is a wrongly identified causal
relation, between SAT score and Grade point average, that
might due to the missing attribute (Scholastic Aptitude).
Jane assesses different causal edges and decides to direct
the undirected edges. She leverages her domain knowledge
to direct edges like Gender → Major, College Rank → Job, etc.
to get to the refined causal model (see Figure 2 (b)).

Auditing for social biases. Post-refining, she starts ex-
ploring the dataset by clicking on different nodes and edges
in the causal network to see their underlying distributions.
On clicking the Gender node, she finds that there are far
more males than females (2412 vs 1588) in the dataset (see
Figure 2(c)). Such differences in representation can also lead
to algorithmic bias. On further exploration, she finds two
causal paths connecting the gender node with the job node.
She is surprised to find that one of those paths is a direct
link between the two nodes. This shows that her company’s
hiring decisions in the past have been directly influenced
by gender. The other path connects the two nodes via the
major node (see Figure 2(b)). Overall, these two causal
paths confirms the presence gender bias and gender based
disparities inherent in the dataset. To determine the extent of
gender bias, she clicks the “Evaluate Metrics” button from
the evaluation panel. As shown in Figure 3(A), she observes
a 11% gap in the likelihood of getting a job between the
two genders; 26% of males in the dataset got the job versus
15% for females. To ensure that the AI tool does not learn
such historical biases, she decides to debias the dataset first
before training the ML model.

Mitigating bias She starts the debiasing process by flip-
ping the stage toggle on the top panel from Refine to Debias.
To mitigate the impact of direct gender discrimination, she



3

Fig. 3. Fourfold displays corresponding to different user interactions for the synthetic hiring dataset. Here, we have we have shown a subset of
the causal network which connects the Gender node with the Job node. The left half of each fourfold display represents females and the right half
represents males. The top left quadrant represents the percentage of females who got the job, the top right quadrant represents the percentage of
males who got the job, and so on.

deletes the edge Gender → Job. On evaluation, this results in
a significant reduction of bias across all fairness metrics, a
small loss in accuracy (1%), and a slight increase in data
distortion (2%). As shown in Figure 3(B), the percentage
of females with job increased from 15% to 19% while the
percentage of males with job decreased from 26% to 25%.
In totality, the disparity between genders reduced from 11%
to 6%. Given the minimal loss in utility and the scope of
mitigating bias further, Jane decides to continue with the
debiasing process. She focuses on the indirect path from
Gender to Job via Major node. She selects the edge Gender
→ Major to see their bivariate distribution. As shown in
see Figure 2(d), she finds that the female representation in
computer science is much lower than that of males which is
indirectly contributing to bias against women in hiring. This
is not something that her organization is directly responsible
for. However, she does not want the ML model to learn
such a socially undesirable pattern that might eventually
lead to gender discrimination. So, she deletes this edge to
reach to the debiased causal model (see Figure 2(f)). Post-
deletion, she focuses on the comparison view to understand
the impact of her last intervention. Figure 2(d) and Fig-
ure 2(e) shows the bivariate distribution between gender
and major in the original and debiased dataset, respectively.
She finds that the number of females in computer science
has increased from 135 to 389 while the number of males
in computer science has decreased from 799 to 545. Overall,
this intervention reduced the disparity between females and
males opting for computer science.

Finally, she re-evaluates the net impact of her interven-
tions as captured by different evaluation metrics. She finds
that the disparity between gender has reduced to just 1% (as
shown in Figure 3 (C)); data distortion has increased to 6%;
utility metrics are virtually the same, and fairness increases
across the board as captured by all the 5 fairness metrics (see
Figure 2(g)). Now, she can simply download the debiased
data and use it to train the AI tool for fairer predictions.
In this case study, we have limited ourselves to mitigating
gender bias. However, similar process can be followed for
mitigating racial bias.

Incorporating institutional goals. D-BIAS facilitates in-

corporation of human prior in the system. Human prior is
not just limited to social biases. It can be used to implement
policy decisions or other institutional goals as well. Let’s
say Jane’s organization changes its hiring policies and now
looks for candidates with much higher work experience
than before. One way to accomplish this task is by building
a custom ML algorithm which incorporates this objective.
Another way this can be accomplished is by modifying the
dataset such that candidates with higher experience get the
Job. Jane can accomplish this objective by simply selecting
the edge Work Experience → Job and strengthening that edge
by some percentage points depending on the policy. This
will ensure that the debiased data inherits this policy. Now,
Jane can train any vanilla ML algorithm over the debiased
dataset to accomplish this goal.

It is important to note that the flexibility offered by the
D-BIAS tool can also be leveraged by malicious users to
exacerbate bias. For eg., one might strengthen the edges
Gender → Job and Gender → Major by a 100% (as shown
in the Figure 3(D)). This will lead to a surge in disparity
between males and females from 11% to 27%.

D.2 COMPAS dataset

COMPAS is a popular dataset often used in the fairness
literature [14]. It pertains to the criminal defendants from
Broward County, Florida. The task is to predict recidivism
within the next 2 years. In other words, we are to classify if
a convicted criminal will reoffend in the next 2 years. After
prepossessing, we ended up with 6,150 rows and 7 columns.
Here, each row corresponds to an individual described
by attributes such as number of juvenile offenses, charge
degree (felony, misdemeanor), race (Caucasian, African-
American), age, gender, etc. The sensitive attribute is race.
In the following, we will demonstrate how D-BIAS can help
identify and alleviate racial bias from this dataset.

Generating the causal network We start by selecting
COMPAS as the dataset, Recidivism as the label variable,
and Gender, Race, Recidivism, Charge degree as the nominal
variables from the generator panel. Thereafter, we click
“Causal Model” to generate the causal network as shown
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Fig. 4. Use case: COMPAS dataset (a) Initial causal network returned by the PC Algorithm (b) Bivariate relationship between Race and Gender
(c) Refined causal network (d) Grouped bar chart between Race and Recidivism showing the inherent racial bias (e) All paths between Race and
Recidivism (f) Debiased causal network (g) Evaluation metrics to compare our results against the baseline debiasing approach.

in Figure 4(a). We observe that there are a lot of undirected
edges (in orange). This can be due to missing attributes or
due to the limitation of the PC algorithm in determining
their direction. We go through all these edges and deal with
them based on our domain knowledge. For example, we di-
rect edges such as Prior Offences → Recidivism, Charge degree
→ Recidivism, etc. We direct these edges in this way since
such a relationship is more plausible than the contrary. In-
terestingly, we observe an undirected edge between Gender
and Race, and a directed edge between Age and Race. From
our domain knowledge, we know that these relationships
do not exist in the real world. To investigate further, we
click on these edges to see their corresponding distributions.
We observed a sampling bias for both the cases that might
have led to the false detection of these edges. As shown
in Figure 4(b), we observe that there are a lot more males
than females in the dataset. Also, there are more african-
americans than caucasians for each gender. This observation
hints the need to have a more diverse dataset with respect to
gender and race. However, it may not always be possible to
gather additional data points. Considering such a scenario,
we decided to remove these edges in the refining stage
to prevent unnecessary data distortion. The refined causal
model can be seen in Figure 4(c).

Auditing and mitigating bias As previously observed,
African Americans are over-represented in the dataset (60%)
relative to their their population as a whole in Florida
(17%). To further probe the presence of racial bias, we
selected Race and Recidivism from the top panel to see their
bivariate distribution in the comparison view (as shown in
Figure 4(d)). From the grouped bar chart, we can clearly
observe a disparity in the likelihood to recidivate (recommit
a crime) between African Americans and Caucasians. As
seen in the case of Berkeley’s admission dataset, disparity
between two groups does not necessarily mean systematic
discrimination, so we tried to understand the underpinnings

of this disparity via the causal network.
We used the find paths functionality to find all paths

from Race to Recidivism. We obtain 3 paths as shown in
Figure 4(e). Among the causal paths, we found causal edges
such as Race → Prior offences and Race → Charge degree. From
our domain knowledge, we find these causal relationships,
inherent in the dataset, to be biased and socially undesirable.
Training a ML model over such a dataset can potentially
result in replicating, and even amplifying such racial biases.
To prevent that, we deleted these causal edges to obtain our
debiased causal network (see Figure 4(f)). Since both these
operations were executed during the debiasing stage, the
system generates a new (debiased) dataset which accounts
for these changes. Lastly, we evaluated the debiased data
in terms of different evaluation metrics. We found that the
debiased data performs well for 4 out of the 5 fairness
metrics (Figure 4(g)). More specifically, there has been a
vast improvement in fairness as captured by Ind. bias, FNR
diff and FPR diff metrics. On the flip side, this process has
incurred a small loss in accuracy (4%) and f1 score (5%), and
the data distortion rose to 13%. The debiased dataset can be
downloaded from the generator panel and can be used in
place of the original data for fairer predictions.

E BASELINE TOOL

In this section, we present some additional details about the
baseline tool. The objective of creating the baseline tool is to
evaluate our human-in-the-loop AI based approach relative
to the automated approach on human-centric measures such
as trust, accountability, etc. This is an important contribution
as the existing literature on debiasing algorithms has solely
focused on different fairness metrics for evaluation. The
workflow of the baseline tool mimics that of automated tools
such as IBM’s AIF 360 and its design matches with our D-
BIAS tool. Its visual interface is roughly equivalent to the D-
BIAS tool except for the causal network view. The role of the
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Fig. 5. Visual interface of the baseline tool (A) Default view (B) Bias Identification (C) Bias mitigation

human is quite limited for the baseline tool. The user first
encounters the default view and selects the dataset, label
variable, nominal variables and the sensitive variable (see
Figure 5 (A)). For bias identification, the user simply clicks
the “Check Bias” button to compute and visualize a set of
bias and utility metrics as shown in Figure 5(B). If the bias
scores are within an acceptable range, then no further action
is needed as there is no significant bias with respect to the
sensitive variable. Otherwise, the user can click on the “De-
bias & Evaluate” button to debias the dataset and compute
a new set of evaluation metrics. As shown in Figure 5 (C),
the user can compare how the debiased dataset performs on
different evaluation metrics relative to the baseline (original
dataset without the sensitive attribute). To have a tightly
controlled experiment, we ensured that the evaluation met-
rics (utility metrics, fairness metrics and data distortion) for
the baseline tool exactly matches with the peak performance
of our D-BIAS tool. In other words, our study compares
both tools (representing two different approaches) while
controlling for their performance on different evaluation
metrics. This helps better evaluate the design of our tool and
helps understand if human interaction can enhance trust,
accountability, etc. in the context of bias mitigation.
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