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Abstract—A wide variety of color schemes have been devised for mapping scalar data to color. We address the challenge of 

color-mapping multivariate data. While a number of methods can map low-dimensional data to color, for example, using bilinear 

or barycentric interpolation for two or three variables, these methods do not scale to higher data dimensions. Likewise, schemes 

that take a more artistic approach through color mixing and the like also face limits when it comes to the number of variables 

they can encode. Our approach does not have these limitations. It is data driven in that it determines a proper and consistent 

color map from first embedding the data samples into a circular interactive multivariate color mapping display (ICD) and then 

fusing this display with a convex (CIE HCL) color space. The variables (data attributes) are arranged in terms of their similarity 

and mapped to the ICD’s boundary to control the embedding. Using this layout, the color of a multivariate data sample is then 

obtained via modified generalized barycentric coordinate interpolation of the map. The system we devised has facilities for 

contrast and feature enhancement, supports both regular and irregular grids, can deal with multi-field as well as multispectral 

data, and can produce heat maps, choropleth maps, and diagrams such as scatterplots.  

Index Terms—Multivariate data, color mapping, color space, high dimensional data, pseudo coloring  

——————————      —————————— 

1 INTRODUCTION

APPING data to color has a rich history and several 
well-tested color schemes have emerged (e.g  

[1][6][33]). Most of these, however, are defined for scalar 
data where a scalar value indexes a one-dimensional table 
that returns an RGB color triple. Other schemes assign 
colors to different, usually disjoint materials and then use 
standard blending functions to handle areas where 
materials overlap or mix together. The latter often occurs 

in the graphical rendering of simulations or imaged data, 
while the former is frequently encountered in pseudo-
coloring for heat maps or choropleth maps. 

In this paper, we are interested in colorizing 
multivariate data. Here we mainly focus on numerical data 
(categorical data can be converted into numerical data 
[32]). These types of multivariate data occur frequently in 
many applications, such as demographic assessments, 
environmental monitoring, scientific simulations, 
imaging, and others. The domain can be a geographic 
map, an image, or a volume. They are a subset of multi-
field data which also include multi-channel, multi-
attribute, multi-modal, and multi-material data, among 
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Fig. 1. System interface with all major displays and components (using the battery data, see Section 6.2 for more detail). Users can select a 
multivariate data point in any of these displays via mouse click. The system responds by highlighting the selected data point with a small 
circle both in the targeted display as well as in the other, synched displays (see arrows, added for illustration). (a) Integrated CIE HCL (Hue 
Chroma Luminance) interactive multivariate color mapping display (ICD, top) with control panel (middle), and the selected point’s multivariate 
spectrum display (bottom). (b) Multi-field / hyperspectral image, pseudo-colored via the multivariate color map in (a). (c) Locally enhanced 
colorization of the selected rectangular region in (b). (d) Individual scalar images (usually displayed on the bottom of the interface in a chan-
nel view partition) colorized via the attribute-linked color primaries marked and labeled at the circle boundary of the multivariate color map in 
(a). The image in (b) constitutes a joint colorization of these individual channel images.   
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others. Visualizing these types of data in their native 
domain remains challenging, and there is so far little 
support to map these data vectors directly into color. 

A common practice is to visualize multivariate data as 
multiple images where each channel is mapped to a 
separate plot with a simple color scale. Fig. 1 (d) shows 
such an arrangement for four scalar images. However, a 
disjoint display of this nature makes it difficult to 
recognize correlations (or a lack thereof) that may exist 
among the different channels (variables) in the image.  

For this reason, we wish to fuse the individual images 
into a single multi-color image. Correlations can then be 
easily perceived by similarity of color, while 
dissimilarities become apparent by color variations. At 
the same time we can use the color as a label to reveal 
which of the factors dominate or co-exist in certain areas. 
Essentially, we retain color as a visual representation of 
the relative strength of a given variable for each pixel in 
the image.  

One way to achieve this fusion is by interpolation or 
blending. Let us assume we have n≤3 variables. Then 
each variable is assigned to one of n primary colors, and a 
mapped color is produced via bilinear (for n=2 variables) 
or barycentric (for n=3 variables) interpolation [34]. 
Alternatively, we can assign each variable to one of a 
monitor’s three (RGB) primaries and blend the three 
variables directly in hardware into an RGB image.  

One drawback of this concept is that it is difficult to 
extend to n>3. Hardware blending is infeasible since 
monitors typically only have three primary colors. 
Conversely, interpolation could be realized using 
advanced schemes like generalized barycentric 
interpolation [23]. A severe drawback of interpolation 
and blending is that they do not yield a perceptually 
uniform result. Both map the data into an RGB color cube 
which is not a perceptual color space. It gives rise to the 
rainbow color map which renders some value differentials 
invisible while overly emphasizing others [4][29]. This is 
not the case for the established 1D color maps which are 
the result of psycho-physical experiments and are 
perceptually uniform.  

The system we have devised combines a multivariate 
data embedding scheme [7] inspired by generalized 
barycentric interpolation with a perceptually uniform 
colorspace, CIE HCL. The teaser image of Fig. 1 gives an 
overview of our approach by ways of an example. Fig. 1 
(d) shows the four channel images we wish to fuse. 
Stacked up, each image pixel is a 4D data point. We em-
bed the data points into what we call circular interactive 
multivariate color mapping display (ICD), shown in Fig. 1 
(a). The attributes are arranged on the ICD’s boundary in 
terms of their similarity. Using the ICD, the color of a 
multivariate data sample is then obtained via generalized 
barycentric coordinate interpolation. The generated im-
age (see Fig. 1 (b)) clearly shows at what locations pixels 
correlate and what the dominant factors are.  

Our paper is structured as follows. Section 2 presents 
related work. Section 3 gives an overview of our tool and 

framework. Section 4 presents its basic features, while 
Section 5 describes additional functionalities we 
developed in response to requirements we discovered 
during practical use. Section 6 showcases several case 
studies. Section 7 presents a user study and feedback. 
Section 8 ends with conclusions and future work.  

2 RELATED WORK 

A color map is also frequently referred to as color palette 
or color scheme. Color palettes are most often designed for 
univariate data, and they are almost always due to some 
path in a given color space. A very simple method to gen-
erate a color palette is to linearly interpolate between 
RGB=(0,0,255) and RGB=(255,0,0), which is equivalent to 
varying the hues in HSV color space from red to purple. 
This gives rise to the infamous rainbow colormap. While 
straightforward to implement, the rainbow colormap is 
less than ideal since it is not iso-luminant. This means that 
it has sub-ranges that have little perceivable contrast and 
consequently any scalar detail mapping into these sub-
ranges is difficult to distinguish [4][28].  

There has been significant work on designing more ef-
fective standard color maps for scientific data visualiza-
tion. Well known here is the IBM PRAVDA system [2]. In 
addition, a prominent guide is also the Color Brewer [6] 
which presents a variety of color schemes for cartography 
applications, broken down into sequential, diverging, and 
qualitative schemes. For the former two schemes the site 
suggests decompositions into up to 9 elements. More 
could be obtained via interpolation, either piecewise line-
ar to preserve the original elements or via higher-order 
functions. The Brewer schemes are highly respected and 
widely applied. According to the authors [14] they were 
designed “using both experience and trial and error”. 
Later, in more analytical research Wijffelaars et al. [33] 
show that the Brewer palettes generally follow curved 
paths in the hue slices of the CIE LUV color space, but 
that the elements are not iso-distant from one another. 
The authors then describe an analytical tool by which 
lightness-ordered palettes of any hue can be created and 
which follow optimally lightness-sampled paths.  

Choosing colors in CIE LUV color space is preferable 
since it is perceptually uniform. Perceptual uniformity 
means that any two equidistant colors elicit the same per-
ceived color contrast in a human observer. These percep-
tually well-defined distance relationships enable a con-
venient mapping of geometric operations into color space. 
We take advantage of these relationships in our work. 
Once the mapping is done we convert to RGB for display.   

The perceptual uniformity of CIE LUV space has also 
proven to be effective for the rendering of photographic 
(RGB) volume datasets. It allowed for meaningful opacity 
mappings as well as gradient calculations [10]. Finally, 
more recent research on color palettes includes that of 
Fang et al. [11] who presented a method for maximizing 
the perceptual distances among a set of colors assigned 
by users for categorical data. Gramazio et al. [12], on the 
other hand, described work that sought to optimize color 
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palettes for user-defined discriminability and preferences.  

2.1 Bivariate and Trivariate Color Palettes 

We are specifically interested in color schemes that can 
support multivariate data. Stevens presents an online 
how-to guide [34] for constructing a 3×3 bivariate color 
palette from two three-element 1D color palettes (see Fig. 
2). It constructs a 2D palette cell by blending two 1D pal-
ette cells together. Stevens writes that this requires some 
manual tweaking in hue and saturation to make the 
mixed cells along the diagonal more distinguishable. In 
fact, this manual tweaking of cell colors is not unlike the 
more principled and algorithmic techniques that have 
been published in the visualization community to address 
the problems arising from the blending of colors in two or 
more semi-transparent layers [1][9][31]. One of these 
problems is the appearance of false (third) colors that can 
be generated when blending two colors together. Given 
these problems, it is unclear how Stevens’ scheme would 
extend to color palettes of an order greater than two. It is 
also not a proven perceptually uniform scheme.  

Another way to construct bivariate color palettes is via 
interpolation or blending. We have already discussed this 
approach and its shortcomings in the introduction.  

2.2 Color Mapping for Multivariate Data 

The colorization of data of more than three variables has 
received less attention so far. Work in this area includes 
that of Hagh-Shenas et al. [13]. They compare two tech-
niques for the visualization of 6-dimensional data on 
choropleth maps: (1) blending using six separate color 
ramps and (2) texturing with spectral noise. Their user 
studies reveal that while the error rate for blending signif-
icantly rises already for three variables, the increase in the 
error rate for texturing is only statistically significant for 
the case of six joint variables (five was not tested). Our 
approach also performs blending but users can visually 
map a color back into the ICD (see Fig. 1(a)) to gain in-
sight about the multivariate proportions (using intensity 
to determine the overall strength). Conversely, in the sys-
tem by Hagh-Shenas et al. users need to mentally decode 
the blended value into its k constituents via the k disjoint 
color ramps which is arguably difficult. Their more prom-
ising noise textures, on the other hand, have limited use 
in our case since they cannot be used in a continuous do-
main without severe loss in resolution. 

Others have looked at the problem from the perspec-
tive of dimension reduction. These methods have been 
mainly described in the context of mapping hyperspectral 

image data into RGB space. Ready and Witz [26] perform 
Principal Component Analysis (PCA) [17] and map the 
top three PCA vectors into color space. However, while 
this preserves as much of the data variance as possible, it 
offers little control about the colors assigned and their 
relations to the variables.  

On the other hand, Lawrence et al. [21] use Multidi-
mensional Scaling (MDS) [20] for dimension reduction 
and enforce constraints on the colors used in different 
areas of the image by adding a value constraint into the 
MDS stress equation. This requires a suitably colored in-
put image to specify this value constraint. As such this 
algorithm is more of a framework for painting colored 
images from multispectral image data since the con-
straints are given in the image domain and not in the at-
tribute domain. And so, imposing color constraints on the 
data attributes themselves is not easily done. In that re-
spect, there is no color legend and no concrete color map. 

2.3 Multivariate Data Visualization 

Our ICD (see Fig.1 (a)) embeds multivariate data into a 
2D display. We use a technique that is essentially an op-
timized version of RadViz [15], which we presented in [7]. 
There, we also showed that the equations of RadViz are 
equivalent to those of Generalized Barycentric Coordinate 
interpolation [23][7] when formulated as a mapping prob-
lem and substituting the convex polygon by a ring. There 
are also other embedding techniques, such as ISOMAP 
[30], t-distributed stochastic neighbor embedding (t-SNE) 
[22], multidimensional scaling (MDS) [20], locally linear 
embedding (LLE) [27] and others but all of these only 
map the data samples but cannot retain the data attrib-
utes. The latter is important for us however, since we 
wish to enable the user to relate the blended color to the 
respective channels (see our discussion in Section 2.2). 

RadViz [15] fulfills this goal, but similar to Star Coor-
dinates [18] and Generalized Barycentric Coordinates [23] 
it may result in an ambiguous display where data points 
far apart in high-dimensional space can map closely in 
the 2D display. The three-way optimization scheme we 
presented in [7] absolves that, creating a display in which 
(1) similar (correlated) attributes map closely on the Rad-
Viz ring, (2) data points close (far) in high-dimensional 
space also map close (far) from one another in the 2D dis-
play (gauged by Euclidian distance), and (3) the display 
locations the data points are mapped to are proportional 
to the values they have for the corresponding attributes 
located on the RadViz ring. We note that we normalize all 
dimensions into a [0, 1] interval prior to mapping.  

Finally, another paradigm we might use is the data 
context map [8]. While it also maps attributes and sample 
points into a common space, it intersperses them which 
makes integration with a color map difficult.  

3 OVERVIEW 

Multi-field data [16] often come on irregularly and possi-
bly sparsely sampled geo-domains. This can lead to visu-
alizations that are difficult to interpret due to a lack of 

Fig. 2. Constructing a bivariate color palette from two univariate 
color palettes (see Stevens [34]). 



4 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 

 

continuity. Suppose we have m sample points and for 
each such sample point Pi , there are n attributes. For the 
sample point Pi , its attribute vector Di can be recorded as 

𝐷𝑖 = [𝑑𝑖1, 𝑑𝑖2, … , 𝑑𝑖𝑛]                                       

where dij is the jth channel value of the ith sample point.  
Conversely, we can also construct a vector for each of the 
n attributes, comprised of the m samples. For instance, the 
jth attribute Vj, is then represented as: 

 𝑉𝑗 = [𝑑1𝑗 , 𝑑2𝑗 , … , 𝑑𝑚𝑗]               

The geolocation of Pi , can be represented as the 2-tuple 

[ 𝑃𝑖𝑋,  𝑃𝑖𝑌 ] 

and it is the sample or pixel location in the original geo-
domain or image, respectively. Alternatively, the geoloca-
tions can also be determined by a two-dimensional space 
embedding, such as MDS, PCA, etc. (see Section 6.4) of 
the high-dimensional data. In the latter case the multivar-
iate data vector plays a dual role – it determines the color 
and the geolocation. 

As a running example, we will use a dataset of 300 
multivariate pollution samples obtained at irregularly 
placed sensors in a large Asian metropolitan area. This 
dataset consists of spatial measurements of several heavy 
pollutant chemicals – As, Cd, Cr, Cu, Hg, Ni, Pb, and Zn. 
Fig. 3 (a) shows a visualization of the As factor with con-
centration mapped to luminance and each sample repre-
sented by a small tile. Fig. 3 (b) shows the same data now 
interpolated with adaptive kernel density estimation 
(AKDE) [19]. AKDE adapts the kernel used for interpola-
tion to the local sparseness of the data, using a wider ker-
nel over samples situated in low-density regions, and vice 
versa. The interpolated map makes it much easier to ap-
preciate isolated and grouped hot spots as well as une-
ventful areas. For this reason, we will only use the AKDE-
interpolated domain for irregularly spaced data. 

Fig. 4 (d) shows the AKDE-interpolated maps for all 
eight pollutants arranged into small multiples. We ob-
serve that the disjoint display makes it difficult to appre-
ciate spatial correlations that may exist among the pollu-
tants. In the next sections we describe our interface, Col-
orMapND, designed to overcome this challenge.  

3.1 The ColorMap
ND

 Interface 

Fig. 4 shows the interface of our ColorMapND system for 
the aforementioned pollution dataset. It consists of the 
following four components: (a) Color Legend Panel, (b) 
Pseudo-Colored Plot, (c) Local Enhancement Panel, and 
(d) Channel View.   

The Color Legend Panel (a) contains the circular interac-
tive multivariate color mapping display (ICD) with the color 
map doubling as a color legend. The vertical slider on the 
right can be used to rotate the ICD’s outer ring and with it 
the attributes and the assembly of data points, and so al-
ter the mapping’s color assignments. The ring spacing 
check box allows users to choose the attribute layout 
scheme along the ring – uniformly spaced or correlation-
optimized. The color contrast check box sets the system 
into the color-preserving or data-driven color enhance-
ment mode. The ellipse size and magnification sliders are 
used for detail enhancement (see Section 5.4 for all). Final-
ly, the bar charts on the bottom visualize the true values 
for each attribute of a given point (see below).  

The Pseudo-Colored Plot (b) in the center shows the col-
orized image. The details contrast slider can be used to 
control the strength of the length-to-opacity mapping (see 
Section 5.1). The Local Enhancement Panel (c) displays the 
locally color-enhanced area chosen by a rectangle or pol-
ygon drawn into the colorized image (shown here as a 
white box). The degree of color enhancement 𝜃  can be 
controlled by the slider below the image. Optionally, us-
ers can also color-enhance the entire colorized image. 

The Channel View (d) on the bottom is a small multiple 
view of all attribute/channel images, each colorized by 
the color selected by their respective node points in the 
ICD’s outer ring. This display allows users to focus on 
one attribute at a time.  

Fig. 3 Visualizing the “As” factor in the pollution data (a) Irregularly 
sampled observations. (b) AKDE interpolation (c) Color legend - 
range is [1.61, 30.13].  
. 

(a) (b) 

(c) 

Fig. 4 The interface of our system, using the pollution dataset as a 
demonstration example. 

(a) 
(b) (c) 

(d) 
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Our system is fully interactive (after an initial 3-4s set-
up time for a newly loaded dataset) and lends itself well 
to exploratory scenarios. Moving the mouse over the col-
orized image or within the ICD updates the bar chart of 
the Color Legend Panel with the channel values of the 
moused-over point. This gives users quantitative infor-
mation about the point and can further help them recog-
nize the fusion of the colors.  

Mouse interactions in one display are conveyed in the 
other displays as well, essentially linking them together 
for ease of visual information retrieval. Observe that in 
Fig. 4, each of the displays has a point circled in black 
(bottom left in the images, top center in the ICD). The 
dots move synchronously no matter in which physical 
display the mouse actually is. In this particular example 
we can easily learn that the (circled) heavy pollutant area 
has high “Pb” and “Gd”.  

In the following sections we will first describe the basic 
framework and then move to the more advanced algo-
rithms and operations. 

4 THE BASIC FRAMEWORK 

The three fundamental tasks of our multivariate color 
mapping framework are as follows:  
1. Convey dissimilarities in the multivariate data as 

perceivable differences in color  visually encode the 
data sample to data sample relationships.  

2. Convey dissimilarities of the attributes as perceivable 
differences in color  visually encode the attribute to 
attribute relationships. 

3. Convey associations of a data sample with the attrib-
utes as a perceivable labeling in color  visually en-
code the attribute to data sample relationships.  

The mediating interface of our framework is the repre-
sentation gained by fusing the optimized RadViz display 
with an equally-shaped color map, forming the ICD. The 
accuracy of both of these components is prerequisite to 
the accuracy in the three main tasks listed above.  

In terms of the spatial embedding of the multivariate 
data into the ICD, the first and third tasks have been ad-
dressed to a large extent by the framework published in 
[7]. We summarize it in Section 4.3 and describe how we 
adapted it for the circular boundary of the ICD. The sec-
ond task is addressed by a novel similarity-based attrib-
ute ordering and spacing. This is described in Section 4.2.  

Having achieved a faithful spatial embedding of the 
multivariate data we next require a perceptually accurate 
color mapping framework which can convert these spa-
tial relationships to perceivable color relationships. This is 
one of the main contributions of this work and is de-
scribed in detail in Section 4.1.  

4.1 Color Mapping in the CIE HCL Color Space 

Color mapping is the process of assigning color to data. It 
can occur in any color space. We have three requirements 
for this color space: (1) it should be perceptually uniform, 
(2) it should be disk-shaped, and (3) the HS (Hue Satura-
tion) slices of the color space should be iso-luminant. The 

former two are needed to afford the geometrical mapping 
operations and interactions inherent to our framework, 
while the last is needed so that we can use the slice-
orthogonal direction for vector length encoding 

Requirements (1) and (3) rule out the HSV and HSL 
color spaces which have a disk-shaped cross-section but 
have non-linear intensity variations within the HS slices. 
A better choice in these respects is the CIE LUV color 
space which is perceptually uniform [25][28]; its shape, 
however, is far from circular, violating requirement (2).  

Fortunately there is a lesser known color space – the 
CIE HCL (Hue Chroma Luminance) color space [38] – 
which fits our three constraints. It is a cylindrical repre-
sentation of the CIE LUV color space and removes the 
non-linear intensity variations within a HS slice. Howev-
er, even though the CIE HCL color space seems to fulfill 
our three requirements, there are still some inherent ad-
verse properties which we discovered in practical use of 
our system. The solutions we propose to overcome these 
shortcomings are described in Section 5. 

When dealing with color spaces it is important to note 
that color monitors are only capable to display colors 
within the triangular sRGB space which is a sub-region of 
the CIE space (see Fig. 2 in the supplement material for a 
visual depiction). The CIE HCL space we are using has 
regions that fall outside the sRGB space and hence our 
mapping may produce some colors that are not displaya-
ble. These are mainly colors in the green range bordering 
to blue which are located around the three o’clock posi-
tion on the ICD ring. A possible solution to this problem 
might be to provide visual cues, such as a shaded ring 
segment, that would alert users to avoid these locations 
for the placement of important primaries. At the same 
time, the sRGB space includes colors that are not con-
tained in the CIE HCL space. These are the most vibrant 
shades of blue and red which, however, can be recovered 
by our color contrast enhancement facility described in 
Section 5. 

4.1.1 Optimal HC slice and ICD size and placement 

It turns out that the diameter of the HC slice changes as a 
function of L, and it does so in a non-linear fashion. This 
can be explained by the non-regular shape of the associat-
ed CIE LUV space. What this means in practice is that the 
capacity of an HC slice to provide a sizable set of human-

Fig. 5. Effective use of the HCL color space: (a) the optimal HC slice 
at L=55 with the maximal circle; (b) the polygonal mapping region of 
RadViz and our extension to a circle to enable the full use of the CIE  
HCL color space.   
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distinguishable colors is dependent on L. Maximizing 
this number is thus desirable. 

We therefore aim to find the CIE HCL slice for which 
the diameter is maximized. This optimal CIE HCL slice is 
the one where the associated slice in the CIE LUV space 
can pack the largest circle. Further, in order to provide an 
unbiased spectral coverage in the color map, we require 
the center of this circle to coincide with the CIE LUV 
slice’s white point.  

Using iterative search, we found the optimal HC slice 
to be at L=55. We denote this optimal slice as HCL55 and 
define a coordinate system bounded by ± 100 along each 
of the two axes with origin at [0, 0]. The white point on 
this slice is at O = (26.147, 1.1344) and the radius of the 
maximal circle with the white point at its center is R0 = 
53.2. Fig. 5 (a) shows the optimal slice and ICD disk.  

A remaining concern is that the LUV color space out-
side this maximal circle is essentially wasted (see again 
Fig. 5 (a)). We will return to this issue in Section 5.4.5 
where we describe our detail enhancement option which 
utilizes the colors of the entire CIE LUV space.  

4.1.2 Encoding vector magnitude 

We note that the ICD embeds the data points in terms of 
their affinity to the attributes positioned at the circle’s 
boundary. Data points with a relatively higher value in 
attribute A (as compared to attribute B) will map closer to 
the boundary node of attribute A than that of attribute B. 
On the other hand, a data point that has the same value 
ratios but overall higher values than another data point 
will map to the same map location. Both points will then 
be assigned the same color and will be indistinguishable 
in the colorized geo-spatial display or image.  

As an extra visual channel, we can use L to encode the 
vector length. This, however, proves problematic in CIE 
HCL. Consider two colors A (HA, CA, LA) and B (HB, CB, 
LB). If we fix (HA, CA) and (HB, CB), and only change LA 
and LB from 1 to 100, we observe the upper two bars in 
Fig. 6. We make the following two observations: (1) the 
change in lightness is not linear, and (2) the color changes 
over the range of L. In fact, in this case, the two different 
colors end at the same color when L=100.  

Instead, we can keep the optimal HC slice at L=55 and 

only increase transparency  which is equivalent to de-

creasing opacity , from left to right, using a white back-
ground. This is shown in the bottom two bars in Fig. 6. 
We observe a linear change, an L-like appearance, and a 
preservation of the original base colors throughout. Thus, 

in practice we use  to encode vector length, increasing  
with increasing vector length. This will render points 
with greater vector magnitude in a darker color. We will 

denote this color space as the HCL55α color space.  

4.2 Mapping the Attributes to the ICD Boundary 

Placing an attribute node at the ICD boundary labels the 
attribute with the color at this position. We call it the at-
tribute’s primary color. This color is used to colorize its 
channel image and it allows users to quickly spot regions 
in the fused image which are dominated by this attribute. 

The procedure we use to embed the data points into 
the ICD (Fig. 1 (a)) is driven by the arrangement of attrib-
utes about the ICD’s circular boundary. Each arrange-
ment produces different data layouts and colorizations, 
emphasizing the criteria enforced by the arrangement.  

As mentioned in Section 3.1 users have the ability to 
choose the attribute layout scheme along the ICD ring – 
uniformly spaced or correlation-optimized. In addition 
they also have the ability to freely position the attribute 
nodes on the ICD ring per their own preference, for ex-
ample to highlight a certain attribute of interest in the 
colorization, or give it a color associated with some se-
mantics such as blue for a variable called “Winter”.   

The optimized placement makes sure that the primary 
colors are optimally used. There are two criteria to con-
sider for an arrangement: (1) the order of the attribute 
nodes, and (2) the spacing between them. Both use the 
pairwise (1-correlation) distance metric as the input.  

4.2.1 Determining the order of the attributes 

To determine the order of the attribute nodes on the ICD 
ring, we require an algorithm that can construct a closed 
loop since we need to place the attribute nodes along a 
circle. This excludes a tour generated by solving a Travel-
ing Salesman Approximation since the ends of the sales-
man tour are not connected and therefore not properly 
spaced apart. Instead we express the task as a Hamiltoni-
an Cycle Problem (HCP).  

We solve an approximation of it (since the HCP is NP-
complete) using a dynamic programming approach [3] 
inspired by the original scheme independently developed 
by Bellman, and Hell and Karp. Initially, we divide the 
entire set of connections into different subsets. Then we 
optimize for the best solution over subsets and eventually 
expand to the whole set. The output is an ordered set of 
attribute nodes which can be placed on the ICD ring, 
equally spaced.  

Fig. 6. Using lightness (top, range [1…100]) vs. opacity (bottom) for 
value encoding. (a) and (b) are two different colors, A and B.  

(a)
(b) 

(b)
(b) 

(a) (b) 

Fig. 7.  Layouts as a function of attribute spacing on the color map 
boundary. (a) Equidistant spacing. (b) Optimized spacing. 
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4.2.2 Determining the spacing of the attributes 

If we also wish to obtain optimal spacing between the 
nodes on the ICD circular boundary we can use the met-
ric (1 − 𝜌𝑖𝑗) where 𝜌𝑖𝑗 is the correlation of attribute i and j 

as follows: 

𝑠𝑖𝑗 =
1 − 𝜌𝑖𝑗

∑ (1 − 𝜌𝑘𝑙)𝑘,𝑙𝜖𝐻𝐶

𝑠𝐼𝐶𝐷 

Here, 𝑠𝐼𝐶𝐷 is the circumference of the ICD ring and 𝑠𝑖𝑗 is 

the distance between two attributes i,j on the ICD ring. 
The spacing we obtain groups similar attributes close to-
gether, which are then assigned similar colors. This is in 
some sense a dimension reduction, saving any distinct 
primary colors for more independent attributes.   

Optimizing the arrangement of the attributes around 
the circle also leads to a better embedding of the data 
points. Fig. 7 compares the layouts obtained with (a) an 
equidistant ordering, and (b) an optimized ordering. We 
observe that in (a) the data points are lumped together 
and overlap in, while in (b) they are more scattered which 
in turn will yield more diversity in the colorization.  

4.2.3 Upper bound on the number of attributes 

There are natural limits rooted in human color contrast 
perception which bound the number of attributes that can 
be reasonably encoded. For the CIE LUV color space, the 
least noticeable difference (JND) ∆𝐸 𝑢𝑣 in the UV plane is 

√∆𝑢2 + ∆𝑣2 = 13 which is equivalent to the difference in 
brightness ∆𝐿 = 1, assuming a color cube sized ±100 [24]. 
The disk of our HC color space (see Section 4.1.1) has a 
circumference of 𝑠 = 2𝜋𝑅𝑜 = 2𝜋 ∙ 53.2 = 334.26. Thus the 
number of distinguishable primaries in a ring layout with 
uniform spacing is 𝑠 ∆𝐸 𝑢𝑣⁄ = 334.26 13⁄ = 25.6 ≈ 25.1  

This number is equivalent to an angular spacing of 

14.4 of the attributes on the ICD ring. Hence any attrib-
utes spaced closer in an optimized layout will not be well 
distinguished. This places a certain advantage for the uni-
formly spaced layout, but on the other hand, it encodes 
highly correlated attributes in a similar color which is 
semantically meaningful.       

 

1 This is somewhat of an approximation since we approximated the 
Euclidian distance with a curve. But the error is not large. 

4.2.4 Interactive arrangement of the attributes 

Apart from the automated attribute ordering and spacing 
sometimes a targeted interactive placement can help in 
gaining insight into the data. Consider Fig. 8 (a) where we 
interactively grouped the most correlated (>0.75) attrib-
utes “Pb” and “Gd” as well as “Ni”, “Cr”, “Cu”. We ob-
serve that most points form a single cluster, but we also 
observe some outliers. These outlier points are dominated 
by different attribute combinations. For example, the 
point circled in black is dominated by “Pb” and “Gd” and 
the point circled in white is dominated by “Ni”, “Cr” and 
“Cu”. After checking their spatial locations in the color-
ized image (Fig. 8 (b)), we see the black circled area which 
is dominated by “Pb” and “Gd”. Such a finding can be 
important for residents living in that area, or to their en-
vironmental control agency.  

4.3 Embedding the Data Points into the ICD 

As mentioned, for embedding the data points into the 
ICD we adopt the layout scheme described in [7], which 
is an optimized version of RadViz [15]. In native RadViz, 
the location P of a data sample D=[d1,d2,…,dn] mapped 
into the interior of the RadViz disk is computed as:   

                     𝑃 = ∑ 𝑤𝑗𝑣𝑗
𝑛
𝑖=1      𝑤𝑖 = 𝑑𝑗/∑ 𝑑𝑘

𝑛
𝑘=1                               

where vj is the location of attribute node j on the disk’s 
boundary. 

As discussed in Section 2.3, the optimized version of 
the scheme is designed to enforce that (1) similar data 
points are driven to similar plot locations, and (2) data 
points with an affinity for certain attributes are driven 
more closely to these nodes. We accomplish the latter 
with an iterative layout error reduction and the former 
with a force-directed sample adjustment. The interested 
reader is referred to [7] for a detailed description of these 
two schemes.  

4.3.1  Extending the RadViz polygon to a circle  

The linear equations that underlie RadViz (and also our 
optimization of it) map data points into a convex polygo-
nal region defined by the attribute vertices vj. However, 
the CIE HCL color space has a circular boundary. There-
fore, as shown in Fig. 5(b), there are pocket regions out-
side the polygonal extent in the CIE HCL color space that 

Fig. 9. Opacity encoding of vector magnitude using the 8-channel 
pollution dataset (a) linear encoding, (a) distribution encoding. 

(a)
(b) 

(b)
(b) 

Pb Gd 

Ni Cr Cu 

Fig.8. Interactive color assignment for attributes using the pollution 
dataset (a) Color map with point display, (b) colorized geo-spatial 
domain. The black and white circled points are interesting outliers. 

(a)
(b) 

(b)
(b) 
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would never be considered in the colorization.  
To accommodate the full CIE HCL space we devised a 

method that enlarges the polygonal mapping to a disk. 
Suppose a point P located inside the polygon. Its new 
position P* in the color space disk with center O can then 
be obtained by (see Fig. 5 (b)): 

𝑂𝑃

𝑂𝐴
=

𝑂𝑃∗

𝑂𝐵
 

4.3.2 Looking up the color 

The CIE HCL color space is a cylinder where each slice is 
indexed in polar coordinates, H and C, and the slice itself 
is selected by L. H is the angular and C is the radial coor-
dinate. The color (H, C, L) of P* can then be calculated as: 

         𝐻 = 𝑡𝑎𝑛−1(
𝑃𝑌

∗

𝑃𝑋
∗)       C= √𝑃𝑋

∗2 + 𝑃𝑌
∗2        𝐿 = 55      

where PX
∗ and PY

∗ are the components of point P*. 
To display the HCL color, converting it into RGB is 

necessary. This takes three steps. First, convert the HCL 
color into LUV space. This is a simple transform from 
polar coordinates to Cartesian coordinates. Second, con-
vert the LUV color into XYZ by first obtaining the white 
point and then performing a transform via non-linear 
mapping. Finally, convert the XYZ color into RGB by a 
linear transform. 

5 ADDITIONAL FUNCTIONALITIES 

When testing the basic framework with some real-world 
datasets, such as the pollution data presented so far as 
well as others, we came across a few shortcomings that 
needed to be addressed to make our system generally 
practical. The solutions we derived for this purpose are 
described in the following subsections.  

5.1  Distribution-Based Vector Magnitude Encoding 

In Section 4.1.2 we argued for the use of opacity to encode 
the magnitude of a multivariate vector in the colored do-
main. Domain pixels with a larger magnitude will have a 
higher opacity and therefore a more pronounced visual 
appearance. Fig. 9 (a) shows a colorization of the full 8-
channel pollution dataset – its corresponding color map is 
shown in Fig. 7 (b). While we can see some areas with 
stronger colors, we also observe that overall the colors are 
somewhat washed out. This is because the simple uni-
form opacity mapping scheme cannot deal with the wide 
distribution of vector lengths.  

We devised a distribution-aware mapping scheme to 
overcome this problem. We can reasonably approximate 
the distribution of vector lengths [𝑙1, 𝑙2, . . , 𝑙𝑚] by a normal 
distribution, 𝐺(𝜇𝑙 , 𝜎𝑙). We then standardize and transform 

this distribution such that it has a more favorable dynam-
ic range for mapping vector length to an opacity interval 
of [0,1]. A transformed vector length, 𝑙′, is then given as: 

𝑙′ = (
𝑙 − 𝜇𝑙

𝜎𝑙

)𝜎𝑔 + 𝜇𝑔 

where l is the original vector length and 𝜎𝑔 = 0.25. For 𝜇𝑔, 

the default value is 0.5, which can be changed in our in-
terface to visually enhance certain detail. As such, 68% of 
the points will fall into the range [𝜇𝑔 − 𝜎𝑔 , 𝜇𝑔 + 𝜎𝑔]. 

In experiments we found that it can be beneficial to ta-
per off the tails of the distribution. This brings out smaller 
length variations more clearly and de-emphasizes noise 
and outliers. Suppose, for a given setting of 𝜇𝑔 the small-

est value of (𝑙′1, 𝑙′2, . . , 𝑙′𝑚) is 𝑙𝑚𝑖𝑛
′  and the largest is 𝑙𝑚𝑎𝑥

′ . 
We define an opacity encoding function, Φ, which takes a 
vector length value l’, and converts it to an opacity Φ(l’): 

𝛷(𝑙′)

=

{
 
 

 
 (𝜇𝑔 − 𝜎𝑔)

(𝑙′ − 𝑙′𝑚𝑖𝑛)

(𝜇𝑔 − 𝜎𝑔 − 𝑙′𝑚𝑖𝑛)
   𝑙′ < 𝜇𝑔 − 𝜎𝑔

𝑙′  𝑙′ ∈ [𝜇𝑔 − 𝜎𝑔, 𝜇𝑔 + 𝜎𝑔] 

(𝑙′ − 𝜇𝑔 − 𝜎𝑔)

(𝑙′𝑚𝑎𝑥 − 𝜇𝑔 − 𝜎𝑔)
+ (𝜇𝑔 + 𝜎𝑔)  𝑙′ > 𝜇𝑔 + 𝜎𝑔

 

Since it is difficult to set a proper 𝜇𝑔 value for the opac-

ity mapping in advance, we allow users to interactively 
change it within the range [0, 1]. This moves the unity-
sloped mid-section of the mapping function to the left 
(right) which decreases (increases) the overall opacity 
enhancement. Fig. 1 in the supplement material provides 
a visualization of this function.  

Fig. 9 (b) shows a colorization obtained with this 
method for 𝜇𝑔 =0.3. We see that it provides considerably 

more detail and contrast than the plain encoding of Fig. 9 
(a). The video shows an animation across the range of 𝜇𝑔.  

5.2 AKDE Interpolation of Multivariate Colorizations 

In Section 3 we discussed AKDE interpolation as a means 
to convert an irregularly sampled domain to a regular 
one. We demonstrated this method using a scalar field 
with a single color channel. AKDE interpolation of scalar 
domains has been well described in the literature [19]. In 
this section, we expand single-channel AKDE interpola-
tion to multivariate colorized domains.  

There are essentially three different strategies distin-
guished by where the color interpolation occurs – in the 
color space or in the domain image. All methods begin by 
embedding the multivariate irregularly spaced data sam-
ples into the HCL55 color map using the ICD widget.  
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  Color first, interpolate second. In this scheme, each 
domain sample is mapped into the ICD to obtain its color. 
Then, AKDE-based interpolation is used to estimate the 
colors of the remaining pixels in the domain image. Fig. 
10 (a) shows a colorization obtained with this procedure. 
It has rather low quality – it looks quantized and has very 
little detail. A comparison with the true multivariate spec-
tra confirms that the colors are not overly accurate. Com-
pare, for example, the rather bland colors in the blue and 
black circle in Fig. 10 (a) with the actual multivariate spec-
tra of the corresponding data points shown in Fig. 10 (c) 
and Fig. 10 (d), respectively.  

Interpolate first, color second. Here a pixel color is ob-
tained directly from (interpolated) multivariate values. In 
this procedure we would perform AKDE on the multivar-
iate data and then look up the colors for each interpolated 
pixel. However, in order to convert a multivariate vector 
into color, it is necessary to compute its position in the 
ICD. This is not an easy undertaking since due to the non-
linear optimization during the layout, the original posi-
tion in the ICD to value has been lost. The only way to 
find the color would be to re-optimize the layout for both 
types of points – original and AKDE interpolated – an 
expensive operation.  

Interpolate first, indirect (weighted) color second. 
This scheme is a compromise which is in some sense rem-
iniscent to LLE [27]. It learns the interpolation weights in 
the image domain and applies them in the information 
domain (represented by the ICD). This is expressed in the 
following equation, which is based on Nadaraya–Watson 
kernel regression with kernel function Kh(). Here, Pi is one 
of the m original sample points, 𝑃𝑖

∗ is its corresponding 
location in the ICD, P is the pixel to be interpolated, and 
𝑃∗ is its corresponding location in the ICD, calculated us-
ing the weights learned from the AKDE in the image do-
main. Using this equation H and C of P are looked up in 
the ICD at location 𝑃∗:    

                 𝑃∗ =
∑ 𝐾ℎ(||𝑃−𝑃𝑖||)∙𝑃𝑖

∗𝑚
𝑖

∑ 𝐾ℎ(||𝑃−𝑃𝑖||)
𝑚
𝑖=1

    𝐻𝐶 = ICD[𝑃∗]                          

The computational cost is manageable since it does not 

require a re-optimization of the layout for each pixel.  
Fig. 10 (b) shows the result of this interpolation. We 

find that it preserves the original multivariate spectrum 
quite well (compare the blue and black circled points with 
the spectra on Fig. 10 (c) and Fig. 10 (d), respectively).  

5.3 Dealing with Large Data 

Information displays such as our ICD suffer from over-
plotting when the number of data points gets large. In our 
case this leads to conditions where the colormap becomes 
difficult to read (see Fig. 11 (a)). Such occasions arise 
when we use the ICD to colorize full-res multi-channel 
images, such as the multispectral images shown in Fig. 
17. Likewise, a large number of attributes leads to an un-
recognizable number of primary colors. In the following, 
we describe techniques that can deal with these problems. 

5.3.1 Sparsification of large point clouds 

A first solution is to render the data points crowding the 
ICD semi-transparently. This can help somewhat in rec-
ognizing the colors in the colormap layer below, but the 
visualization is still too cluttered. We also experimented 
with traditional down-sampling methods which select 
samples based on density or randomly but none pro-

Fig. 10 Coloring irregularly sampled domains. (a) Color first, interpo-
late second; (b) weighted scheme (c) multivariate spectrum of the 
point circled in blue (d) spectrum of the point circled in black. 

(a) (b) 

(c) (d) 

R G 

Fig. 11. Data sampling schemes: (a) original distribution, (b) down-sampled, (c) hashmap sampled. 

(a)
(b) 

(b) 

R G R G 

(c) 
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Fig. 12. Various color contrast enhancement schemes for the pollution dataset (top row: joint color map - point display, bottom row: colorized 
spatial domain. (a, e) original coloring, (b, f) color driven scheme, (c, g) data driven scheme, (d, h)  outlier enhancement (CCC scheme). 

(a) (b) (c) (d) 

(e) (f) (g) (h) 

duced satisfactory results. However, all of these methods 
tend to neglect outliers and sparsely occupied areas. This 
is evident in Fig. 11 (b) which shows the result we ob-
tained by a density-based down-sampling of Fig. 11 (a).  

Instead, we have opted for a stratified sampling ap-
proach based on a 2D hashmap. Our method imposes a 
200×200 2D grid onto the color map and visits each point 
in turn. Initially, we create a global sample list to store the 
points after sampling. When a point maps into a so far 
unvisited grid cell, the point is added to the global sample 
list. At the same time, the point’s four grid neighbors are 
frozen. This prevents any new point mapping to it from 
entering the sample list. The high density areas get more 
samples while low density areas do not, using the follow-
ing mechanism. Every grid cell keeps a counter which 
increments whenever a point maps to it. If the count ex-
ceeds a set threshold, the neighbors of this grid cell are 
unfrozen, freeing them for the global sample list. Once 
finished, the global sample list is plotted onto the map.   

Fig. 11 (c) shows a result of the stratified sampling al-
gorithm. We observe that the algorithm retains both the 
outlier points and the main distribution, but at the same 
time reveals the color map in the layer below.  

5.4 Zooming and Contrast Enhancement 

Oftentimes the color map is only partially filled by sam-
ples, with a few outliers in the remaining regions. While 
this is tolerable in conventional scatterplots with clusters, 
in our application it leads to an underuse of colors. The 
consequence is low color contrast in the image domain. 
See, for example, Fig. 12 (a). We observe that the points 
mostly use colors in the upper part of the HCL55 space. 
The resulting colorization (see Fig, 12 (e)) is consequently 
somewhat flat with a few isolated hotspots. Compare this 
with Fig. 12 (g) which uses the considerably more uni-

form point distribution of Fig. 12 (c) for colorization. The 
resulting image is much more vivid and offers significant-
ly more detail information. Some good examples are the 
areas enclosed in the small and large circles. The follow-
ing subsections present several methods we designed. 

5.4.1 Extracting the main cluster of points  

We use an approach akin to a magnifying lens to increase 
the spread of points on the color map. We chose an ellip-
tical shape for this lens. We found that this makes the lens 
easy to manage and at the same time enables it to capture 
the typical shape of most point distributions.  

In order to find this ellipse, we first use k-means clus-
tering with k=1. This yields the main cluster and its center 
M. Next, we use Principal Component Analysis (PCA) 
[17] to determine the distribution’s extent as a set of two 
eigenvectors (black arrows in Fig 12 (a)), with two sorted 
eigenvalues λ1 and λ2. The ellipse is always drawn as a 
black outline (see Fig. 12 (a-d)).  

We consider the interior points falling into the elliptical 
lens the core features, and the exterior points the peripheral 
features and outliers. Users can increase (decrease) the ex-
tent of the magnifying lens and so include (exclude) fur-
ther interior points. This operation scales the eigenvectors 
and yields a larger (smaller) ellipse. In the limit the ellipse 
is the entire color space disk. This is technically done by 
increasing the lengths of the eigenvectors using an ad-
justment parameter β: 

𝑎 =
𝜆1

2
𝛽              𝑏 =

𝜆2

2
𝛽           

As default, 𝛽=1, and β can be adjusted via a slider.  
With the interior and exterior points defined, expand-

ing the ellipse during magnification will spread the inte-
rior points onto more color space and give them more 
contrast in the image. Exterior points on the other hand 
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will compress and lose contrast. In that respect they be-
have like points that fall into a lens transition region.  

There are some downsides of this general scheme. 
First, an increase in color contrast will diminish the visual 
effect of similarity. Second, points may change their hue 
in the expansion. This gives rise to two separate en-
hancement schemes. We will describe these two schemes 
in the following sections.  

5.4.2 Color-preserving contrast enhancement  

This scheme seeks to preserve the hues of the points and 
only changes saturation. It observes the center of the color 
space, O, and pushes the interior points along lines ema-
nating from O towards the border of the circular color 
space. Fig. 13 (a) presents an illustration when the center 
of the color space is inside the lens. In this figure, the in-
ner ellipse is the original shape of the lens while the outer 
ellipse is its coverage after magnification using the pa-
rameter θ:  

OC⃑⃑⃑⃑  ⃑ = OA⃑⃑⃑⃑  ⃑ + θ(OB⃑⃑⃑⃑  ⃑ − OA⃑⃑⃑⃑  ⃑)        θϵ[0,1]           (1) 

When θ=0 then there is no magnification, while when θ=1 
there is full magnification. In the latter case, the interior 
points are spread over the entire color map and the exte-
rior points map to the map’s boundary. For all other val-
ues of θ the interior points map to the larger ellipse and 
the exterior points map into the adjoining annulus region.  

An original interior point P moves to a new location P* 
per the following relationship:  

‖𝑂𝑃∗‖ =
‖𝑂𝐶‖‖𝑂𝑃‖

‖𝑂𝐴‖
                                (2) 

An exterior point Q, on the other hand, moves to a new 
location Q* computed as follows: 

‖𝑄∗𝐶‖ =
‖𝐵𝐶‖‖𝐴𝑄‖

‖𝐴𝐵‖
                                 (3) 

When the color map’s center is outside the elliptical 
lens (see Fig. 13 (b)), the computations are unchanged. In 
this case, the enhancement is not that large but it pre-
serves more similarity.  

The result of this enhancement is shown in Fig. 12 (b) 
for the color space, while the corresponding colorization 
is shown in Fig. 12 (f). Compared to the original layout in 
Fig. 12 (a), the points on the top left corner spread more 
towards the color map boundary. We find that the colors 
are more vivid than in the original colorization of Fig. 12 
(e), but they are still comparable in hue (see for example 
the region circled in black). Overall, we find that color 
contrast is increased. On the other hand, the similarity 
relations are still well observable since this adjustment 
keeps the points in their original area of the color space. 

5.4.3 Data-driven contrast enhancement 

The data-driven scheme focuses on the center of the data 
distribution, M. It starts from the center of the ellipse and 
pushes the interior points along lines emanating from M 
towards the border of the circular color space. This pro-
cess is illustrated in Fig. 13 (c). Using again the parameter 
θ, the enlarged area can be obtained as: 

𝑀𝐶⃑⃑⃑⃑⃑⃑ = 𝑀𝐴⃑⃑⃑⃑ ⃑⃑ + 𝜃(𝑀𝐵⃑⃑ ⃑⃑ ⃑⃑  − 𝑀𝐴⃑⃑⃑⃑ ⃑⃑ )        𝜃𝜖[0,1]        (4) 

The new position of an interior point P is P*. It is comput-
ed as follows: 

‖𝑀𝑃∗‖ =
‖𝑀𝐶‖‖𝑀𝑃‖

‖𝑀𝐴‖
                                  (5) 

On the other hand, an exterior point Q will get com-
pressed and its position Q* can be obtained by: 

‖𝑄∗𝐶‖ =
‖𝐵𝐶‖‖𝐴𝑄‖

‖𝐴𝐵‖
                               (6) 

The color mapping obtained with this scheme is shown 
in Fig. 12 (c) and the corresponding colorization is shown 
in Fig. 12 (g). Compared to Fig. 12 (b), the points are now 
transferred across the color space center and use the color 
space more effectively than the color-preserving en-
hancement scheme. And indeed, the colorization in Fig. 
12 (g) better visualizes the disparity among the pollution 
chemicals by giving the levels more distinct colors. We 
can observe more detail, as can be seen, for example, in 
the region circled in black. However, this coloring loses 
some of the originally expressed similarity relations, 
compared to the color preserving enhancement coloring. 

5.4.4 Outlier enhancement 

The color contrast enhancements presented so far empha-
sized the main distribution points. However, sometimes it 
can be important to specifically emphasize points outside 
the main distribution, while de-emphasizing the others. 
Such a scheme would show these former points in vivid 
colors according to their attribute affinities, while the lat-

Fig.13. Illustration of the color contrast enhancement schemes (a) 
color driven scheme with the color space center inside (b) or outside 
the ellipse (c) data driven scheme and (d) local color enhancement 
scheme (the polygon represents the UV color space). 
  

(c) 

(a) 
(b) 

(d) 
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ter points would visualize in a neutral uniform color.  
For this purpose, we have developed what we call the 

comparison compression coloring (CCC) scheme. The CCC 
scheme works for both the color-preserving and the data-
driven enhancement methods. It restricts the interior 
points into a smaller region such that they cannot take up 
many colors and distract the user. In this way, the color 
map will give more room to the exterior points. However, 
in this compression, we cannot simply set the parameter θ 
less than 0 (for shrinking the lens) and compute the lay-
out via equation (3) or (6). If so, any outliers should be 
pulled to the ellipse as well. Rather, we would like to pre-
serve the isolated status of these outliers. For this reason, 
we build a weight function based on the distance from the 
center of the color space or the ellipse, respectively. The 
weight is defined as follows: 

                        𝑊𝑝 = 𝐺(𝜇, 𝜎)(‖𝑀𝑃‖)             (𝜇 = 0, 𝜎 = 0.5) 

For the color driven scheme, equation (1) becomes: 

                𝑂𝐶⃑⃑⃑⃑  ⃑ = 𝑂𝐴⃑⃑ ⃑⃑  ⃑ + 𝜃(𝑂𝐵⃑⃑ ⃑⃑  ⃑ − 𝑂𝐴⃑⃑ ⃑⃑  ⃑)𝑊𝑃                𝜃𝜖[−1,0]       

For the data driven scheme, equation (8) changes to: 

                 𝑀𝐶⃑⃑⃑⃑⃑⃑ = 𝑀𝐴⃑⃑⃑⃑ ⃑⃑  + 𝜃(𝑀𝐵⃑⃑ ⃑⃑ ⃑⃑  − 𝑀𝐴⃑⃑⃑⃑ ⃑⃑  )𝑊𝑃               𝜃𝜖[−1,0]        

The new location of point C can be obtained from the 
above equations. Based on the new location, we could 
then compute any point’s new location via equations (2)-
(6). The color map of this enhancement scheme is shown 
in Fig. 12 (d). We observe that the points inside the ellipse 
now occupy a smaller region, using only a few repre-
sentative colors. The corresponding colorization is shown 
in Fig. 12 (h). We see that the most dominant main fea-
tures are now visualized in a rather neutral and uniform 
color. They essentially form a contextual backdrop for the 
more color-enhanced outliers, where the color identifies 
the composition of the outlier. For example, in the circled 
regions we see outlier spots that were difficult to identify 
as such in the other colorings (for example in Fig. 12 (g)) 
due to over-crowding, but they are now clearly visible. 
We also inserted arrows to point to some of the outliers. 

5.4.5 Local enhancement using colors outside HC disk 

As mentioned in Section 4.1.1, some parts of the LUV col-
or space are wasted since the HCL55 circle cannot cover 
the entire convex region of the UV space. To account for 
this, we provide a feature called detail enhancement mode 
that also makes use of colors outside the HC disk. In this 
mode, when we push the points toward the circular bor-
der, we allow them to cross the circle boundary and spill 
into the peripheral regions of the UV space. As shown in 
Fig. 5 (a), this gives the colorization access to stronger 
shades of purple, green, orange, and blue -- the colors 
outside the HCL55 disk.  

We distinguish between local and global color en-
hancement mode (see below). In local color enhancement 
mode, the user can specify an area of interest by drawing 
a rectangle or polygon on the colorized image. The sys-
tem then responds by providing a, possibly enlarged, 
detail image whose colorization only depends on the 

points that are part of the selected patch. Fig. 1 (c) shows 
an example for this – the colorization of the image patch 
bounded with a square in Fig. 1 (b). It is easy to see the 
structural information coded by the variation in color in 
the detail patch, while it is not visible in the large image.    

The algorithm works as follows. After a patch has been 
defined, the set S of all points falling into it is identified. 
Next, the center M of S is computed, and the points of S 
are either pushed away or dragged closer to M depending 
on the type of enhancement – exterior or interior. Fig. 13 
(d) shows an illustration of this process. Suppose S com-
prises points {A, B, C, P} with center M. We perform a 
local enhancement using the displacement parameter 𝜃. 
This moves S to S* composed of {A*, B*, C*, P*}. P* is 
computed from P as: 

𝑀𝑃∗⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  = 𝜃 𝑀𝑃⃑⃑⃑⃑ ⃑⃑          𝜃 ≥ 0                  (7) 

When θ<1 this performs a compression, while when θ>1, 
it performs an enhancement.  

And indeed, we observe in Fig. 1 (c) that these extra 
levels of pink have been used to fill in and expose the 
previously hidden structural variations.   

5.4.6 Global enhancement using colors outside HC disk 

Global color enhancement mode expands the local area 
scheme to the entire image. We provide two options: (1) 
after users have enhanced the colors of a local area they 
can apply the local detail settings to the entire image, and 
(2) users can perform an enhancement to the entire image 
directly. The latter is equivalent to drawing the selection 
polygon to include the entire image. 

A result of this procedure is shown in Fig. 14 (b) using 
the pollution dataset. Compared to Fig. 14 (a), which is 
the original colorization only using colors within the HC 
disk, we obtain a significantly improved contrast and 
richer colors which allows more detail to be observed. 

One might ask, why not always use these exterior UV 
regions. While the layout optimization schemes described 
in Sections 4.2, 4.3, and [7] could easily support the con-
vex shape, we would need to forego the ability to rotate 
the color space for user-defined color-attribute assign-
ments. The two enhancement options we provide seemed 
to pose a good compromise.  

We end by noting that whenever the user performs a 
rotation of the color space, or other operation, the points 
are pulled back into the HC disk and the image is reset.  

Fig.14. Global color enhancement: (a) Original colorization using 
only UV colors within the HC disk. (b) Enhanced colorization also 
using UV colors outside the HC disk.  

(a) (b) 
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6 IMPLEMENTATION AND USE CASES    

Our system is implemented as a client-server model. The 
client application uses the D3 JavaScript library [5] and 
can run on any modern web browser. The server applica-
tion is written in C# and runs on an online compute serv-
er hosted in our laboratory.  

Almost all aspects of our system were incrementally 
developed with domain scientists in the loop, giving us 
feedback and inspiring new features or modifications 
thereof on a routine basis. We worked with several 
groups of scientists, about 100 in total. They came from 
physics, material science, chemistry, computer science, 
environment science, and medical science. Proprietary 
restrictions preclude us from presenting some of the re-
sults we obtained in this paper. Yet, the following sec-
tions attempt to give an overview on the wide spectrum 
of applications in which our system has been deployed, 
tested, and evaluated. 

6.1 Environmental Science – Pollution Data  

We already used these data throughout the paper to 
demonstrate the various system features. Our collabora-
tors are a group of environmental scientists who have 
been collecting a large amount of environmental monitor-
ing data recording many toxic elements (see Section 3). 
The data originate from several major cities located in 
Shandong Province, China and hence they were not sam-
pled on a regular grid. This inspired the development of 
the multivariate AKDE interpolation framework de-
scribed in Section 5.2.  

Due to the large number of variables, the scientists pre-
ferred the optimized attribute layout. This allowed them 
to capture the relations of the attributes directly in the 
display. They found this system feature rather convenient.  

In the sessions we attended, the scientists applied both 
the color-preserving and the data-driven enhancement 
modes in their analyses. We also observed they used the 
outlier enhancement mode repeatedly. Moreover, they 
kept using the local detail contrast function, commenting 
that it enabled them to distinguish the color gamut by 
adjusting the opacity from different scale levels. The in-
sight they gained using our system has been presented 
throughout the paper in figure captions and in the text. 

6.2 Physics – Battery Data 

Our scientific collaborators were a group of physicists 
and material scientists working at the National Synchro-
tron Light Source II (NSLS-II) at Brookhaven National 
Lab. They were looking for a tool that could help them 
understand a Fluorescence dataset of a battery material, 
scanned at the lab’s hard X-ray nanoprobe beamline. The 
data are composed of an image stack of four different 
elements: “Ce”, “Co”, “Fe”, and “Gd”. This mixed ionic-
electronic conductor denoted as CGO-CFO is widely used 
as battery in fuel cells. The key feature of this composition 
is the formation of a dual phase, thus, locating the new 
emerging phases is essential to understand the conductiv-
ity and performance. Specifically, the scientists sought to 

(1) learn about possible interactions of the four elements, 
(2) see at which spatial locations these interactions occur, 
and (3) detect subtle component changes that might indi-
cate the location of a new phase. They told us that their 
current tools were too tedious to use especially when the 
number of elements was beyond three when they could 
no longer fuse the data into RGB images. 

Fig. 1 shows one of the dashboard visualizations the 
scientists created. The dashboard presents one of the key 
discoveries the scientists made when using our software. 
In the exploration that led to this dashboard they were 
looking for phase changes. It is difficult to see this type of 
incidence in an individual element map. Using our tool 
they could fuse the channels and soon they focused on 
the circular area pointed to by the arrow. They quickly 
identified the crescent area as being mostly composed of 
“Gd” since its color is purple. But in the upper portion of 
that area the color starts to be mixed with blue indicating 
the presence of more “Ce” than in the lower part. This 
apparently suggests the existence and potential location 
of a new phase. 

Next the scientists focused on the small area delineated 
with the white box. By comparing the color with the color 
legend, the scientists learned that this area was mainly 
made of “Ce” and “Fe” since the color is a mixture of 
light green and pink. They wanted to see if this mixture 
had any structure in it, but the image could not reveal 
this. So they inspected this area in the local enhancement 
window on the right. They found that there indeed was a 
structural pattern composed of irregularly shaped zones 

Fig.15. A pseudo-coloring of the US states personality dataset (c) 
and its color legend (a).The arrows point at states with outlier behav-
ior. (d)-(h) Individual choropleth maps of (d) extroversion, (e) open-
ness, (f) neuroticism, (g) agreeableness, (h) conscientiousness. (b) 
MDS plot of all data and colorized with the IDC. 

(c) 

(d) 

(e) 

(f) (g) (h) 

(a) (b) 
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Fig. 17. Application to the 6-channel multispectral image of a flower. 
The bands are the natural RGB colors and the ultraviolet radiation 
UVA, UVB, UVC. The color map uses a more moderate level of 
stratified sampling to not over-emphasize the outliers.  

R G 

of light green (“Co”) and pink (“Fe”). By later checking 
the phase image, scientists confirmed this finding.  

6.3 Choropleth Maps 

Here we showcase the application of our system to multi-
variate choropleth maps. The dataset we have chosen is 
entitled “America’s Mood Map”. It contains data that 
seeks to characterize each state in the US by the personali-
ty and temperament of its population. The data was col-
lected through an online survey [36] of more than 160,000 
Americans. The dataset captures a set of psychological 
traits, specifically what psychologists call the Big Five: 
openness to experience, extroversion, agreeableness, con-
scientiousness, and neuroticism. We analyzed the dataset 
and found via correlation analysis that agreeableness is 
somewhat related to conscientiousness, but is only mildly 
correlated with extroversion. The final two traits, neuroti-
cism and openness do not seem correlated with any other 
trait. All of these relations are visualized by arrangement 
in on the ICD color map boundary (see Fig. 15 (a)).   

We quickly spot a few outliers in the color map. The 
associated choropleth map (see Fig. 15 (c)) we constructed 
using our framework just as quickly points out what 
states these outliers are: Utah (blue arrow) is predomi-
nantly conscientious, Wisconsin (red arrow) is predomi-
nantly extroverted, and surprisingly West Virginia (black 
arrow) is predominantly neurotic. There are also other 
states that have slight tendencies to certain traits but not 
as pronounced. Nevertheless, the combined choropleth 
map makes it easy to spot which states have similar (and 
dissimilar) personality profiles, which is much harder to 
do with the five individual maps of Fig. 15 (d)-(h).  

And so, one can quickly satisfy a strike of curiosity 
with regards to one’s own state (or any other), and also 

look for similar states. For example, looking at Washing-
ton and Oregon, both have quite similar personalities but 
are rather different from the close neighbor California. 
The main difference is extroversion. On the other hand, 
Montana is a relatively “normal” and “peaceful” state – it 
has almost equal and low values in all of the attributes.  

6.4 Colorizing MDS Plots and Other 2D Embeddings 

Another useful aspect of the colorization is the added 
information it can provide in 2D data embeddings, such 
as MDS, t-SNE, etc. For example, Fig. 15 (b) shows an 
MDS layout of the personality data, colorized using the 
ICD with the same setting than before. By colorizing the 
points, we can learn about their individual multivariate 
composition and possible biases in certain variables. 
These are semantic aspects that are lost in a conventional 
MDS optimization, but are returned in the colorization.  

We also observe that the MDS and the colorization 
preserve similar associations. For the most part states 
with similar personalities have similar locations and are 
also colorized similarly. Likewise, outliers pop out with 
different colors, for example West Virginia (black circle).  

Finally, our method could also be used in bivariate 
scatterplots, colorizing the points to reflect the other cur-
rently missing dimensions. This, however, can lead to 
confetti-like plots when the colorized variables have little 
correlation with those plotted. It works better with MDS 
since the embedding optimization provides the multivar-
iate similarity structure needed for a coherent display.     

6.5 Multispectral Images 

A popular type of image with more than three channels is 

(b) (a) 

(c) (d) 

Fig. 16. Conventional representations of multispectral images. (a) 
RGB image of the flower, (b) ultraviolet radiation image of the flow-
er, (c) RGB image of the terrain, (d) thermal image of the terrain.  
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the multispectral image. A multispectral image can have 
multiple bands taken from the visible and invisible (to 
humans) spectrum. Examples for the latter are the UV or 
the IR (thermal) bands. These bands can provide addi-
tional important information but are often viewed sepa-
rately from the RBG image. Fig. 16 (a) shows a flower’s 
RGB image while Fig. 16 (b) shows its UV radiation image 
[35]. Likewise, Fig. 16 (c) shows a terrain RGB image and 
Fig. 16 (d) shows a portion of the thermal image of the 
same terrain [37]. Fusing the visible and invisible chan-
nels into a single image can make the information more 
comprehensive. It essentially gives the human eye super 
vision, equipping it with the IV vision capabilities of fish, 
reptiles, etc. and the IR vision capabilities of snakes, etc. 
at the same time. We have studied our system with two 
examples of such imagery, presented next.  

6.5.1 Flower data set 

We utilized our tool to fuse the RGB and UV channels of 
the flower dataset (Fig. 16 (ab)). Fig. 17 shows the results 
we obtained. Comparing the colorization with the chan-
nel images as well as with the RGB and UV images, we 
can observe that the fused image has incorporated most if 
not all of the detail of these partial images. The local en-
hancement of the white box on top of the colorization 
exposes an interesting UVC irregularity in the top petal. It 
also shows a better rendition of the multispectral texture.  

6.5.2 Terrain dataset 

Next, we colorized a multispectral terrain image com-
prised of three natural channels (RGB) and three thermal 
channels (IA, IB, IC). The result is shown in Fig. 18. We 
observe that the fused image depicts significantly more 
detail than the individual natural and thermal image 
channels. We can also quite easily pick out the individual 
channel images in the fused image based on their specific 
colors. For example, the ocean part has a higher “temper-
ature” than the “mountain” part since its color is more 
“red”. Finally, in the local enhancement image we can 
observe a few remarkable hot spots in the mountain area.  

7 ASSESSING USER PERFORMANCE AND UTILITY  

We gathered insight on the effectiveness of our tool with 
respect to two aspects: (1) conciseness of the single-view 
ICD-based color encoding (in comparison to the segregat-
ed channel-based color encoding) and (2) utility of the 
overall interactive interface and system. 

7.1 ICD-Based Encoding of Multivariate Data  

To assess the strengths of the ICD-based encoding we 
conducted a somewhat informal (with respect to the sta-
tistical analysis) user study with 20 participants, recruited 
from our campus. These individuals came from various 
departments, such as computer science, physics, econom-
ics, and others. None of them was familiar with the types 
of tools that were subject of the study, namely, channel-
based and ICD-based visualization of multivariate geo-
referenced data. We started out with a training session to 

acquaint the participants with the two visual paradigms. 
The study was structured around the pollution dataset 
and the training session also educated the participants 
about the attributes and setting of this dataset (see Section 
3).  Questions were invited and a brief test was given. 

In order to neutralize learning effects, the participants 
saw a random sequence of six cases with each being ei-
ther a set of channel images (segregated view) or an ICD-
based visualization. In each case we marked some area of 

Fig. 18. Application to a 6-channel multispectral image of terrain, 
here an area around California. The bands are the natural RGB 
colors and the thermal with the channels IA, IB, IC. 

Fig. 19. User study setup (a) Segregated channel view display the 
circled region denotes the target. (b) ICD without scatterplot, just 
HCL color map; (c) colorized domain with circled target region.  

(a) 

(b) (c) 
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interest by a circle and asked: “What are the heaviest pol-
lutants in the circled area?”  

Fig. 19 (a) shows the segregated view while Fig. 19 (c) 
shows the colorized image for a different target region. 
The channel images were of the same size than the color-
ized image in our study. Fig 19 (b) shows the ICD for this 
dataset. We purposely left out the scatterplot to enable an 
unfettered view onto the color map. We did not provide 
the mouse-over interaction capabilities to locate the geo-
points on the color map. The participants had to make 
their assessment using color similarity only.  

At the end of each session we asked each participant 
which visualization paradigm he or she preferred. We 
asked “Do you prefer the Colormap-assist view or the 
segregated view?” We gave four options: colormap| 
segregated | both | none.  

We found that both our tool and the channel images 
achieved similar accuracy (95%). There also was no signif-
icant difference in the time spent for coming up with an 
answer. The questionnaire, however, revealed that 90% of 
our users (18 out of 20) preferred the ICD over the set of 
channel images. We infer from this that looking just at 
one geo-image (and the ICD) is more convenient than 
scanning across the eight channel images. We feel that 
this is a good demonstration of the advantages of our ap-
proach with respect to channel scalability.     

7.2 Overall Interactive Interface and System 

Section 6.1 already reported some feedback we obtained 
from our collaborating scientists at BNL. All of them 
thought that our tool was very helpful since it reduced a 
large amount of tedious image comparison operations to 
just a few interactions. The linked interaction across the 
various panels helped them in color classification – they 
could easily pick the main features from the colorized 
image and connect them to the channel views. The bar 
charts helped them especially for areas with subtle color 
changes. They also thought the local enhancement with 
the selection interaction was very useful since they could 
go back and forth to explore more detailed features in a 
focused area. All in all, the NSLS-II scientists thought our 
tool was easy to use and very helpful in expediting scien-
tific discovery.  

8 CONCLUSIONS 

We have presented an interactive framework, called Col-
orMapND which fuses principles from high-dimensional 
data visualization with principles from color science to 
address the longstanding problem of multi-field data vis-
ualization. A key element of our system is a multivariate 
scatterplot display that is overlaid onto a CIE HCL color 
map. Using this joint structure, a multivariate pseudo-
coloring of the multi-field domain can be consistently 
obtained. We provide several extensions to this basic 
framework and apply it to regular and irregularly sam-
pled multivariate domains, multivariate choropleth maps, 
and multispectral images.  

We have already mentioned in Section 4.1 that stand-

ard color monitors are capable to display colors within 
the triangular sRGB space which exceeds our HCL disk in 
some CIE LUV space areas and leaves uncovered disk 
regions in others. The reader is referred to Fig. 2 in the 
supplement material for a visual depiction of this color 
space geometry. A possible solution for the former prob-
lem would be to provide visual cues, such as a shaded 
ring segment, to alert users to avoid these locations for 
the placement of important primaries. Alternatively, these 
colors can always be recovered on the fly by ways of our 
color contrast enhancement facility (within the extent of 
the sRGB color space). 
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