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ABSTRACT
Eye movements recorded for many study participants are difficult
to interpret, in particular when the task is to identify similar scan-
ning strategies over space, time, and participants. In this paper we
describe an approach in which we first compare scanpaths, not only
based on Jaccard (JD) and bounding box (BB) similarities, but also
on more complex approaches like longest common subsequence
(LCS), Frechet distance (FD), dynamic timewarping (DTW), and edit
distance (ED). The results of these algorithms generate a weighted
comparison matrix while each entry encodes the pairwise partici-
pant scanpath comparison strength. To better identify participant
groups of similar eye movement behavior we reorder this matrix
by hierarchical clustering, optimal-leaf ordering, dimensionality
reduction, or a spectral approach. The matrix visualization is linked
to the original stimulus overplotted with visual attention maps and
gaze plots on which typical interactions like temporal, spatial, or
participant-based filtering can be applied.
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1 INTRODUCTION
Detecting similarities among scanpaths can be of importance, in
particular, if the task is to identify strategic difficulties in under-
standing visual stimuli [Andrienko et al. 2012; Burch et al. 2013]. For
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example, participants in an eye tracking study might be grouped
into different categories of eye movement behavior, while all of
those categories are representatives of certain phenomena worth in-
vestigating [Yarbus 1967], like the typical and normal eyemovement
behavior or anomalies and outliers that have to be investigated in
more detail.

However, the spatio-temporal patterns are difficult to be grouped
or categorized by just one traditional measure [Duchowski 2003;
Holmqvist et al. 2011] and hence, we provide a way to improve
this grouping strategy. In our approach we first build comparison
matrices computed by typical well-known comparison techniques
like Jaccard (JD) and bounding box (BB) similarities, but also on
more complex approaches like longest common subsequence (LCS),
Frechet distance (FD), dynamic time warping (DTW), and edit dis-
tance (ED).

These comparison values build a matrix-like scheme, but with-
out further processing the values in terms of reordering the ma-
trices, it is not possible to find the aforementioned scanpath cate-
gorizations. In our approach we provide several matrix reordering
techniques [Behrisch et al. 2016] that bring structure into the com-
parison values like hierarchical clustering, optimal-leaf ordering,
dimensionality reduction, or a spectral approach.

We represent the comparison values in a color coded and re-
ordered matrix (see Figure 1) that can be scaled down to pixel size in
case the number of scanpaths grows into the thousands [Blascheck
et al. 2015] [Kumar et al. 2018a]. The data analyst can interact with
the visualizations to explore, filter, and navigate in the scanpath
data while they are linked with complementary views like visual
attention maps, gaze plots, and the original stimuli.

We show the usefulness of the scanpath comparison methods
and matrix reorderings by applying it to real-world eye movement
data recorded in a route finding experiment in public transport
maps [Netzel et al. 2017].

2 RELATEDWORK
Scanpaths recorded for many participants produce a data source
that is challenging to analyze for common scanning strategies. This
is due to the vast amount of data [Blascheck et al. 2015] and the
spatio-temporal nature of the data. However, there are alreadymany
visualization approaches [Blascheck et al. 2017] and also visual
analytics techniques [Andrienko et al. 2012; Burch et al. 2013] that
try to combine algorithmic, visual, and interactive concepts, but in
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(a) (b) (c)

Figure 1: Color coded adjacency matrices showing the strengths of pairwise scanpath comparisons: The initial similarity
matrix in (a) is further ordered by a hierarchical clustering approach (b) while the stimulus with the larger cluster of study
participants identified in (b) can be seen in (c).

many cases they do not scale to many scanpaths and do not provide
an overview about different scanning behavior categories.

For example, visual attention maps [Bojko 2009; Burch 2016;
Spakov and Miniotas 2007] might be useful to detect hot spots in
the visual attention, but due to aggregation and overplotting it is
pretty difficult to categorize the scanning behavior into groups and
categories. The reason for this drawback is that pairwise similari-
ties between the scanpaths are not computed beforehand and the
similarity values are also not further ordered and clustered.

Gaze plots [Goldberg and Helfman 2010] on the other hand, show
the individual scanpaths overplotted on the visual stimulus, but if
many of those are shown, it is pretty difficult or even impossible to
find groups of similar scanning behavior. This negative effect comes
from the increased visual clutter [Rosenholtz et al. 2005] caused by
the line-based representation and the many line overdrawings and
crossings.

In our approach we reduce each scanpath to similarity values
which are computed in comparison to each other scanpath. Hence,
we model those similarities as 2D matrices consisting of real-valued
percentage numbers describing the degree of similarity. Those ma-
trices are then reordered, clustered, and color coded based on the
given similarity values.

The work by Kumar et al. [Kumar et al. 2016] [Kumar et al.
2018b] is related to our approach. Similarity matrices are computed,
but their technique rather focuses on metric-based grouping of
eye movements, not on comparing the scanpaths by different op-
tions and clustering by several techniques. Most of the existing
approaches provide views on stacked scanpaths [Burch et al. 2013;
Raschke et al. 2012] while sometimes the stacking order is computed
by clustering techniques. The clustering makes use of distance val-
ues given in a pairwise scanpath comparison matrix, for example,
based on image thumbnail similarities as in the work by Kurzhals
et al. [Kurzhals et al. 2016a,b].

3 SCANPATH COMPARISON AND
VISUALIZATION

The tool is implemented in Python and consists of several compo-
nents for exploring eye movements for similar or dissimilar visual
scanning patterns. To reach our goal we compare eye movements,
order them, visualize those comparison values, and finally, allow
interactions in the provided views while they are linked to the
original visual stimulus.

3.1 Design Criteria
Based on the aforementioned summary we focus on several re-
quirements for the tool to make it applicable to eye movements in
order to derive common scanning strategies, i.e., to identify a good
categorization of the eye movement patterns.

• Stimuli and participants: The recorded eye movement
data can be analyzed for certain stimuli as well as a list of
user-selected participants.

• Scanpath comparison:The requested scanpath data for the
stimulus given by the selected participants can be compared,
either completely, or filtered for space and time.

• Matrix reordering: The comparison values alone do not
provide a structured and clustered view on the scanpath
data, hence it must be improved by further matrix reordering
techniques.

• Interactivity: All provided views and visualizations are in-
teractive while the algorithmic approaches can be exchanged
to see the scanpath data from different perspectives.

• Linked views:All views and visualizations are linked,mean-
ing a change in one view immediately changes all other
views.

• Easy to use: The provided algorithms, visualizations, views,
and interactions are easy to understand and not much expe-
rience is required to get started with the tool.

• Extendable: The tool can be extended by extra functional-
ity, e.g., additional comparison algorithms and reordering
approaches, but also more visualizations.
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Figure 2: The graphical user interface (GUI) consists of three views while those are interactive and linked: Left: The input
panel. Center: The adjacency matrix panel. Right: The stimulus panel with visual attention maps (and gaze plots) if the small
cluster at the bottom right is selected.

The graphical user interface of our visualization tool can be
seen in Figure 2. It consists of three major views which are the
input panel, the adjacency matrix panel with extra similarity value
distributions (see Figure 3 (a)), and the stimulus panel overdrawn
with a visual attention map and a gaze plot (see Figure 3 (b)).

3.2 Scanpath Comparison
We provide an extendable list of well-known comparison algo-
rithms with Jaccard coefficient, bounding box, longest common
subsequence, Frechet distance, dynamic time warping, and edit
distance already implemented.

• Jaccard coefficient (JD): We define the similarity between
two scanpaths by the Jaccard coefficient interpreting each
scanpath as a set of fixation points while each can be given
a fixation radius to increase the probability of a similarity
matching [Levandowsky and Winter 1971]. The Jaccard in-
dex is hereby given by the cardinality of the intersection of
both sets divided by the cardinality of the union of both sets
giving a value between 0 and 1.

• Bounding box (BB): The similarity between two scanpaths
can also be defined as the size of the overlapping area of
the smallest bounding or enclosing boxes for each of the
scanpaths divided by the total covered area [Toussaint 1983].
This also gives a value between 0 and 1 while the scanpaths
can be filtered for space and time.

• Longest common subsequence (LCS): The NP-hard prob-
lem of finding the longest common subsequence (LCS) can
be used as a similarity measure if the sequence of fixations
is taken into account [Maier 1978]. Each fixation sequence
is first mapped to a sequence of uniquely labeled AOIs, i.e.,
a string. This results in a value between 0 and 1 if the length

of the LCS divided by the length of the longest sequence is
computed.

• Frechet distance (FD): The similarity of two curves is given
as the length of the shortest leash that can be used to tra-
verse two separate scanpaths [Alt and Godau 1995]. This is
a valuable approach if two scanpaths vary a lot over space
and time. Computing the maximum of the distances to both
paths gives a value between 0 and 1.

• Dynamic time warping (DTW): Since scanpath data has
a time-dependent nature we also apply a concept from time-
series analysis. This is in particular useful, if scanpaths vary
a lot in speed (e.g. number of fixations per time unit) [Silva
and Batista 2016]. We derive a value between 0 and 1 by
computing the difference to the other two sequences.

• Edit distance (ED): We first transform two scanpaths into
two strings by mapping each fixation to uniquely labeled
areas of interest. Then we compute the minimum number of
operations to transform one string into the other [Navarro
2001]. The number of required operations divided by the
maximum number of operations results in a value between
0 and 1.

3.3 Matrix Reordering
If the comparison values were represented by an unordered matrix
visualization, it would be difficult or even impossible to detect group
structures in the scanpath data, consequently, we support matrix
reordering techniques [Behrisch et al. 2016].

• Hierarchical clustering: Taking the comparison values for
clustering the matrix hierarchically is a good concept, how-
ever, the data groups might not be placed along the diagonal
of the matrix. However, we used agglomerative hierarchical
clustering to produce an ordered matrix [Eisen et al. 1998].
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(a) (b)

Figure 3: Visualizations of the eye movement data for the public transport map of Brussels: (a) An ordered and color coded
adjacency matrix with a similarity value distribution. (b) The visual stimulus overdrawn with a visual attention map and a
gaze plot if the large cluster in the upper left is selected.

• Optimal-leaf ordering: Ordering the scanpaths based on
the similarities of matrix neighbors results in an ordered
matrix. The hierarchical binary tree is used for this ordering
strategy. We follow the concept described by Bar-Joseph et
al. [Bar-Joseph et al. 2001].

• Dimensionality reduction: Multi-dimensional scaling is
also applied to matrices [Spence and Graef 1974] for reorder-
ing purposes. The scanpaths at the rows and columns are
indexed in a way that distances correspond to the dissimi-
larities as good as possible.

• Spectral approach:We use a variant of the rank-two ellipse
seriation by Chen [houh Chen 2002] to reorder a scanpath
comparison matrix. The goal is to use Eigenvalues and Eigen-
vectors as a projection into the Eigenspace.

It may be noted that many more matrix reordering techniques
might be tested in future. Our tool is implemented in a way that
the corresponding algorithms can be added easily since all of them
share the same input and output parameters, only the reordering
algorithms have to be adjusted.

3.4 Linked Visualization Techniques
We support five major views on the scanpath data, i.e., a matrix
visualization, a color coded comparison value distribution bar code,
a visual attention map, a gaze plot, as well as the stimulus with
overplotted visualizations, shown in Figures 2 and 3.

• Matrix visualization: The matrix shows a color coded ver-
sion of the ordered or unordered comparison values. In this
view scanpath groups can be selected which are displayed in

a corresponding view on the stimulus. Different reordering
algorithms can be applied while the impact of these algo-
rithms on the clustering and ordering can be seen directly.

• Comparison value distribution bar code: The number of
comparison values can be immense and hence, a histogram-
like distribution overview supports the identification of com-
parison value frequencies. Additional color codings show
the value range of the distributions.

• Visual attention map: Showing the spatial information of
the stimulus together with the visual attention as an aggre-
gated measure over all scanpaths is a useful visual concept
in order to provide an overview. The visual attention map
can be filtered for densities or spatial regions while the com-
parison matrices can be adjusted based on the filtered data.

• Gaze plot: Exploring the scanpath data in form of line-based
representations can provide some insights about the scan-
ning behavior, however, if the number of scanpaths is too
large, visual clutter may be a problem in these plots. After
filtering, a gaze plot may be a good alternative to the compar-
ison matrix since here the scanpaths are shown completely,
and are not aggregated to single real-valued numbers.

• Stimulus:To provide contextual information combinedwith
comparison values, visual attention, and scanpaths, we also
show the visual stimulus. This can be overplotted by a visual
attention map or a gaze plot which is useful to filter the
scanpath data based on certain semantic information given
by attention hotspots or areas that are not frequently visited.
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Table 1: Comparison methods for scanpaths and matrix reordering for the pairwise comparison values

Hierarchical clustering Optimal-leaf ordering Dimensionality reduction Spectral approach

JD

BB

LCS

FD

DTW

ED

3.5 Tool Features and Interactions
The tool provides several features to this end. We are aware of the
fact that this is still work-in-progress and plan to add many more of
them in the future to make it a useful tool for understanding scan-
path patterns in order to improve a visual stimulus. Also several
more interactions might be implemented, however, we already sup-
port the data analyst by a list of those based on the categorization
by Yi et al. [Yi et al. 2007].

• Scalable adjacency matrix: We allow to scale down the
adjacency matrix to pixel size in case too many scanpaths
have to be compared. This approach provides an overview
even for large amounts of comparison values.

• Scanpath selection and splitting: Scanpaths can even be
selected and split into subscanpaths to analyze in-between
subsequences. If the scanpaths are not of equal length, the
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(a) (b)

Figure 4: Combining scanpath comparison techniques with matrix reordering algorithms: (a) Jaccard coefficient for compar-
ison plus hierarchical clustering for reordering. (b) Edit distance for comparison plus rank-two ellipse seriation as a spectral
approach for the reordering.

data analyst might split the scanpaths into those crossing
certain areas of interest.

• Comparison parameters: Several additional parameters
can be changed, for example, the fixation radius for the
set-based comparison algorithms like the Jaccard technique.
Moreover, the bounding box comparison can be based on
strip-like bounding boxes only computing the overlap of the
line-based neighborhood regions of scanpaths giving a more
accurate comparison.

• Matrix aggregations: After a matrix reordering it may be
a useful operation to aggregate rows and columns, for exam-
ple, to explore different groups of scanpaths or to apply the
reordering on more aggregated scanpath comparison data.

• Color scheme selection: Each visualization can be rep-
resented in a certain color scheme. Our visualization tool
provides a repertoire of such schemes from which the user
can select the most appropriate ones.

• Hovering: Hovering over cells in the matrix shows the sim-
ilarity value represented in these cells and the participant
information belonging to these scanpaths.

• Smoothed visual attention map: A box reconstruction
filter can be applied several times to the visual attention
data with the goal to produce a smoother view on the visual
attention data. A similar approach can be applied to the gaze
plot computing splines instead of line sequences to get a
smoother representation although such operations change
the original data and have to be taken with care.

• Code extensions: Since many scanpath comparison algo-
rithms exist and even many more matrix reordering tech-
niques we support the user by implementing other solutions
while the code can be easily added into the script of our tool.

4 APPLICATION EXAMPLE
We applied the clustered eye movement similarity matrices to real-
world eye tracking data recorded in a route finding experiment
showing people public transport maps while highlighting start and
destination stations [Netzel et al. 2017]. The study participants had
to find a route and tell the names of the interchange stations while
at the same time the eye movements were recorded by a Tobii T60
XL eye tracking device. Although the eye tracking software already
provides visualizations in form of visual attention maps and gaze
plots, it is pretty hard to identify common visual scanning strategies.
Moreover, in typical eye tracking data analysis software not many
algorithms for comparison and reordering strategies are integrated.

For illustrative purposes we focus on the public transport map
of Brussels in Belgium, but we could have picked any of the 24
metro maps provided by the publicly available dataset from the eye
tracking experiment. Each metro map was visually inspected by 20
study participants while looking for suitable routes in the metro
map from the highlighted start to the destination station.

4.1 Comparison Results
Table 1 summarizes the 24 color coded matrix results of the appli-
cation of the 6 comparison techniques and 4 reordering algorithms
for the map of Brussels. The first impression that we can get is
that the color coded matrices all look a bit differently compared to
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(a) (b)

Figure 5: The visual attention map for the public transport map of Brussels in Belgium: (a) without the fixation duration
information and (b) with the fixation duration information.

each other. This indicates that it is worth experimenting interac-
tively with different approaches to find a suitable cluster and group
structure among the scanpaths that can be further explored in the
corresponding visual stimuli in form of a public transport map.

Interactively checking various parameters algorithmically as
well as visually while observing their impact on the results in a
visual form is a powerful concept in visual analytics with the goal
to build, refine, confirm, or reject hypotheses [Keim 2012]. This
parameter variation is useful to build a model for the scanning
behavior of different participant groups and can help to identify
design flaws or problems in the visual stimulus. Only looking at
one individual parameter setting oftentimes does not show the
full potential of an analysis process and hence, many insights still
remain hidden in the data.

Browsing through the individual matrices in an enlarged form
while exploring the involved scanpaths and their comparison values
can reflect the grouping structure in a more detailed view (see
Figure 4). For example, in (a) we can see a scanpath comparison
based on the Jaccard coefficient [Levandowsky and Winter 1971]
reordered by a hierarchical clustering [Eisen et al. 1998] while in
(b) the same scanpath dataset is compared by computing the edit
distance [Navarro 2001] and the reordering algorithm is based on
the rank-two ellipse seriation [houh Chen 2002].

The approaches in Figure 4 (a) seem to give a better grouping
result. Many more subclusters are visible along the diagonal com-
pared to the approach visible in Figure 4 (b). But, for example, in (a)
the hierarchical clustering may give too many clusters and it may
be more difficult to identify common scanning behavior. For this the

data analyst might either choose a different reordering strategy or
might switch to another comparison strategy, for example, an edit
distance approach. However, if the edit distance is combined with
a spectral reordering algorithm, we end up in the situation shown
in Figure 4 (b). The formerly fine substructures are now merged
together into one large cluster and three outlier scanpaths by the
participants numbered p12, p25, and p29. This process indicates
how important it can be to experiment with several algorithmic
approaches and parameters in order to find out the best parame-
ter setting to find insights in the data, or to confirm or to reject
hypotheses as it is a typical analysis strategy in visual analytics.

4.2 Contextual Information
To obtain contextual information from the displayed visual stimulus
we can select any kind of cluster in the color coded matrix and
show the corresponding scanpaths in an overplotted form in the
corresponding public transport map (here Brussels). Figure 5 (a)
gives an impression about the general scanpath trend in the Brussels
public transport map if we have selected the large cluster identified
by computing the edit distance and by ordering the matrix by a
rank-two ellipse seriation. We can see that most of the people
focus on a similar path building a circular-based shape (with small
visual attention gaps). Figure 5 (b) shows the effect of changing
visual parameters like including the fixation duration in the visual
attention maps. We may even show the gaze plot on top of the
visual attention map (see Figure 3 (b)) but in this case this would
result in visual clutter.
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5 DISCUSSION AND LIMITATIONS
We described a combination of comparison and reordering algo-
rithms supported by interactive visualization with the goal to ex-
plore scanpath data recorded in eye tracking experiments. Although
we have implemented several of those candidates in combination as
a powerful concept we are aware of the fact that some approaches
perform much better than others while also different optimal or
not-that-optimal results are generated.

5.1 Algorithmic Challenges
We have to deal with algorithmic scalability problems, for example,
the number of scanpaths and the length of the scanpaths can become
a serious problem for both the comparison algorithms but also for
the reordering approaches. However, the lengths of the scanpaths
only have an impact on the comparison algorithms but not on the
reordering algorithms since for the reordering we only require a
matrix-like scheme of real-valued numbers.

We experimentedwith 6 comparison and 4 reordering algorithms,
all of them coming with different runtime complexity classes. How-
ever, our experiments showed that the techniques still work interac-
tively for our metro map examples, but we are aware of the fact that
the larger the number of scanpaths becomes, the slower the algo-
rithms will work. This can be of particular interest for comparison
algorithms based on the longest common subsequence, the Frechet
distance, dynamic time warping, and the edit distance, in particular,
if additional parameters are adapted like the string alphabet for the
edit distance.

The clustering results (if all parameters of comparison algo-
rithms are fixed) typically look differently for each matrix cluster-
ing/reordering algorithm. To explore where the clusters are placed
in each of the matrices, the data analyst should apply interaction
techniques to identify the linkings. However, if the same cluster-
ing/reordering is applied to the same comparison data, we will get
the same ordered matrix with the clusters at the same positions, a
required design criterion.

5.2 Visual Challenges
Visual scalability can become a problem if too many scanpaths have
to be compared and be represented in a matrix. But, however, a
matrix representation has the benefit that it can be scaled down
to pixel size, easily showing thousands of values in an overview.
Such an overview is a good concept to guide a data exploration
process while still preserving the mental map and the contextual
information. On the negative side it is challenging to select indi-
vidual pixels from the matrix without more advanced interaction
concepts.

The extra views in form of visual attention maps show an ag-
gregated representation of the scanpath data and hence, do not
show the visual scanning behavior for pairwise scanpath behavior.
Only the hot spots of visual attention are visible. For the gaze plots,
on the other hand, we soon run into trouble with visual clutter
effects caused by many overplotted scanpaths. For this reason we
argue that a comparison-based matrix visualization is useful for an
overview, to navigate and to filter in the scanpath data. A combina-
tion of the algorithmic concepts with the repertoire of interactive
visualizations generates a good solution to these scalability issues.

In general, two or more results of comparison algorithms can
be combined. They can either be shown by linked visualizations,
each showing one matrix of comparison values, or the results of
different comparison algorithms might be combined and then these
combined comparison values are grouped/clustered. However, ag-
gregating several comparison results leads to a loss of information,
hence, we argue for showing the comparison values in separate
views and interactively link them together.

5.3 Perceptual Challenges
The color coded and ordered matrices reflect scanpath clusters,
assumed that the color scheme is well chosen. Since we do not
exactly know which properties a dataset under exploration will
have and if the user suffers from color deficiency issues, we provide
a repertoire of color schemes. We experimented with several of
those as can be seen in the corresponding figures.

A similar problem occurs if several color codings are used in the
same view, for example, if the visual stimulus is shown, overplotted
with a visual attention map or a gaze plot, or even both. To provide
a solution to this problem, the user can adapt each color coding
apart from the one given in the visual stimulus.

6 CONCLUSION
In this paper we described a scanpath comparison approach that
is not built for just one comparison technique, but benefits from
a larger repertoire of candidates like Jaccard and bounding box
similarities, but also more complex ones like longest common subse-
quence, Frechet distance, dynamic time warping, and edit distance.
The generated comparison values result in a matrix-like scheme
that is hard to interpret if no structure is computed. For this rea-
son, we provide matrix reordering techniques that are hierarchical
clustering, optimal-leaf ordering, dimensionality reduction, and a
spectral approach. The data analyst can interactively experiment
with these algorithms while the visual output is shown in a color
coded matrix representation. Typical interactions like filtering and
cluster selection are supported to analyze the scanpath data on
different properties while the views are linked, for example, with
the visual stimulus overplotted with visual attention maps or gaze
plots showing the scanpath data in focus. We experimented with
real-world data from a formerly conducted eye tracking study in-
vestigating route finding tasks in public transport maps. For future
work we plan to integrate more comparison methods and matrix
reordering techniques while we also plan to test our approach with
dynamic stimuli like videos, animations, or interactive user inter-
faces. Moreover, we would also like to conduct a user experiment
with experts to investigate the usefulness of our approach.
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