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Abstract—Causal networks are widely used in many fields
to model the complex relationships between variables. A recent
approach has sought to construct causal networks by leveraging
the wisdom of crowds through the collective participation of
humans. While this can yield detailed causal networks that model
the underlying phenomena quite well, it requires a large number
of individuals with domain understanding. We adopt a different
approach: leveraging the causal knowledge that large language
models, such as OpenAI’s GPT-4, have learned by ingesting
massive amounts of literature. Within a dedicated visual analytics
interface, called CausalChat, users explore single variables or
variable pairs recursively to identify causal relations, latent
variables, confounders, and mediators, constructing detailed
causal networks through conversation. Each probing interaction
is translated into a tailored GPT-4 prompt and the response is
conveyed through visual representations which are linked to the
generated text for explanations. We demonstrate the functionality
of CausalChat across diverse data contexts and conduct user
studies involving both domain experts and laypersons.

Index Terms—Human computer interaction (HCI), Explain-
able AI, Large Language Models, Visualization.

I. INTRODUCTION

CAUSAL relationships are the building blocks of how
we make sense of the world. They help us understand

why things happen the way they do, from the simple cause-
and-effect of a light switch to the complex interplay of
factors influencing societal trends. We encounter causal facts
in everyday life, whether in conversations about health choices
or discussions on broader issues like health policies.

Beneath this universal concept lies a long-standing philo-
sophical debate between Hume and Kant. Hume, an empiricist,
saw causality as an expectation formed through repeated
experience [1], while Kant, a transcendental idealist, regarded
it as an inherent mental framework that shapes how we
perceive the world [2]. This tension echoes in modern causal
inference: data-driven methods, like Hume’s, rely on statistical
patterns, while text-based methods, in Kantian spirit, extract
causal knowledge from language or judgment. Both have
limitations—data-driven methods struggle with confounders
and overfitting [3], while text-based ones face ambiguity and
difficulty distinguishing causation from correlation [4].

In this paper, we integrate perspectives from Kant and Hume
in advancing causal analysis. To incorporate Kant’s perspec-
tive we leverage large language models (LLMs) trained on
extensive text data, and so harness their rich causal knowledge
to minimize ambiguities. Following Hume’s approach, we also
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incorporate data when available. While this combined strategy
is not entirely new [5], to our knowledge this approach has
not been explored thus far with LLMs. It allows users to nav-
igate and aggregate complex causal relationships, enhancing
accessibility even for those without domain expertise.

A widely recognized issue with LLMs, like GPT-4, is their
tendency to produce inaccurate information or hallucinations,
even with well-constructed prompts [6]. To address this, we
explore causal questions from multiple directions and polari-
ties of the relationship. This strategy helps reveal the broader
context, at GPT-4 often mentions latent, confounding, and
mediating variables—offering valuable insights. Additionally,
users can also explicitly request these variables, and so sub-
stantially expand the scope of the causal model. However, the
richness of these multifaceted prompts comes at a cost: they
generate substantial textual output that can overwhelm users,
even with summarization. To support analysts in navigating
and interpreting this complexity, we introduce interactive
visualizations that distill and organize the generated insights.

This human–LLM collaboration reflects a clear division of
labor: the LLM surfaces plausible causal hypotheses—such
as links, mediators, or confounders—while the human eval-
uates and selects from these alternatives based on context,
experience, or further inquiry. Rather than prescribing a fixed
workflow, the system supports flexible, user-driven explo-
ration, accommodating variability in how users engage with
causal reasoning. This conversational dynamic—where causal
knowledge is elicited, examined, and shaped through dialogue
between user and model—inspired the name CausalChat.

In summary, our contributions are as follows:

• A human-in-the-loop framework for developing and re-
fining causal networks using LLMs and data, embodied in
a conversational workflow where users iteratively probe
variables, review hypotheses, and curate causal structures.

• A prompt design strategy that interrogates hypothesized
causal relationships from diverse perspectives, including
mediators, confounders, and latent variables.

• An interactive visual interface for recursive exploration
and model refinement, featuring dedicated visualizations
for multi-perspective LLM-generated explanations.

Fig. 1 shows our visual analytics dashboard for a causal
model of a car. In the following we describe related work
(Section II), our methodology (Section III), some usage sce-
narios (Section IV), a user study (Section V), a discussion
(Section VI), and conclusions (Section VII).
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Fig. 1. The CausalChat Dashboard analyzing the AutoMPG dataset. It includes (A) the Control Panel allowing users to specify fundamental parameters and
manage the model tree for variations of the causal model, (B) the Causal Graph Panel for interactive refinement of the graphical model, (C) the Causal Debate
Chart for resolving causal directions and inclinations, (D) the Causal Justification Panel offering a rationale for each hypothetical causal statement, covering
latent factors, potential confounders, and mediators, and (E) the Causal Relation Environment Chart suggesting potential latent variables, confounders, and
mediators for specific causal relations and variables. In this figure the confounder/mediator chart is shown.

II. RELATED WORK

Causal networks are widely used in various fields, such
as epidemiology [7], healthcare [8], biology [9], and social
sciences [10] to understand complex systems. In observational
studies, causal networks are typically represented using di-
rected acyclic graphs (DAGs), which clarify causal structure
and help identify sources of bias, such as confounding and
selection effects. Constructing such a DAG is best achieved
through the rigorous process of randomized controlled trials
based on first principles. However, this method often faces
challenges, be it due to cost, ethical considerations, or practical
limitations. It is also not easily scalable and may restrict the
number of researchers who can engage in such studies. A more
scalable and general approach involves deriving a causal DAG
through one of three primary methods: analyzing data, ana-
lyzing text, or collaborative construction and crowdsourcing.
Many of these approaches combine elements from more than
one of these paradigms, and some allow human analysts to
participate in the DAG development process [11]–[13].

A. Causal Network Discovery using Numerical Data

There are essentially two popular strategies for causal
discovery. One approach involves enforcing the constraint that
two statistically independent variables are not causally linked,
followed by a series of conditional independence tests to
construct a compliant DAG. Well-known algorithms for this
method include the PC algorithm [14] and the Fast Causal
Inference (FCI) algorithm [15]. Another strategy is to greedily

explore the space of possible DAGs via Greedy Equivalence
Search (GES) [16]. This entails score-based methods in which
edges are iteratively added and removed from the graph to
maximize a model fitness measure, such as the Bayesian
Information Criterion (BIC) [17], [18]. Then, once the causal
structure has been learned, Structural Equation Modeling
(SEM) [19] is applied to estimate the strength and sign of
the causal effects, typically by fitting linear models.

Causal discovery relies on four common assumptions: (1)
the causal structure can be represented by a DAG, (2) all
nodes are conditionally independent of their non-descendants
given their parents, (3) the DAG is faithful to the underlying
conditional independence, and (4) the DAG is sufficient, i.e.,
there is no pair of nodes with a common external cause.
Unfortunately, these conditions are rarely entirely met, often
due to selection/sampling bias in the data. Essentially, the
phenomenon to be explained by the causal network is only
partially captured by (1) the measured variables and (2) the
observed data samples, and this leads the discovery algorithm
astray. While the probability of obtaining a partially incorrect
DAG can be reduced by using more data, it remains uncertain
how much data is truly needed [20], [21].

Our research tackles both of these bottlenecks: (1) the
limitation of collected datasets to fully capture all variables
essential for a comprehensive causal model – we address this
through GPT-4-based variable ideation and relevance assess-
ment, and (2) the absence of data for the newly discovered
links – we use GPT-4 to generate plausible estimates based
on its contextual knowledge and learned patterns.
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B. Causal Network Discovery using Textual Data

While extracting causal relations from text documents is
not a new endeavor [22], thanks to ChatGPT this process
has become remarkably convenient with a simple prompt.
The literature on LLM assisted causal network learning is
rapidly expanding. The earliest documented attempt using
LLMs (specifically GPT-3) for causal analytics was by Long
et al. [23]. However, this was a preliminary study focused
on optimizing prompts to reveal insights into the presence
or absence of directed edges. More recently, Kıcıman et al.
[24] delved much deeper into the subject. They devised a
comprehensive set of prompts for GPT-3.5 and GPT-4, gener-
ating yes/no responses to standard causal queries. While they
demonstrated excellent success rates on benchmark datasets
where causal truth was known, they did not explore utiliz-
ing GPT’s output to gather additional causal and contextual
knowledge. Similarly, subsequent papers (e.g., [25]–[27]) also
did not explore visualizing the acquired information within
explainable and trustworthy AI.

Some studies have highlighted the limitations of using
LLMs for causality analysis. While LLMs excel at discerning
causality from empirical or commonsense knowledge, Jin et al.
[28] demonstrated their significantly reduced effectiveness in
deriving causality through pure causal reasoning—something
numerical algorithms like PC are specifically designed for.
To test this, they assembled a substantial dataset comprising
over 400,000 correlational statements in natural language and
tasked the LLM with determining the causal relationship
between variables. Their findings revealed that existing LLMs
demonstrated performance is akin to random chance in this
particular task. These findings are echoed by Zečević et al.
[29], who suggest that LLMs can serve as a valuable starting
point for learning and inference, reaffirming their role as a tool
for ideation and creativity. They can complement data-driven
causal inference methods, such as PC, which is what one of
the approaches we promote here in this paper.

C. Collaborative Causal Network Discovery with Crowds

In 2018, Berenberg and Bagrow [30] introduced a method-
ology that harnessed the ’wisdom of the crowds’ to construct a
large causal network, utilizing the widely-used crowdsourcing
platform Amazon Mechanical Turk. They devised a three-stage
approach: in stage 1, workers proposed causes; in stage 2,
they suggested effects for these causes; and in stage 3, they
edited and refined longer causal pathways derived from the
stage 2 results. The final causal network was then formed
by amalgamating all worker-generated pathways, with more
popular edges indicating stronger causal links. Salim et al.
[31] adopted a similar approach, focusing on mining crowd
beliefs and misconceptions in complex systems with societal
impact such as climate change.

It is worth noting that the study by Berenberg and Bagrow
predates the emergence of LLMs. While the degree to which
LLMs, trained on extensive human-written text, tap into the
’wisdom of the crowds’ remains uncertain, it is plausible
to expect that LLM assistance would necessitate a signifi-
cantly smaller crowd. As LLMs effectively encapsulate the

viewpoints of a large crowd simultaneously, using a few-shot
prompting approach can guide and constrain the response to-
wards a pertinent answer [32]. We believe that our multifaceted
prompt represents a significant step in this direction.

Yen et al. [33] developed an interactive system for col-
laborative causal network construction. This system enabled
users to articulate narratives to explain causal relationships
they perceived, visualize the causal models of these using
DAGs, and review and incorporate the causal diagrams and
narratives of other users. A notable feature of their system
was the ’Inspire Me’ popup, which users could request when
they needed fresh ideas on how to expand the network. They
would then be presented with one of several pre-programmed
thought-provoking questions related to causal relationships.

The purpose of this system was to investigate whether
actively evolving and narrating a causal network, and learning
from networks constructed by peers, could uncover blind spots
in a person’s causal reasoning and lead to a refinement of their
own causal network. More recently, the authors introduced
CrowdIDEA [5], an enhanced interface that includes a data
panel with visualizations and statistics. It is conceivable that an
LLM could fulfill a similar collaborative role. For instance, in
our system users can explore any variable or pair and visualize
suggested directions, confounders, and mediators—ready for
seamless integration into the emerging causal network

D. Causal Network Discovery with Visual Analytics

Visual analytics bridges the gap between machine learning
outputs and human goals, enabling users to guide, interpret,
and refine results—especially when models are imperfect or
lack a full understanding of the task. Most existing visual
causal analysis tools were developed before the widespread use
of LLMs and thus focus on numerical data. These systems of-
ten enable human-in-the-loop causal refinement. DAGitty [34]
was among the first to enable interactive DAG creation and
analysis using graphical representations alone. Wang et al. [11]
introduced one of the earliest visual interfaces for interactive
causal reasoning with causal networks and ”what-if” simula-
tions, powered by algorithms for causal link discovery and
statistical evaluation, further extended to identify subgroup-
specific causal networks in heterogeneous datasets [12] and
temporal data [35]. More recently, Guo et al. [36] presented
Causalvis, a Python toolkit supporting DAG creation, subgroup
matching, and outcome estimation with visualizations.

In this paper, we introduce a new visual framework that
integrates data-driven discovery, LLM-generated hypotheses,
and human oversight. The interface coordinates these compo-
nents, allowing each to mitigate the others’ limitations. This
builds on preliminary ideas from [37], now extended with a
refined implementation and improved design.

III. METHODOLOGY

Our workflow is depicted in Fig. 2. It begins with tabular
data, which is processed by a Structure Learning Algorithm
– we use GES – to derive its Causal Structure, capturing
the potential causal relationships among the variables. Simul-
taneously, Structural Equation Modeling (SEM) is used to
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Fig. 2. Workflow of our ChatGPT-powered causal graph development environment. Starting from an incomplete causal model—either algorithmically generated
or manually built—the model is iteratively expanded and refined by a human expert via a GPT-4-powered conversational visual interface.

estimate Edge Coefficients that quantify the strength of these
relationships. Together, these elements form the Structural
Causal Model.

This model is then presented in the Decision Center, where
an analyst (1) explores the causal relationships, (2) forms
hypotheses, and (3) refines the model by editing the causal
structure as needed. The analyst plays a central role in inter-
preting and shaping the model. To support this process, the
system includes a Causal Auditing and Visualization environ-
ment, which is subject of this paper. This environment consists
of three key modules: (1) the Relation Environment Module,
which lets users specify hypotheses about possible causal
variables and links; (2) the Debate Module, which compares
competing causal explanations; and (3) the Latent Factors
Module, which identifies hidden or unobserved variables that
might explain observed relationships.

Each module provides output through two integrated com-
ponents: (1) a set of Charts that visualize numerical evaluations
such as causal strength scores, and (2) a Justification Panel that
offers textual explanations. These components are powered by
ChatGPT, which receives a formulated query—automatically
generated based on the selected hypothesis and context—and
returns a structured response containing both the score and the
rationale. Together, these elements enable a human-in-the-loop
workflow where visual and textual insights work in tandem to
support informed, transparent, and iterative causal modeling.
In the process. users may locate additional tabular data to
support SEM-based link parameterization or they might map
the edge scores provided by GPT-4 into edge weights.

A. Prompting for Direct Causal Relationships
The prompts1 we utilize follow an optimized template

(see Appendix B.1 and B.4). Offering sufficient contextual
information and guidance on expectations is crucial for prompt
engineering [32], [39]. Below is an abstraction of the prompt.

Prompt: You are an expert in <domain>. On a scale from 1
to 4, where 4 represents highly significant, 3 represents signif-
icant, 2 represents doubtful, 1 represents not significant, rate
the following cause-and-effect relationship: Does higher/lower
A/B cause higher/lower B/A.

1Due to the inherent stochasticity of LLMs, the same prompt may yield dif-
ferent outputs across runs. To improve reliability, we adopt a self-consistency
approach [38], running each scoring prompt 10 times and selecting the most
frequently returned score. To minimize token usage, we request a justification
only for this majority score. Appendix B.4 shows some score histograms.

This generates 10 distinct prompts, 5 each for A and B taking
opposite roles, and within each of these two sets there are
4 combinations of A and B being (higher, lower) plus one
relation that just asks this for a general case. An example
prompt is shown below, where (...) denotes further prompt
specifications (see Appendix B.1.1 for complete prompt):

Prompt: You are an expert in public health. On a scale from
1 to 4, where 4 represents highly significant, 3 represents
significant, 2 represents doubtful, 1 represents not significant,
rate the cause-and-effect relationship: Does higher percent fair
or poor health cause lower life expectancy...

Including the domain hint ’public health’ provides contextual
information. GPT-4 can also infer the domain from the dataset
attributes if it is told to do so. GPT-4’s response to the prompt
is to the point:

Response: Rating: 4

B. Prompting for Confounders

This prompt template (see Appendix B.2.1) also distin-
guishes among the 4 combinations that explore the effects of
higher and lower levels plus one relation that just asks this
for the general case. In the following we explain this template
using the variables food environment index and violent crime
rate as an example. Also here (....) denotes omissions.

Prompt: You are an expert in public health. Given the cause-
and-effect relationship ‘lower food environment index’ causes
‘higher violent crime rate’ identify potential confounders
based on the definition .... For each identified confounder,
provide the following details in a tuple format: 1. Name of
the confounder. 2. Strength of the confounder (options: weak,
medium, strong). 3. Justification for its role as a confounder
based on the definition provided.

Response: GPT-4 returned 2 ’strong’ confounders (Socioe-
conomic Status, Residential Segregation) and 4 ’medium’
confounders (Substance Abuse and Mental Health Issues,
Availability of Public Services, Racial and Ethnic Compo-
sition, Neighborhood Disorganization). For each a detailed
justification was given, such as ”Substance abuse and mental
health issues can contribute to both a lower food environment
index (due to prioritization of immediate needs over healthy
food choices) and higher rates of violent crime, as these issues
can lead to unstable social environments”.
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C. Prompting for Mediators

Also here we distinguished among the 4 level combinations
and the general one. Using the same example as for the con-
founder, the (partial) mediator prompt is below (see Appendix
B.2.2 for complete prompt).

Prompt: You are an expert in public health. Given the cause-
and-effect relationship ‘lower food environment index’ causes
‘higher violent crime rate’ identify potential mediators based
on the definition: Rather than a direct causal relationship
between the independent variable and the dependent variable,
the independent variable influences the mediator variable,
which in turn influences the dependent variable. For each
identified mediator, provide the following details in a tuple
format: 1. Name of the mediator. 2. Strength of the mediator
(options: weak, medium, strong). 3. Justification for its role as
a mediator (...) 4. Specific conditions under which the mediator
operates (...) 5. Direction of the mediator’s effect (’positive’
or ’negative’) (...). The direction tells us how to intervene on
the mediators to achieve the relationship....

The ’Direction’ parameter (parameter 5) is crucial as it spec-
ifies the way in which the level of a mediator should change
to influence the effect variable as indicated. This guidance not
only informs analysts about the type of intervention required
but also sheds light on the underlying cause-effect mechanism.

Response: GPT-4 returned 1 ’strong’ mediator (Economic
Disadvantage ↑) and 4 ’medium’ mediators (Social Cohesion
↓, Substance Abuse ↑, Educational Attainment ↓, Mental
Health ↓), where ↓ ↑ indicate the direction the mediator needs
to have to support the effect. For each mediator a detailed
justification was given, such as ”A lower food environment
index may contribute to reduced social cohesion within a
community, as limited access to nutritious food options can
lead to increased stress and poorer overall health. Reduced
social cohesion has been associated with higher rates of violent
crime, as it may lead to weaker community bonds and less
effective informal social control”.

D. Prompting for Latent Factors

Unlike previous prompts, this prompt focuses on a single
variable, emphasizing intervenable factors. It identifies action-
able variables as points of intervention, enabling practitioners
to influence the target variable through specific causal path-
ways. An example of a latent factors prompt is provided below
(see Appendix B.3 for the full prompt).

Prompt: Given the target variable primary care physicians
rate, identify potential latent (intervenable) factors that might
influence the target variable. Ensure that the identified latent
factors can be actionable or intervenable to affect the target
variable. Provide the following details for each latent factor:
1. Name of the latent factor. 2. Strength of the effect (weak,
medium, strong). 3. Sign of the effect (positive, negative, or
categorical). 4. Justification for its role as a latent factor.

Response: GPT-4 returned 1 ’strong’ positive latent factor
(Reimbursement Rates), 2 ’medium’ positive latent factors

Fig. 3. Causal Debate Chart for the relation Percent Fair or Poor Health
- Life Expectancy, presenting an overwhelming belief that the former is the
cause of the latter.

(Medical Infrastructure Investment and Healthcare Policy Re-
forms), 1 ’strong’ negative latent factor (Medical Student
Debt), and 1 ’medium’ negative latent factor (Urbanization
Incentives). For each latent factor a storyline rationale was
given. For instance, Medical Student Debt can serve as a
negative latent factor, as ’high levels of debt from medical
education can deter graduates from entering lower-paying
specialties like primary care.’ Medical Student Debt can be
addressed through governmental medical debt relief programs,
which act as intervention points.

E. Visualizing the GPT-4 Generated Text Responses

While the inclusion of text helps justify the presence (or
absence) of a causal relation, GPT-4 may generate excessive
text. Even when instructed to summarize its findings, this
abundance of information can overwhelm general users. Be-
low, we present the visualizations we have designed to make
browsing this information easier.

F. The Causal Debate Chart

The Causal Debate Chart summarizes the distribution of
GPT-4-generated strength scores for the 10 causal prompts
introduced above, revealing both directional support and vari-
ability in the responses. By aligning scores with increasing or
decreasing values of the causal variable and its directionality,
the chart enables users to visually assess the plausibility and
stability of a given causal assertion. We call it the Causal
Debate Chart because it visually argues the strength of one
variable being the cause of the other—much like a “debate.”

Fig. 3 shows an example of this chart, a bidirectional bar
chart 2 where each side is headed by one of the two relation
variables. In this case the left side is Percent Fair or Poor
Health (PFPH) and the right side is Life Expectancy (LE).
The x-axis is the score assigned by GPT-4 and the length of

2While we use bar lengths for visual clarity, they function as level indicators
of the causal strengths reported by GPT-4—not as precise numeric values.
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Fig. 4. Causal Relation Environment Chart for the relation Percent Fair or
Poor Health - Life Expectancy. The intensity of red and green encodes the
strength of the mediators and covariates (weak, medium, strong), and the color
of the cause and effect variables have the same interpretation as those in Fig.
3; in this specific case they are grey.

each bar is mapped to that score. The grey bars are for the
general prompt while the other bars are colored in magenta if
the cause was a higher or increasing level of the variable or
in sky blue if the cause was a lower or decreasing level (see
color legend on the top right). The textual level descriptions
have been deliberately chosen to be relatable to humans.

Let us now evaluate the chart. We observe that for the first
(grey) set of bars PFPH has a substantially longer bar (level
4) than LE which has level 2 (level 2 is a doubtful cause in
GPT-4 semantics). It means that the former wins the causal
debate – it has causal dominance. PFPH seems to be a general
cause of LE.

Let’s examine the other bars representing specific level
studies. Here, we assess whether GPT-4 maintains consistent
logic (as opposed to hallucinating). We observe that high or
increasing PFPH leads to low or decreasing LE in the third set,
and the same holds for the opposite relation in the fourth set.
Sets two and five display low bars on both sides, as expected
if the relation indicated by the other bars is considered true.
The Causal Debate Chart in Fig. 3 serves as a prime example
of what we would expect from a steadfast causal relation.

G. The Causal Relation Environment Chart

The Causal Relation Environment Chart supports structural
reasoning by showing not only the direct relationship between
two variables, but also the surrounding context: mediators,
confounders, and latent variables identified through LLM
queries. It provides a higher-level view of the causal system,
helping users consider indirect pathways, common causes, and
alternative explanations. Fig. 4 shows an example of this chart
for the general Percent Fair or Poor Health (PFPH) - Life
Expectancy (LE) relation, where confounders are colored in
shades of red and mediators n shades of green – the shading
reflects their strength (see color legend on the right).

It is often the case that GPT-4 will identify similar mediators
and confounders for the more focused (low, high) relations.
But they vary in the sign. For example, to go from low PFPH
to high LE, positive levels of the mediators are cited, such as
good access to healthcare and good health habits, while to go
from high PFPH to low LE the cited mediators are usually
the opposite, like limited access to health care and poor health
habits. Fig. 5 shows these two cases where the up and down
arrows indicate the positive and negative levels, respectively.

Fig. 5. Causal Relation Environment Chart for two level combinations of the
relation Percent Fair or Poor Health - Life Expectancy. The up and down
arrows show the appropriate signs of the mediators.

Fig. 6. Causal Relation Environment Chart for an improbable level combina-
tion of the relation Percent Fair or Poor Health - Life Expectancy, namely one
where both variables have positive levels. The up arrows in the mediators show
how this improbable combination might be achieved, in form of interventions
on the mediators in the direction of the arrows.

Fig. 6 explores the unlikely relationship of high PFPH
causing high LE. GPT-4 correctly identifies this as ”counter-
intuitive” but treats it as a ’hypothetical scenario’. It suggests
that a mediating relationship would need to exist to achieve the
desired high LE. These mediators represent potential points of
intervention that policymakers could target to increase high
LE, despite the high PFPH. For example, a policymaker
might intervene by opening additional health clinics in areas
with high PFPH, thereby increasing the mediator, Access to
Healthcare, which in turn improves high LE.

H. The Latent Factors Chart

The Latent Factors Chart is designed to advise on sup-
plementary variables that should be included in the analysis
of the current causal graph. It highlights the variable of
interest alongside other potential factors that may directly
influence it. These latent factors are color-coded: different
shades of yellow represent negative effects, while different
shades of blue represent positive effects. By reviewing the
provided justifications, users can verify the relevance of latent
factors and incorporate the most significant into the causal
graph—a process supported by prior work [40] showing that
AI-generated explanations enhance user trust and confidence.
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For example, as shown in Fig. 7, Reimbursement Rates
is identified as a strong positive influence on the Primary
Care Physician Rate. GPT-4 justifies this by stating, ’Higher
reimbursement rates for primary care services can make the
field more financially appealing, attracting more physicians to
primary care and directly influencing the primary care physi-
cian rate.’ On the other hand, as discussed in section III-D,
Medical Student Debt is a strong negative factor, with high
levels of debt deterring graduates from entering lower-paying
specialties like primary care. To improve the primary care
physician rate, a policy analyst may update the causal graph
to emphasize increasing reimbursement rates and reducing
medical student debt as key intervention points.

I. Model Tree

Although DAGs provide intuitive representations for causal
graphs, their scalability is limited, with typical graphs contain-
ing an average of 12 nodes, with most graphs having between
9 and 16 nodes [41]. To address the challenge of representing
causal relationships involving dozens or even hundreds of
variables while still using DAGs, we introduce the Model Tree
(see Fig. 1(A)).

The Model Tree is an N-ary tree structure in which each
node represents a distinct causal graph. The root node cor-
responds to the global model, providing an overview of the
entire system, while child nodes represent progressively more
specific or local models. Users interact with the general model
at the root and can select a subset of nodes to create a child
node in the Model Tree. These child nodes inherit a subgraph
from the parent node, composed of the selected nodes and
their associated edges. As users continue to refine and expand
the causal graph at each hierarchical level, the Model Tree
evolves into a structured hierarchy of causal graphs, offering
different levels of granularity and detail.

The Model Tree also supports personalization of causal
models. Bidirectional effects, or feedback loops, occur when
two variables influence each other over time [42]. A classic
example is the relationship between obesity and depression,
where each can be a cause of the other over time. While
such bidirectional effects are prevalent in fields such as epi-
demiology, biology, etc., they conflict with the acyclic nature
of DAGs. The Model Tree bypasses this issue by splitting a

Fig. 7. Latent Factors Chart for Primary Care Physicians Rate as the target
variable. The blue nodes above are factors with positive influence, while
the yellow nodes below are factors with negative influence, intensity codes
strength (see color legend on the right).

causal model with a bidirectional edge into two causal models
with unidirectional edges, thereby maintaining acyclicity. This
approach aligns with the concept of personalized causality or
causal heterogeneity, where the direction of causal relation-
ships may differ between individuals or for the same individual
at different points in time.

J. The Causal Justification Panel

The Causal Justification Panel plays a key role in causal
model development by providing GPT-4–generated natural
language explanations for each suggested causal relationship,
grounded in general knowledge. It complements the numerical
strength scores shown in the charts by adding context and
interpretability, helping users understand why a link or variable
might be considered strong or weak. While the visualizations
support streamlined exploration and comparison, the Justifi-
cation Panel offers a vital textual counterpart that enables
users to validate, question, or refine their hypotheses. Together,
these components foster more informed and explainable causal
modeling—especially for users without deep domain expertise.

The panel consists of four sub-panels, each corresponding to
one of the charts (see Fig. 1D, from left to right): latent factors,
debate relations, confounders, and mediators.They are filled
on demand: when a user selects an element from one of these
charts, the corresponding sub-panel is populated with the GPT-
4 prompt automatically generated from a template, followed
by the resulting score and its justification. Users can also write
their own prompt by de-selecting the ’Template’ switch and
clicking ’Query’, enabling a conversation with GPT-4.

K. Graphical Encoding Schemes and Dashboard

In the graphical encoding schemes, we sought to maintain
clarity across different diagrams while ensuring consistent
meaning for shapes and colors that represent similar concepts.
As mentioned, in the causal diagram, red lines (varying in
thickness) represent positive causal relationships, and green
lines represent negative causal relationships. The variation in
thickness reflects the strength of these relationships. Different
shapes provide context: oval-shaped purple marks the outcome
variable, cyan denotes a selected node, unfilled ovals signify
causal nodes, and dotted shapes/lines indicate elements derived
from GPT-4 that are not yet confirmed by data.

In the Causal Debate Chart, using magenta bars for increas-
ing levels and sky blue bars for decreasing levels provides a
clear visual contrast, ensuring that this chart remains visually
distinct from the others, especially in its portrayal of variable
levels. The Causal Environment Chart uses red shaded boxes
for confounders and green shaded boxes for mediators, main-
taining consistency with the causal diagram’s color scheme but
applying the colors to shaded boxes (instead of lines), which
helps differentiate between the two types of charts.

Finally, the Latent Factors Chart introduces blue shaded
boxes to represent positive influence and yellow shaded boxes
for negative influence. These colors were chosen to avoid over-
lap with the red and green used in other charts, allowing the
latent chart to stand apart while still adhering to a recognizable
positive/negative color scheme.
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Fig. 8. Initial causal graph of the AutoMPG dataset generated by the GES
algorithm. Green (red) directed edges indicate positive (negative) causation,
blue undirected edges link variables that are correlated and potentially causal,
yellow causal edges connect categorical variables.

All charts and GPT-4 justifications are accessible via an in-
teractive dashboard that implements these graphical encodings.
Fig. 1 shows an example of this dashboard for the first usage
scenario, presented next.

L. Implementation Details

CausalChat uses a Python backend to manage GPT-4 API
interactions and integrates data-driven causal inference meth-
ods through the causal-learn library for structure learning and
the dowhy library for treatment effect estimation. The frontend
is built with D3.js to support interactive visualizations.

To generate the Causal Debate Chart, we use chain-of-
thought prompting [43], decomposing complex queries into
intermediate steps for more consistent ratings. Prompts include
rating instructions, causal hypotheses, and response format-
ting. To reduce latency and avoid redundant calls, GPT-4
responses are cached in BigQuery; for each hypothesis, GPT-4
is queried ten times, and the mode rating is stored.

IV. USAGE SCENARIOS

In this section, we demonstrate the capabilities of
CausalChat by presenting two usage scenarios that employ
real-world datasets.

The AutoMPG Dataset [44] covers 398 cars from the
1980s. Each car is characterized by 8 attributes: origin, model
year, weight, horsepower, displacement, acceleration (time to
60 mph), cylinders, and miles per gallon (mpg). Due to their
simple mechanics, 1980s cars exhibit straightforward causal
relationships among the variables.

The Opioid Death Dataset combines 9 key socioeconomic
factors sourced from the County Health Ranking database [45]
with opioid death data from the CDC WONDER database
[46] for over 3,000 US counties. The chosen factors are
hypothesized to have either direct or indirect impacts on
opioid-related deaths.

A. Exploratory Causal Analysis: Automotive Engineering

In this study, we focus on Oscar, an automotive hobbyist
who wants to gain more insight into automotive engineering.
Oscar finds the AutoMPG dataset and reads it into CausalChat.
He then employs the GES algorithm and obtains the pre-
liminary causal graph shown in Fig. 8 (see caption for an

Fig. 9. Causal Debate Chart of the relation Cylinders - Displacement.

explanation of the edge coloring). We now follow Oscar in
his mission to audit and expand this causal graph.

Resolving undirected edges. Oscar identifies four blue
edges that the GES algorithm could not resolve, possibly
due to the dataset’s limited coverage of the car domain. He
employs CausalChat’s GPT-4 suite to address these edges. For
brevity, we shall focus on how he resolves the blue edge
between Cylinders and Displacement, the procedure for the
other blue edges is similar.

Oscar clicks on the blue edge and the system generates
the Causal Debate Chart depicted in Fig. 9. It is immediately
apparent that the bars representing Cylinders are notably
longer than those for Displacement, for the general grey bars
as well as for the red-red and the blue-blue bars and all at
full strength – a classic pattern for a positive causation. Oscar
contemplates converting the blue edge to a green directed
link from Cylinders to Displacement. After confirming this
direction from the GPT-4 justification panel, 2nd column (see
an example in Fig. 1D for the relation lower Car Weight →
higher MPG), Oscar directs the edge as suggested. In a similar
fashion he also directs the other blue undirected edges.

Adding confounders and latent variables. Oscar is still
curious about the relation of Displacement and Horsepower.
He examines the corresponding Causal Relation Environment
Chart (see Appendix C.2) and identifies Engine Technology as
a confounder. Furthermore, he also discovers a latent factor
– Material Choice – which exerts a reducing effect on Car
Weight (see Appendix C.3). All of these interactions taken
together give rise to the final causal graph shown in Fig. 1B.
The edges for the two newly added variables are visualized
as dotted lines to convey that their weights have not been
calculated from data yet – all Oscar has are the strengths
indicated by GPT-4.

Inspecting the triad Displacement, Horsepower, and Engine
Technology reveals that Horsepower is, in fact, a collider3. It
is influenced by both Displacement and Engine Technology, or
dominated by one of the two. While in older cars displacement

3A collider is a variable that is influenced by two or more other variables
(e.g., A→ C← B). While the causes (A and B) may be independent, learning
about one can change beliefs about the other when the collider (C) is known.
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Fig. 10. To assess the hypothetical causal relation where a low time to 60
MPH could be achieved despite high car weight, we inspect the third bar pair
in the Debate Chart (left) in the corresponding Environment Chart (right).

Fig. 11. To assess the hypothetical causal relation where a high MPG could
be achieved despite high car weight, we inspect the second bar pair in the
Debate Chart (left) in the corresponding Environment Chart (right).

Fig. 12. Causal graph that incorporates all of Oscar’s innovations.

was the dominant factor determining horsepower, modern
engine technology has altered this role. The negative causal
effect of Engine Technology on Displacement further suggests
that as engine technology advances, the need for displacement
to elevate horsepower diminishes. In other words, higher
values of engine technology have become more influential
in determining horsepower than displacement alone. This
interpretation aligns with the idea that modern engines, with
advancements in technology, can achieve higher horsepower
despite low displacement. In essence, by adding Engine Tech-
nology, Oscar has modernized the original causal network
derived from the antiquated dataset of 1980s cars.

Adding mediators. In the updated causal graph Oscar
notices the antagonistic relationship of Car Weight and Horse-
power which affect Time to 60 MPH in opposite ways. Having
resolved the need for high Displacement also reduces the need
for a high number of Cylinders which would cause high Car
Weight. However, there may be other valid causes for high
Car Weight not represented in the graph. Consequently, Oscar
chooses to investigate potential ways to mitigate these factors.

The Causal Debate Chart in Fig. 10 (left) illustrates that
heavy cars take more time to reach 60 MPH (2nd bar pair)
than lighter cars (5th bar pair), i.e., they have poor acceleration.
These are the hard facts represented by the two long bars. But
Oscar wants to innovate and is looking for a car that can
be heavy yet quick off the mark, the condition represented
by the 3rd pair of bars. Clicking on the left bar brings up
the corresponding Causal Relation Environment Chart, Fig. 10
(right). It suggests that increasing the engine’s twisting power,
or torque, can improve acceleration and mitigate the effect of
high car weight.

This prompts Oscar to include Torque as a mediator between
Car Weight and Time to 60 MPH, see Fig. 12. It introduces
Torque as an additional causal factor that opposes the impact
of high Car Weight. This influence is indicated by the red
dotted outgoing edge and its purpose is indicated by the green
dotted incoming edge, i.e., heavier cars need more torque.

To further optimize his ideal car, Oscar shifts his attention
towards enhancing its mileage efficiency. The causal graph
reveals an inverse relation link between Car Weight and MPG.
Using a similar process as above he refers to the Causal Debate
and Causal Relation Environment Charts in Fig. 11, now for
the case of high Car Weight and high MPG. He learns that
incorporating advanced Aerodynamic Design principles in the
car’s design can markedly cut down fuel consumption during
operation, ultimately leading to a notable improvement in
MPG. It advises car designers to apply aerodynamic principles
when a car is heavy, as indicated by the green causal edge.
Oscar inserts this mediator into the Car Weight and MPG
relation, yielding the final causal graph in Fig. 12.

In this graph the two added mediators turn both MPG and
Time to 60 MPH into colliders, where the newly introduced
variables help mitigate–or even neutralize–the adverse effects
linked to the original causal factor, Car Weight.

B. Causal Strategizing for Opioid Mortality Prevention

Here, we join Lena, an epidemiologist, on her mission to
discover preventive measures against the widespread opioid
epidemic afflicting numerous counties in the United States.
She starts out with 9 socioeconomic variables that she feels
are related to opioid mortality plus data on opioid mortality
itself (the aforementioned opioid death dataset).

Initial setup. As a first step, Lena utilizes her expertise to
construct a foundational causal graph based on the available
data, see Fig. 13a. However, she finds herself dissatisfied
with the connection between Education Index and Opioid
Dispensing Rate. Intuitively, she believes that enhanced edu-
cation would raise awareness of the adverse effects associated
with opioid dispensing. Yet, the green edge she initially drew
suggests the opposite. To investigate, she opts to reassess this
edge using the Causal Debate Chart shown in Fig. 14 (left).

Exploring doubts. Examining this chart, Lena comes to re-
alize that while there is a slight inclination towards the current
causality, none of the bars exhibit highly significant strength,
indicating a raised likelihood of a confounder. She clicks
on the left bar of the general (grey-colored) relation which
brings up its Causal Relation Environment Chart. Indeed, two
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Fig. 13. Causal graphs created by Lena: (a) Initial model leveraging domain
knowledge. (b) Model enhanced via CausalChat assistance, incorporating
confounders and mediators for actionable recommendations.

confounders are suggested, with Socioeconomic Status being
the strongest. The justification states that ”socioeconomic
status can influence level of education and also lead to better
access to healthcare facilities where more prescription opioids
are dispensed”. This confirms Lena’s initial apprehension
about the direct edge, with the justification pointing to an
important mediator between Socioeconomic Status and Opioid
Dispensing Rate: Prescription. Thus, a mitigating policy in-
tervention would be to tighten opioid prescription regulations.
Finally, Lena also examines the relation between the Number
of Mentally Unhealthy Days and the Opioid Dispensing Rate.
This leads to a deep engagement with the Justification Panel
which is detailed in Appendix C.1.

Addressing the target effect. Next, Lena sets out to identify
actionable measures to help reduce opioid fatalities. She
directs her attention to the edge from Primary Care Physician
Rate to Opioid Dispensing Rate. Generally, the relationship
is positive since opioid dispensing typically involves doctors4

as is indicated by the dominant 2nd bar pair in the associated
Causal Debate Chart, Fig. 15. In search of an intervention,
Lena focuses on the hypothetical, but more desirable rela-
tionship just below this pair: higher Primary Care Physician
Rate leading to lower Opioid Dispensing Rate. The associated
Causal Relation Environment Chart offers numerous valid
mediators, such as Access to Alternative Treatments. This
suggests that if alternative non-opioid treatments are made
available, the opioid dispensing rate and its subsequent use
can be reduced. Fig. 13b shows the updated causal graph.

Focusing on a specific population group. Lena now
continues her exploration with a focus on a specific causal
pathway: Food Environment Index → Percent Frequent Physi-
cal Distress → Opioid Dispensing Rate → Opioid Death Rate.

4Here we consider the original source of opioids: physicians. However, in
modern times, opioids often stem from the illicit distribution of fentanyl.

Fig. 14. The weak direct causal relations (left) suggest a confounding between
Education Index and Opioid Dispensing Rate (right).

Fig. 15. Gaining control over opioid dispensing through mediators. Shown is
the Environment Chart (right) of the third bar pair in the Debate Chart (left).

Fig. 16. A causal pathway delineating multiple intervenable latent factors
along a critical causal chain for a specific population group.

This pathway tells a compelling story: individuals experienc-
ing a food environment crisis may suffer physical distress,
leading them to rely on opioid-containing painkillers and,
ultimately, succumb to addiction and death. Lena is determined
to aid this vulnerable population, utilizing CausalChat’s Create
Sub-Graph module to isolate these variables and associated
edges, creating a new child node in the model tree. Her
objective now is to identify efficient direct factors that can
influence this causal pathway. Using Latent Factor Charts (not
shown), Lena identifies three intervenable measures to improve
this pathway: economic incentives for healthy food retailers,
physical activity promotion, and prescription drug monitoring
programs (see Fig. 16). However, despite the rationale behind
these latent factors, their effectiveness in reducing opioid death
rates cannot be conclusively determined and would require
research with real data and experimentation. At this juncture,
they are merely conceptualized ideas facilitated by Lena’s
utilization of CausalChat.

V. USER STUDY

We conducted a two-fold user study: (1) Obtaining feedback
from domain experts to assess the practical applicability and
logical coherence of our proposed framework; (2) Evaluating
the usability and efficacy of our framework by assigning tasks
to non-expert users.



TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2025, AUTHOR’S COPY 11

A. Datasets

In these user studies, we utilized two real-world datasets
related to public health. Each data point corresponds to a
distinct county in the United States for the year 2019. The
expert assessment utilized the opioid death dataset described
in section IV. The non-expert user study employed the Life
Expectancy dataset detailed below.

The Life Expectancy dataset comprises 8 key variables
sourced from the County Health Rankings & Roadmaps
Database [45]: firearm fatality rate, violent crime rate, av-
erage grade performance, high school graduation rate, food
environment index, percent fair or poor health, primary care
physician rate and debt income ratio for each of more than
3,000 US counties, All of these variables are recognized to
affect demographic life expectancy either directly or indirectly.

B. Expert Assessment

We conducted a qualitative expert study to assess the value
of CausalChat for scientific work. Through semi-structured
interviews, we explored how scientists used the tool in familiar
domains under two usage modes, distinguished by their trust
in automated causal inference. We aimed to gather feedback
on the tool’s potential value for their research and identify
actionable suggestions for future development. To that end, we
invited three domain experts from our university—specializing
in health policy (P1), exposure science (P2), and environmen-
tal epidemiology (P3)—all of whom have strong backgrounds
in causal inference and a shared interest in applying quantita-
tive methods to public health modeling.

Each of the three sessions took place via Zoom. We first
introduced our interface, emphasizing the functions and signif-
icance of each visual component. We ensured that the experts
were familiar with how to navigate the system. Subsequently,
they were tasked with refining a causal graph containing two
unresolved edges and one misdirected edge, with the goal to
achieve a valid causal graph, and eventually ideating additional
factors. All were able to achieve these tasks. Throughout their
interaction with the system, we encouraged them to articulate
their thought process. Finally, we gathered their feedback on
CausalChat, specifically soliciting suggestions for potential
enhancements. In the following we grouped the verbal session
outcomes into specific themes.

Overall assessment. All three participants unanimously
praised CausalChat as an exceptional ideation tool, noting
its effectiveness in helping non-experts quickly grasp the
most prominent causal relations between variables in a field
potentially unfamiliar to them. Specifically, P2 highlighted the
efficiency of the tool, noting, ”CausalChat enlightens non-
expert users in a productive fashion. Users don’t have to go
through an exhaustive literature research process to obtain a
fundamental understanding of a new field.”

Validation. P1 expressed that her expertise led her to
anticipate the presence of Withdrawal Treatment as a mediator
between opioid dispensing and opioid-related deaths. This
anticipation was validated when she discovered Withdrawal
Treatment listed as a significant mediator within the Causal
Relationship Environment chart. She added that once identified

conceptually, the proposed mediators, confounders, and other
new variables can be statistically tested, enhancing confidence
and adding accuracy beyond GPT-4’s strength assessments.

Making access to domain science easier and more
streamlined. The potential of our tool to provide expedited
access to domain knowledge became evident when the experts
confirmed CausalChat’s adeptness in identifying confounders
and mediators within an existing causal graph. P1 remarked
that ”compared to the traditional method of studying and
including all possible confounders, which demands relentless
and tedious literature review, CausalChat offers a far more
efficient solution by automatically and visually presenting
all potential confounders. This feature significantly enhances
accessibility to science”.

Use as a research tool. P3 perceived CausalChat as an
actual research planner. She said: ”I would use the framework
for planning my research. With all these essential variables
and their information visually represented, I can have a clear
goal of what data I need to collect, what research papers are
useful, and what academic areas I can potentially contribute
to.” She further noted that the synergy between the Causal
Debate Chart and the Causal Relation Environment Chart
not only highlighted well-studied areas but also suggested
intervention strategies (such as mediators) and ways to mit-
igate unrealistic relationships. Relatedly, P1 remarked that the
framework effectively prompts domain experts to consider
essential components that may be overlooked but are crucial
for enhancing the outcome variable.

Preferred alternative to pure data-driven causal analy-
sis. P2, an expert in experimental-based causality, began his
session by voicing strong skepticism with regards to existing
methods for automated causal analysis. He contended that ob-
servational data could only uncover correlations, not causation.
According to his view external information is indispensable
for directing causal edges, and even for forming them in the
first place. He favors the alternative approach supported by
CausalChat – taken by Lena in our second case study – which
first constructs and refines a causal graph by leveraging the
knowledge of GPT-4 and then estimates the causal effect of
each edge using data.

Satisfying the need for personalized causal models. P2
emphasized that socioeconomic variables are predominantly
cross-sectional and can engender feedback loops, resulting in
bidirectional edges. This poses a challenge to the assumption
of the causal graph being a DAG, underscoring the importance
of further expanding our model tree panel. In each distinct
causal model, there exists a distinct data generating process
where variables have a clear upstream and downstream direc-
tion. An edge pointing from A to B in one model can point
reversely in another. These two models will share a parent
model in our model tree. After learning about this feature, P2
acknowledged its effectiveness in addressing his concern.

Concerns with GPT-4’s quality of citations. P1 and P3
expressed concerns about the inherent uncertainties of GPT-
4. CausalChat aims to provide citations whenever clarifying
a standpoint or evaluating a causal relation. However, when
relevant sources are unavailable, typically because the causal
hypothesis has not been extensively studied, the evaluation
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about the causal relation depends on the GPT-4’s inference.
Additionally, GPT-4 may struggle to distinguish rigorous from
non-rigorous research due to varying literature quality. While
this may not pose a problem for well-trained scientists who can
filter out moderate papers, there is concern that users might
rely on CausalChat for decision-making and consider it the
ultimate truth. P1 suggested including a disclaimer indicating
that some edges may be misdirected or omitted.

C. Non-Expert User Study

We also conducted a quantitative study to evaluate
CausalChat’s usability and effectiveness with users lacking
domain expertise (see Appendix A for a complete breakdown
of the study’s results). We aimed to show that CausalChat’s
benefits stem from its design, not merely from the use
of LLMs. To this end, we implemented an ablation study
that progressively added key components: statistical feedback
(BIC), LLM-generated text, and the full interactive visual
interface. Each baseline isolates the contribution of a specific
component, allowing us to assess how the integration of
LLMs and visual reasoning tools improves causal exploration.
Participants were evaluated on their ability to understand
interrelationships among variables, complete causal auditing
tasks efficiently, and rate the system’s ease of use—measured
through a combination of task performance and questionnaire
scoring. Our study tested the following three hypotheses:

H1. CausalChat provides comprehensive yet concise guid-
ance to help users uncover interrelationships among
variables. It also encourages users to identify latent third
variables, such as confounders and mediators, that may
influence the relationship between two variables.

H2. CausalChat improves users’ efficiency in conducting
causal analysis in unfamiliar domains, particularly by
supporting the identification of interrelationships and
latent variables, as in H1.

H3. CausalChat is user-friendly, convenient, and effective.

To test these hypotheses, we conducted an ablation study
with three layers. The first layer relies on traditional causal
model reasoning using the BIC score as a quality metric,
the second layer incorporates text prompts for an LLM, and
the third layer integrates these methods into the CausalChat
interface. Each layer progressively adds more sophisticated
tools to enhance causal reasoning and decision-making.

L1. Conventional BIC-Score Based Causal Reasoning:
In this layer, users refine causal graphs by combining
their domain knowledge with feedback on modifications,
evaluated through the BIC score.

L2. LLM-support with text: This layer builds on L1 by
incorporating a ChatGPT interface. After specifying the
relationship of interest, users receive exemplar prompts
for text responses to explore causal connections, allow-
ing them to determine the most plausible causal relation
based on multiple GPT-4 responses addressing various
aspects of the relationship.

L3. CausalChat Lite: This layer adds to L2 some of the
visual elements of CausalChat: (1) the causal debate

charts, (2) the causal relation environment charts, and
(3) the justification panel.

Our study focuses on CausalChat’s ability to correct dis-
torted effects, identify mediation effects for indirect relation-
ships, and resolve edge directionality in causal graphs. The
aim is not to encourage users to endlessly expand the graph
but to guide them in accurately determining the direction of
undirected edges and addressing omitted variables that are
critical within the scope of the theme under consideration.

Dataset. To minimize variation in the final graph, we used a
subset of the Life Expectancy dataset. This subset includes the
following variables: food environment index, percent in fair or
poor health, primary care physician rate, debt-to-income ratio,
and life expectancy.

Participants. We recruited six university students (3 males,
3 females) for usability studies. All participants were familiar
with web browser-based frameworks and could participate
either in person or via Zoom. None of the participants had
expertise in epidemiology.

Study Design. Participants were guided through the study
using Qualtrics, an online survey tool that follows a predefined
workflow. The workflow began with tutorials on data causality
and instructions for using CausalChat, followed by a quiz
to reinforce participants’ understanding of graphical causal
models, including terms related to confounders and mediators.
Participants had to answer all quiz questions correctly before
proceeding to the main tasks involving CausalChat evaluation.
Finally, they completed a series of usability questions, includ-
ing the standardized System Usability Scale (SUS) question-
naire, to provide feedback on their experience.

Ablation Study Stages. We divided a session into three
stages, each corresponding to the testing of a different layer
(method). At each stage, participants were asked to resolve
undirected edges using the tools available for that stage. For
each undirected edge, participants had the option to direct the
edge, remove it, add a confounder, or add a mediator. Initially,
participants were presented with 9 preset undirected edges
derived from the subset of variables in the life expectancy
dataset. To ensure fairness, participants could resolve any 3
undirected edges of their choice at each stage until they were
satisfied. They were not allowed to modify any edges they had
already edited in previous stages.

Stage 1. In the first stage, participants were asked to resolve
3 undirected edges using BIC score feedback. A bar displayed
the change in the BIC score for the affected nodes after each
edge modification, enabling participants to assess the impact
of their changes.

Stage 2. In the second stage, participants were asked to
resolve another 3 undirected edges of their choice using LLM
support provided through a set of pre-formulated prompts,
similar to those used by CausalChat and consisting of debate
prompts and causal relation environment prompts. Participants
received text-based responses from GPT-4 based on these
prompts and made their decisions by reviewing the responses.

Stage 3. In the final stage, all operations were conducted
within CausalChat Lite. For the last 3 edges, participants made
decisions based on the visual charts and verified their insights
by reviewing the corresponding justifications.
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H1: Understanding Interrelationships Among Variables
Stage 1. In the first stage, participants based their decisions
largely on their own knowledge and the BIC score. However,
without domain expertise, their decisions were often uncertain
or biased. Although the BIC score provided insights into
key predictors of the target variable, it was vulnerable to
distortions from hidden confounders, which led to inaccuracies
in identifying true causal effects. As a result, 28% (5/18) of the
undirected edges were incorrectly resolved. Participants also
identified only one mediator and no confounders. When asked
why they struggled with latent variables, participants pointed
to two main challenges: they tended to focus on relationships
they felt most confident about, which were often direct or
unrelated, and their lack of expertise made it difficult to
recognize potential confounders and mediators, limiting their
ability to discover these variables effectively.

Stage 2. In the second stage, introducing GPT-4 as a proxy
for domain expertise helped participants address knowledge
gaps from stage one. However, participants’ performance
declined slightly, with 39% (7/18) of causal edges resolved
incorrectly, compared to 5/18 in the BIC score method. This
is likely because they tackled the easier edges first in stage
one. Nevertheless, we observed that the volume of GPT-4
responses proved somewhat overwhelming, making it diffi-
cult for participants to fully comprehend and synthesize the
information, despite GPT-4’s solid understanding of causal
terminology, minimal hallucinations, and useful references
to relevant literature. We observed that this guidance was
particularly helpful in determining causal directionality and
encouraging a deeper exploration of potential confounders and
mediators. Although participants struggled at times to process
the information, they identified four valid confounders and
six valid mediators, with none deemed incorrect. While latent
variables remained difficult to identify, the overall decision
quality showed a clear improvement compared to stage one.

Stage 3. CausalChat Lite performed the best overall, with
only 1/18 incorrect edges (5%), even though these were the
most difficult relations since this stage came last. Participants
found it significantly easier to navigate the tasks. For exam-
ple, P2 noted: ”It becomes much easier after realizing how
straightforward it is when the patterns are visualized in the
causal debate chart. Before, it was really hard to memorize
all the queries at once.” The chart simplified the process
by visually representing complex relationships, reducing the
cognitive load of managing multiple queries simultaneously.

We observed that participants made good use of the de-
bate justification text box to obtain clear reasoning for each
causal hypothesis rating. The causal relation environment chart
further supported participants by visualizing confounders and
mediators together, offering quick access to potential third
variables relevant to their analysis. Across the study, partici-
pants identified seven valid confounders and five valid media-
tors, with no false positives, underscoring the effectiveness of
CausalChat in improving the accuracy of causal analysis.

H2: Efficiency in Causal Auditing Tasks
We assessed the efficiency of CausalChat by measuring two
key aspects of the causal auditing tasks: (1) edge modification

and (2) the discovery of confounders and mediators. As
discussed in the analysis of H1, BIC score based analysis alone
is insufficient for guiding users to construct accurate causal
graphs. Therefore, our focus here is on comparing the causal
auditing efficiency between the LLM-assisted interactions and
CausalChat Lite.

For edge editing, we measured the time from when a partici-
pant began querying the relationship between two variables un-
til they verbally confirmed satisfaction with the modification.
With the LLM support, the length and complexity of responses
made reading time-consuming and, for some, tedious. As a
result, participants spent an average of 3.3 minutes (SD = 2.6)
using the LLM text, while the time decreased to 0.9 minutes
on average (SD = 0.9) with CausalChat Lite.

Discovering confounders and mediators involved three
steps: (1) querying potential confounders and mediators for
a variable pair, (2) evaluating the logical consistency of the
identified variables, and (3) adding valid variables to the
causal graph. On average, for the LLM-supported version,
participants spent 3.5 minutes (SD = 0.5) to add a confounder
and 3.6 minutes (SD = 2.1) to add a mediator. Participants
spent significantly less time for this task with CausalChat
Lite. On average, it took 1.6 minutes (SD = 1.0) to add a
confounder and 1.3 minutes (SD = 0.4) to add a mediator.
This suggests that CausalChat not only improves efficiency in
edge editing but also streamlines the process of identifying
and incorporating latent variables.

H3: Easy to Use
Participants unanimously agreed that CausalChat Lite was the
most convenient (M = 4.8, SD = 0.4) and instilled the most
confidence (M = 4.2, SD = 0.7) compared to the BIC Score
based analysis (BIC) and the LLM text support (LLM). The
average confidence score for BIC was 2.5 (SD = 0.8), and 3.3
(SD = 0.7) for LLM. In terms of convenience, BIC scored 2.7
(SD = 1.1), while LLM scored 3.3 (SD = 1.2). CausalChat
Lite also achieved a usability score of 79.17 (SD = 6.40) on
the standardized SUS questionnaire, placing it in the 85th to
89th percentile—well above the average SUS score of 68 and
close to the top 10% of all SUS scores (80.8).

These results aligned with our expectations for CausalChat
in assisting users with causal relation auditing, causal graph
refinement, and decision-making. In post-study interviews,
participants praised CausalChat as a comprehensive tool
for quickly learning about unfamiliar fields. P2 remarked,
’CausalChat did an efficient job condensing the wordiness
of GPT-4 responses into more digestible visual infographics,
making decision-making easier.’ Participants also appreciated
the visual designs of the causal debate chart and the causal re-
lation environment chart, noting that once understood, learning
causal relationships became much smoother. P4 stated, ’The
visualizations are very helpful, especially with the color coding
to reflect the direction of mediators or confounding variables.’

VI. DISCUSSION

While LLMs can produce insightful causal reasoning, they
also exhibit well-known limitations, such as hallucinations
and difficulty handling ambiguity. CausalChat addresses these
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challenges by integrating a robust suite of textual and visual
features that make the model’s reasoning transparent and
interactive. These features are essential for bridging the gap
between AI-generated suggestions and human understanding,
allowing users to probe, validate, and refine causal claims. Our
case studies demonstrate CausalChat’s potential to enhance
user-driven innovation, support the development of more accu-
rate causal models, and advance the study of complex systems
across a range of domains.

Yet several limitations remain. First, there is the current
inability to directly represent feedback loops or causal rela-
tionships whose direction depends on initial conditions—such
as the relationship between sleep deprivation and stress. Some
causes are also better modeled as moderators or contextual
conditions; for example, trees are not the cause of forest fires
per se, but a necessary precondition. Both of these issues could
potentially be addressed through a more sophisticated version
of our causal model tree, which is still in its early stages.
Second, ChatGPT currently lacks the ability to provide reliable
citations for its justifications—though this limitation appears
to be improving as newer models come online.

An interesting direction for future work is introducing
temporal or personalized context into prompts. For example,
Oscar, the automotive hobbyist, could explore causal networks
across time—rolling back to the 1920s or imagining a future
dominated by electric vehicles—by priming the LLM with
historical or speculative context. Similarly, personalization
could allow Lena, the epidemiologist, to prompt the LLM for
a specific population group and so generate causal models
tailored to these specific populations, such as rural blue-collar
workers, enabling targeted health interventions.

VII. CONCLUSIONS

We presented CausalChat, a system that leverages the
causal knowledge of large language models (LLMs), partic-
ularly GPT-4, to make advanced causal insights accessible to
those innovating on complex systems. Our approach addresses
skepticism about automated causal inference, which often
stems from the challenge of acquiring datasets comprehensive
enough to model such systems. Instead of relying on large
datasets, we directly query LLMs using carefully crafted
prompts. User studies, including those involving participants
skeptical of automated causal inference, showed that our LLM-
powered tool effectively meets their needs.

Future work will focus on enhancing the scalability of
CausalChat’s visual interface to support large causal graphs
representing complex models, most likely via a level-of-detail
approach. In addition, having an insight log associated with
each variable and link would allow users to preserve insight
gained from the justification panel. Further, we aim to enhance
support for periodic causal model validation—not only through
SEM for parameter estimation, but also by checking the
structure itself using GES and appropriate statistical tests
to assess model robustness and consistency with available
data, for example through Bayesian Additive Regression Trees
(BART) [47]. Additionally, we aim to develop a crawling
mechanism capable of automatically retrieving data for newly
added variables and causal relations from online repositories.
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