
 
Abstract—The increasing popularity of iterative reconstruction 

algorithms has raised the attention onto how to build more 
accurate, realistic CT system models. In our work, we model the 
CT projectors based on volume integrals. The higher 
computational complexity in computing the exact volume 
integration is hidden by memory-efficient, fast, and accurate 
look-up tables. For further reductions we also derive a simple 
linear regression model from the table. We demonstrate our ideas 
with data obtained with a fan-beam flat-detector CT system. We 
observe speed-ups of up to 30% while keeping a higher or at least 
similar image quality than existing advanced CT system models. 
 

Index Terms—CT system matrix, forward projection, line 
integral model, area-based model, volume integral model  

I. INTRODUCTION 

ITH the increasing popularity of iterative reconstruction 
algorithms in the field of CT medical imaging, 

modeling a realistic CT system in software is becoming more 
crucial than ever. The CT system model can be represented by 
a huge matrix, W, whose columns correspond to the voxels 
subject to reconstruction (an N×1 vector) and the rows are the 
projections (or line integrals, an M×1 vector) that are 
measured by CT scanner. Then, each element,    , of the 
matrix indicates the contribution of a voxel j to a detector cell 
i, so called weight coefficient. This gives rise to the linear 
algebra equation: 

      

where X is the unknown image and P are the observed 
projection data. The process of calculating the line integrals is 
known as the forward projection and its reverse model, 
generally defined as the transpose of the forward projection, is 
known as back projection. As the size of the CT system matrix 
is enormous, the coefficients are usually computed on-the-fly 
during forward- and back projection. 
   The most intuitive and simplest way to compute the 
coefficient,    , would be the line integral. It computes the 
intersection length between the j-th voxel and the i-th ray 
[1][2]. Here, a ray is depicted by a zero width line that 
connects the X-ray (point) source and the center of the 
detector cell for the ray-driven approach (or the center of a 
voxel for the voxel-driven approach). This kind of CT system 
modeling has low computational complexity but it can suffer 
from under-sampling and aliasing [3].  
   The other approach, which is much closer to a real CT 
system and which overcomes the sampling problems is the 

volume integration based approach. In this model, a single ray 
can be depicted by a 3D polygon (or 2D polygon for fan-
beam) that connects the X-ray source with a detector cell. 
However, computing the intersected volume is not a trivial 
task and incurs high computational complexity. This precludes 
its use in iterative reconstruction routines where many 
intersections need to be computed.   
   Two well reported approaches exist which approximate the 
intersection volume. The first approach is the distance-driven 
(DD) method [3] that computes the coefficient as the row or 
slab intersection length combined with the overlap coefficient. 
The overlap coefficient is computed based on the length or 
area of overlap between a voxel and a detector cell when they 
are mapped onto each other as seen by the source. The other 
approach is the separable footprint (SF) method [4] which 
approximates the voxel footprints as 2D separable functions. 
This approximation not only greatly simplifies the 
computation of the coefficient but has also been shown to be 
more accurate than the DD methods, while keeping similar 
computational cost.  
   Recently, Ha et al. [5] introduced a method that computes 
the intersection volume exactly, and they also proposed three 
strategies that can approximate the volume at good accuracy. 
The approximate approaches aimed to make the volume 
integration process suitable for GPU-acceleration [6][7], using 
their massively parallel architecture to overcome the high 
computational cost of the exact ray-voxel intersection.   
   In this paper, we chose to go a different route with better 
computational efficiency while maintaining high accuracy. 
Here we were inspired by an established technique in 
computer graphics and texture mapping, called summed-area 
tables [8]. Our proposed method precomputes sampled 
intersection volumes and stores them in a summed area table 
such that unknown samples can be mapped into the table and 
be calculated using simple bilinear interpolation.  
   Our second approach derives a simple linear regression 
model from the table. While this method reduces accuracy, it 
is significantly faster. However, interestingly we can show 
that the reduced accuracy tends to occur in rays less frequently 
encountered and therefore reconstruction quality does not 
seem to suffer. We tested both methods with fan-beam X-ray 
flat-detector CT data and observed a computational cost 
reduction of up to 30% with a loss in image quality.  
   The remainder of our paper is organized as follows. Section 
II discusses details, Section III presents results. Finally, 
Section IV presents conclusions. 
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II. METHODOLOGY 

A. One-side Area Look Up Table (LUT) 

We define a ray as a zero-width line that connects the X-ray 
point source to a point on a detector. Then, one side area is the 
area between a ray and unit square in one side either left or 
right. We parameterize the area by the ray incident angle,  , 
which is measured from the x-axis to the ray, and an 
intersection point, P. The point is computed as an intersection 
point with the y-axis if the angle is less than or equal to 45 
degrees. Otherwise it is computed with the x-axis to always 
have a single intersection point. The one-side area Look-Up 
Table (LUT) is a table that contains all possible one-side areas 
ranging from 0 to 360 degrees and -1 to 1 for the ray incident 
angle and intersection point, respectively. Then, given two 
parameters,   and P, one side area is fetched from the LUT 
using bi-linear interpolation. The intersection area between a 
pixel and a fan-beam modeled by two rays can be efficiently 
computed by fetching two one side areas from the LUT and 
subtract one from the other. Figure 1 shows the schematic 
view of this with an example usages of the LUT.   

Due to symmetry given the square area of a voxel, we only 
need to store from 0 to 90 degrees. We use step sizes of 1 
degree and 0.05 mm to construct the LUT. The size of the 
LUT is, thus, 41×91 which takes up only about 15 K Bytes, 
which is trivial amount memory for most of modern computer. 
The accuracy of the LUT is measured by comparing it with 
analytical solutions of 1,000 random pairs of the two input 
parameters,   and P. We find an accuracy of roughly 99% 
with a maximum error of 0.004.      

B. One-side Area Regression Model 

Figure 2 shows curves of the one side area LUT along the P-
Area axis. Note that each curve corresponds to a column 
vector of the LUT constructed in previous section. We observe 
that all curves vary within the range of the curves extracted at 
0 and 45 degrees. Approximation can be obtained by 
abstracting the curves with a piece-wise non-linear regression 
model. Here, we take a simple piece-wise linear regression 

model that can cause at most 0.1207 error (about 12% with 
45° ray incident angle and   0.5 mm) to take advantage of 
low computational complexity as follows. 
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We analyze the effect of the error by simulating a realistic 
set of forward projections over 360 degrees spaced by 1 
degree. Note that in the area-based approach the forward and 
back projection are symmetric operators and so we only 
examine one. We draw an error map by computing the errors 
our regression model can make. In the LUT matrix view, we 
subtract the first column vector (0° ray incident angle) by the 
others. Then we measure the occurrence of each element in the 
LUT during projections, yielding a frequency map. This map 
represents how often each element is used during projections 
in a given CT system. The total number of fetches will be (# 
projections) × (# pixels) × (# detector cells affected by each 
pixel) × (at most 4 LUT elements for bilinear interpolation). 
The average error that can occur during projections is 
estimated by multiplying the error map and the frequency 
map. The total expected error is then computed by summing 
all values in the average error map. Figure 3 shows the three 
maps computed with the fan-beam flat-detector CT system 
and the average error is 1.0891 %.  

(a) (b) 
Figure 1. One side area look-up table. (a) Schematic view to compute intersection area between fan-beam and a unit pixel 
and (b) look-up table constructed with 1 degree and 0.05 mm step size resolution (99% accuracy). 

Figure 2. One side area piece-wise linear regression model  



III. RESULTS 

We tested the two proposed CT system models with a fan-
beam flat-detector X-ray CT system with a detector size of 
1024 cells spaced by 0.384 mm. The source to detector 
distance is 1147.7 mm and the source to rotation center 
distance is 647.7 mm. The fan-angle is about 19.4 degrees. For 
the forward/back projection analysis, we used a 512×512 
Shepp-Logan phantom data with 0.415 × 0.415 mm2 pixel 
size. All experiments use 360 views uniformly distributed over 
360 degrees and the forward/back projection operators are 
implemented using the pixel driven method. Note that all 
implementations are accelerated by an NVIDIA Tesla K40c.     

A. Forward projection 

In area-based CT system models, forward- and back-
projection operators are symmetric. We measure the accuracy 
of our regression model for forward projection by comparing 
it with the LUT-based approach. We define the normalized 
root mean square error (NRMS) as 
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where   ( ) returns normalized forward projected value at a 
detector cell i at a projection angle,  , such that 
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Here,  ( ) is a j-th pixel value, and N and M represent the 
number of detector cells and pixels. The     is the contribution 
of a pixel j to a detector cell i that computes either by look-up 
table or regression model and  superscript, LUT and REG, 
used to indicate them, respectively. Figure 4 shows the NRMS 
measurement over 360 views. As the same pattern is repeated 
every 90 degrees, we only show 0° to 90° projection angles. 
As the projection angle increases, there are more chances that 
a ray can have the incident angles,  , around 45°, and it 
reaches the maximum occurrence around 30° and 64° 
projection angles as the combination effect with fan-angles 
(19.4°). At this time the error is about 0.002106 (about 2% 
error). After the peak point, the error goes down as the 
occurrence reduction of erroneous ray incident angles.   

B. Within iterative CT reconstruction 

The proposed methods were plugged into a simultaneous 
algebraic reconstruction technique (SART) framework that 
updates each projection at a time. 
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where   
  is reconstructed j-th pixel at k-th iteration and    is i-

th projection data. The constant factor,  , is update step size. 
Using the SART, we measure the performance in terms of 
time and reconstruction quality. We used Shepp-Logan 

(a) (b) (c) 
Figure 3. One side area piece-wise linear regression model. (a) error map, (b) frequency map and (c) average error map. 

Figure 4. NRMS error comparison between look-up table 
and regression model approach as forward projectors. 
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Projection angle, 𝜙 
Figure 5. Convergence comparisons among three different 
projectors, LUT-, Regression model- and Footprint-based. 
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phantom data for this, and the projection data were simulated 
using the LUT based approach as it has about 99% of accuracy 
to compute the intersection area compared to an analytical 
solution. Finally, we compared our methods with the state-of-
the-art footprint-based approach [4]. In the following, the 
experimental results were obtained by running 200 iterations 
with 0.01 update step size.  
 
Convergence: We measure the convergence rate among three 
different projection methods. Two are the proposed ones and 
the other is the separable footprint. To maintain fairness 
among different approaches, we define the root mean square 
(RMS) errors as follows: 
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where  ̂ is the reference phantom data we used to generate 
projection data and      

     is reconstructed image normalized 
by the maximum value. Figure 5 shows the result. All methods 
have similar convergence rate and converge to similar 
solution. (at 45 iterations, 25.58, 25.72 and 27.05 for LUT, 
Regression and Footprint, respectively). 
 
Visual Assessment: Figure 6 presents visual comparisons of 
reconstructed images after 200 iterations. As all methods are 
converged to a similar solution, the visual look is also similar 
to each other.  
 
Time Performance: The SART consists of 4 kernels, Forward 
Projection (FP), Correct, Back Projection (BP) and Update. 
We measure the running time of each kernel. There are 360 
projections and we run it 200 times. The average time is 
presented in Table 1. In our implementation, both projection 
operators were implemented based on the pixel-driven 
method. As the result, BP is faster than FP in all methods 
because it does not require atomic operations; while it is 

necessary for the FP to avoid race condition. For the FP, with 
LUT, we can achieve 10% of speed-up due to the reduced 
computational complexity and Regression can improve the 
time performance another 15%.as it does not require memory 
fetching operations for the LUT. For similar reasons, in the 
BP, the proposed methods are faster by about 15% and 30% 
for LUT and Regression, respectively.  

IV. CONCLUSION 

We described and studied two area-based methods to construct 
a more realistic and accurate CT system model. We find that 
both methods can outperform the separable footprint method 
in terms of time complexity without a loss in reconstruction 
image quality. In future work we would like to investigate this 
finding further in the context of cone-beam and helical CT.    
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Figure 6. Visual comparisons. (a) Shepp-Logan phantom, (b) Footprint, (c) LUT and (d) Regression 

 
TABLE I. TIME PERFORMANCE COMPARISON [MILLISECOND] 

 FP Correct BP Update 

Footprint 0.215 

0.025 

0.170 

0.05 LUT 0.192 0.147 

Regression 0.161 0.121 

     


