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Visual analytics seeks to conduct a discourse 
with the user through images, to stimulate 
curiosity and a penchant to decipher the 

unknown. Figure 1 depicts our view of the visual 
analytics process. The computer supports the user in 
this interactive analytical reasoning, constructing a 
formal model of the given data, with the end product 
being formatted knowledge constituting insight.

Yet, validation and refi nement of this compu-
tational model of insight can occur only in the 
human domain expert’s mind, bringing to bear 
possibly unformatted knowledge as well as in-
tuition and creative thought. So, it’s left to this 
human user to guide the computer in the formal-
ization (learning) of more sophisticated models 
that capture what the human desires and what 
the computer currently believes about the data do-
main, perhaps with an associated confi dence level. 
In visual analytics, the computer uses images and 
text (and possibly sound and haptics) to exchange 
information with the user about its view of the 
domain model.

Obviously, the better a communicator the com-
puter is, the more assistance it will elicit from the 
user to help it refi ne the model. This in turn leads 
to this article’s topic—the need for the computer 
to master the art of interpersonal communica-
tion—that is, communication between it and the 
human analyst.

The Elements of Interpersonal 
Communication
Obviously, communication is present in many 
domains, not just in human behavior. Commu-
nication protocols are part of many human-made 
systems, such as computing and telecommunica-
tion, and they follow similar defi nitions. We focus 

here on human behavior because we aim for the 
computer to collaborate with the human user.

The interpersonal-communication protocol1 (see 
Figure 2) always includes

■ a sender—someone who sends a message verbally 
or nonverbally to someone else,

■ a receiver—someone who receives the message,
■ a message—information in some shape or form,
■ noise—anything interfering with the exact repli-

cation of the transmitted information,
■ feedback—verbal and nonverbal feedback elicited 

from the sender or receiver,
■ replication—one person understanding what’s in 

another person’s mind, and
■ understanding—the receiver’s approximation of 

what the message means to the sender.

The interpersonal-communication framework 
has three components. Direct channels encompass 
information that the sender directly controls; 
they’re easily recognized by the receiver. Indirect 
channels aren’t always under the sender’s direct 
control and are usually recognized subconsciously 
by the receiver. The context is the conditions sur-
rounding the communication from which the re-
ceiver can derive the message’s meaning.

Communicators use intonation or pitch to em-
phasize words and passages. Brevity or economy 
of words leads to clear, effective presentations, 
whereas an aesthetic choice of words (good story-
telling) can generate more interest, attention, and 
even fascination. Finally, personalization of word 
choice can target a specifi c receiver, just as the 
word choice can indicate a sender’s identity.

Clearly, some people are more eloquent in these 
matters than others; the same is true for human-
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computer communication interfaces. Next, we 
map the interpersonal-communication structures 
and strategies we’ve discussed into forms realiz-
able by a computer, focusing on visualization and 
visual interaction.

A Visual Human-Computer  
Communication Protocol
In keeping with this article’s general theme, we use 
the term human-computer communication (HCC) 
protocol. Such a protocol requires certain HCC skills. 
For example, both participants need to

■■ master the available devices or resources, such 
as a monitor (for the computer) and a mouse, 
keyboard, and multitouch input device (for the 
human), and

■■ correctly interpret messages.

As Figure 2 indicates, in HCC both the computer 
and human can act as sender and receiver. For the 
computer, the equivalent of a verbal message is a 
visual artifact (utterance) of some sort (a graph, 
scatterplot, graphics rendering, picture, and so on). 
The equivalent of a human verbal message is some 
sort of interaction, be it a swipe on a multitouch 
display, a menu item selection, or parsable text.

In the following, we focus on messages sent in 
the context of some problem-solving task. The ulti-
mate goal is for the computer to acquire a format-
ted model of the user’s unformatted knowledge, 
while being guided and inspired by the analytical 
problem at hand. We further assume that the hu-
man user is the ultimate judge of the correctness 
of the messages the computer sends. The computer 
only supports reasoning and diagnosis, and there’s 
always room for improvement (and training).

So, in this communication loop,

■■ the human sends feedback messages to trigger 
model refinements (the computer’s replication 
of the human’s intuition), and

■■ the computer responds by sending feedback mes-
sages of the model’s visual encoding (the com-
puter’s understanding of the human’s intuition).

On the other hand, the human’s replication and 
understanding of the feedback message are deter-
mined by his or her expert knowledge and the vi-
sual encoding’s quality, which is a direct function 
of the computer’s visual communication skills.

Of course, the human’s intuition regarding the 
model might be partially incorrect or incomplete. 
So, the computer’s understanding expressed by the 
uttered visual will be necessarily subject to cri-

tique. This is what constitutes the iterative nature 
of the human visual discourse promoted by visual 
analytics. Here, longer iteration cycles or poorer it-
eration results might be due to the computer-based 
reasoning engine’s limited skill, the human’s poor 
input devices or gesturing skills, or simply the hu-
man’s lack of intuition and domain knowledge.

Finally, noise in the visual encodings might stem 
from the data itself and might prohibit the evolu-
tion of a consistent model. Computers deal poorly 
with noise, whereas humans excel. This is an ad-
ditional significant strength of visual analytics—by 
incorporating the human to detect and neutralize 
noise, we can drive model development forward.

Trust
As with any form of communication—human-
human or human-computer—trust is paramount. 
A visual analytics system’s user must feel confi-
dent that the software provides trustworthy, un-
biased information, guidance, and advice.
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Figure 1. The visual analytics process. The user seeks to create a formal 
model that captures the analytics problem’s underlying mechanisms. 
In an iterative learning process, the user continuously teaches the 
computer using his or her informal domain knowledge and expertise 
until the evolved model sufficiently explains the data.
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Figure 2. The interpersonal-communication protocol. A sender 
would like a receiver to comprehend message C, conveyed either 
straightforwardly or via indirect or subconscious mechanisms. However, 
noise in the communication channel or the receiver’s failure to fully 
comprehend the message’s intended meaning can undermine the 
sender’s objective. An iterative clarification process eventually leads to a 
mutual understanding of the message.
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For many years, researchers have been consider-
ing uncertainty in visualization and to what ex-
tent a given visualization accurately reflects reality. 
Uncertainty can arise from various stages of the 
visualization pipeline:2 from data acquisition (for 
example, calibration, observation, and numerical 
simulation), to data transformation (for example, 
interpolation, quantization, and aggregation), to 
the visualization itself (for example, algorithms, 
color maps, and rasterization).

Although there’s widespread agreement that 
quantification and visualization of information 
uncertainty are important, we still lack a standard, 
general framework for dealing with inaccurate, 
incomplete, inadequate, or suspect data. This is 
partly because “uncertainty” is largely a domain-
specific term meaning different things to different 
people.3 Moreover, in some disciplines, it’s possible 
and desirable to gauge error within a certain tol-
erance, whereas in other fields it’s sufficient to 
make qualitative statements about the confidence 
you can place in data accuracy (for example, high, 
medium, or low). Finally, debate is still ongoing 
about whether uncertainty is itself a form of data 
and should be visualized using traditional means 
or whether we should treat it as metadata for aug-
menting data visualization. Decisions about these 
and other aspects of data uncertainty necessarily 
impact HCC’s effectiveness.

Elements of Effective Visual Computer 
Communication
We now present techniques to enhance the comput-
er’s visual communication skills and therefore HCC. 
To make this discussion more concrete, we provide 
examples from our own research—further evidence 
is available throughout the visualization literature.

Communication in the Iterative Cooperative  
Model-Learning Loop
We start with a practical incarnation of the visual 
analytics process depicted in Figure 1. Our exam-
ple, described in more detail elsewhere,4 is set in 
network traffic analysis. The (very large) dataset 
consists of a one-hour snapshot of Internet packets 
with attribute information describing the source 
and destination IP addresses and ports, as well as 
the time stamps, packet IDs, and protocol num-
bers. Assume that we want to learn the concept of 
webpage load from this data, using Prolog logic pro-
gramming to formalize this model (which will later 
be used for automated diagnosis of network traffic).

Identify interesting patterns. The first message inter-
changes focus on exploring the data. The analyst 
considers the source and destination IP addresses 
the most critical attributes. So, the initial scatter-
plot view is a projection of the source versus desti-
nation IP addresses (see Figure 3a). The analyst then 
hypothesizes that time might be an interesting sec-
ondary variable. So, by manipulating our touch-pad 
multidimensional-navigation interface,4 the analyst 
gradually changes the projection plane’s tilt (along 
the y-axis) to distinguish the superimposed packets 
by their time stamp (see Figure 3b).

The motion parallax reveals that some source 
and destination IP packet interchanges have dif-
ferent time spans. Knowing from experience that 
webpage loads usually require only short time 
spans, the analyst marks some of these packet se-
quences in the original source-versus-destination 
plot (where they project into single points—see 
Figure 3c). The analyst then sends these examples 
to the inductive logic programming (ILP) system, 
which formulates a rule describing the set of ex-

(a) (b) (c) (d)

Figure 3. A case study of the iterative cooperative model-learning loop for a network dataset. (a) The initial 
scatterplot of source IP addresses (dest_IP) versus destination IP addresses (src_IP). All packets projecting 
onto similar (x, y) coordinates are the same color. (b) Tilting the projection plane to reveal time relationships. 
Formerly superimposed packets now appear as shorter or longer streaks along the y-axis. (c) Tilting back and 
marking packets with longer time frames. (d) Visualizing newly classified packets given the learned rule.
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amples, using all their attributes (not just IP ad-
dresses and time stamps). The resulting rule (in 
Prolog syntax) is the computer’s current under-
standing of webpage load:

webpage_load(X) :-
same_src_ips(X),
  same_dest_ips(X),
  same_src_port(X,80),
  timeframe_upper(X,10).

Assess the constructed model. Here, the analyst veri-
fies this concept understanding. The computer 
demonstrates to what extent it has replicated the 
concept by retrieving from the data file a random 
subset of tuples that fit this rule and showing them 
in the dynamic scatterplot display (see Figure 3d). 
The analyst examines these patterns using the 
touch-pad multidimensional-navigation interface. 
In this case, the analyst notices that some tuple 
sequences have a very small number of exchanges, 
which are probably not due to a webpage load. The 
analyst concludes that the model isn’t fully devel-
oped and that the system requires further train-
ing, as we describe next.

Critique the constructed model. The analyst marks 
the erroneously classified packet time sequences as 
negative examples and returns them to the ILP sys-
tem for rule refinement. This leads the computer 
to infer the (final) Prolog rule:

webpage_load(X) :-
same_src_ips(X),
  same_dest_ips(X),
  same_src_port(X,80),
  timeframe_upper(X,10),
  length(X,L),
  greaterthan(L,8).

Communication via Direct and Indirect Channels
The canonical visual direct-channel communica-
tion example is the pictogram, an icon designed to 
unambiguously convey meaning, often by a picto-
rial resemblance to a physical object. Pictograms 
are simple, easy to recognize, intuitive, and don’t 
have to be learned. Many signs in public life are 
pictograms, such as traffic signs or the trashcan 
icon on computer desktops. Some patterns in in-
formation visualization can also be iconic, such 
as a straight up- or down-sloped line representing 
growth or decline.

Any visual sign more complex than a pictogram 
sends parts of its messages across indirect channels. 
For example, although a picture of a person can 

never fully describe the real person, it can show 
aspects or properties reminding us of that person 
or what he or she represents (which is also likely 
subject to personal opinion). For example, a picture 
of Andy Warhol might signify just him or the entire 
pop art culture. In the former case, the picture is 
iconic; in the latter, it’s indexical (see the writings of 
Charles S. Peirce [1839–1914] on semiotics).

So, a picture serves essentially as an index (or 
pointer) into the viewer’s conscious (and subcon-
scious) memory,5 triggering further private ana-
lytical processes in the viewer’s mind. Thus, we 
might say that the picture transmits information 
and that the viewer adds further personal infor-
mation. For example, browsing vacation pictures, 
an old high school yearbook, or even a picture of 
some person, place, or object can bring back many 
memories from the past (and might lead to new, 
spontaneously generated thoughts).

The same goes for visual phenomena in scientific 
and information visualization, such as patterns in 
flow fields or scatterplots. The message they invoke 
flows across indirect channels, indexing the user’s 
past experiences and stimulating creative interpre-
tation and thought. This then hopefully leads to 
novel associations and insight in the process, given 
the user’s current frame of mind. So, these indi-
rect channels form the essential communication 
pathways for visual analytics. However, they re-
quire continuous feedback to confirm, refine, and 
adjust the interpretations; this is the foundation 
of the analytical human-computer discourse.

Brevity by Mental Indexing
Given that visual signs trigger information re-
trieval from the brain, we can consider them a 
form of information compression and therefore 
use them to efficiently enrich an information 
display. This has been amply exploited in glyphs 
often employed in scientific visualization. Also, 
graphs in information visualization frequently 
use generic icons for quick recognition, but these 
have limited capacity to communicate specific in-
formation. This inflexibility is a significant short-
coming of using icons to index into the viewer’s 
mental database. In essence, a picture is just an 
array of pixels—it’s the brain that interprets, un-
derstands, and indexes into memory to recover the 
vast amount of information encoded by this array 
(which is a measurement of the world).

We recently described a framework involving 
natural-language processing and Web-scale image 
databases to help users identify metaphors suitable 
to visually encode abstract semantic concepts.6 
The visual representations resulting from these 
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encodings can serve as stand-alone expressive 
icons or clip art in visualization and visual analyt-
ics applications. Furthermore, just like verbal com-
munication, visual communication provides for a 
semantic level of detail. Our interactive system lets 
users create visual semantic zooms, using lexical 
databases such as WordNet and Lexical FreeNet to 
shape a text query in terms of the search concept’s 
scope and detail and then retrieve the correspond-
ing image. Figure 4 shows such an example for the 
“Bill, the sports car mechanic” concept. By embed-
ding these visual encodings into a suitable back-
ground scene (for example, a semantic object), 
users can provide and refine contextual indexing.

Brevity by Abstraction
The essence of a given concept is some instance 
of it with irrelevant details abstracted away. You 
can achieve this by generalizing its semantics or 
trimming away specifications at some level of de-
tail. Just as in verbal communication, this can be 
achieved in visual communication, and just as 
savvy speakers effectively use illustrative language, 
visualization can use effective graphics techniques.

Here, we go far beyond standard image-processing 
techniques such as linear filtering, instead using sta-
tistical analysis appropriately. Besides reducing the 
visual to the detail essential for the given task, the 
ensuing abstraction can visually indicate that the 

missing detail is unknown, thus sparking curiosity 
and the desire to obtain it. For instance, our sports-
car-mechanic example could be the visual equiva-
lent of verbally stating “some mechanic,” which 
might trigger an investigation that yields more and 
more detail until eventually Bill is identified.

More specifically, for visual signs, we seek a pic-
ture of a given concept that unifies all the con-
cept’s known facts while abstracting away the 
unknown facts. In images, a fact is expressed as 
a visual feature or collection of features. We can 
construct an average image for a category by look-
ing for common features across a set of queries. 
We might know only that our suspect is a male 
blue-collar worker. So, we can formulate a corre-
sponding search query of this term and use our 
lexical resources to retrieve images of instances of 
the term—mechanics, plumbers, electricians, and 
so on. We can then remove the difference in detail 
across images by finding the level of image-based 
abstractions at which all images appear similar. 
(The visual analytics process would then further 
investigate this subject, refining the corresponding 
visuals until it identifies a particular individual.)

We implemented this method using multiscale 
edge detection to compute shape context histo-
grams at multiple scales (see Figure 5). We then 
packed these into high-dimensional feature vec-
tors and clustered them for all images in the set. 
At some level of scale, the different expressions 
for a concept are the most similar; this forms the 
scale on which we base the abstraction. The cluster 
exemplar (an image closest to the cluster center) 
then represents this concept’s average instance 
at that scale, and we create the final icon by ab-
stracting away all details at higher scales. For this, 
we use Poisson blending guided by the noise-free 
edges to create an abstracted illustration that con-
tains only features of known facts.

For information visualization, the abstrac-
tion must be derived directly from the data (and 
background information if available) and can be 

Man Mechanic Car mechanic Sports car mechanic Bill

Figure 4. Semantic zooms. These are images with increasing semantic detail, here for the concept “Bill, the 
sports car mechanic.” By embedding these visual encodings into a suitable background scene, users can 
provide and refine contextual indexing.

(a) (b) (c)

Figure 5. Detail abstraction using multiscale edge detection. (a) The 
original purse image. (b) A generic purse image with weak edges 
removed. (c) Strong and weak multiscale edges.
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obtained using statistical analysis. Previously, we 
described an illustrative information visualization 
framework for high-dimensional data that used 
parallel coordinates.7 In this framework, we em-
ployed k-means clustering, mean, standard devia-
tion, and correlation for analysis, and we used the 
results to determine visual salience. As illustrative 
style elements, we employed halos, shadows, color, 
shading, and filled contours. Figure 6 shows an 
example. Here, one data layer might be the one of 
interest, whereas the others serve as context.

As in verbal communication, abstraction in the vi-
sual domain can lead to salient facts being abstracted 
away accidentally (or purposely, which often occurs 
in advertising or magazines). Because data analysis 
drives the abstraction in visual analytics, more so-
phistication can alleviate these problems.

Intonation and Highlighting
The visual equivalent to intonation is highlight-
ing. Proper coloring of the feature of intended em-
phasis can focus attention, called pop-out. Pop-out 
exploits the visual system’s low-level mechanisms, 
which let humans detect visual properties rapidly 
(although not necessarily consciously). Pop-out 
is strongly related to a color patch’s vividness, its 
size, and the degree to which it differs from the 
vividness of other colors in the scene (and local 
brightness contrast).

Figure 7 illustrates results from a color design 
framework we recently devised.8 It shows 2D col-
orization of an image of biological cells, generated 
through transmission electron tomography. This 
colorization also demonstrates how the original 
image gray-level intensities modulate the light-
ness of the assigned object colors (here, the cells). 
In this figure, the labels denote the object classes, 
colored according to their importance.

Another effective way to alert a receiver to an 
important fact in verbal communication is exagger-
ation. In visual communication, an artful embodi-
ment of this concept is caricatures. Peter Rautek 
and his colleagues recently described a framework 
that uses caricatures to focus on shape deviations 
that would be difficult to convey with color.9

Visual Aesthetics
Speakers and authors who deliver their message 
in a vibrant, imaginative, and appealing manner 
will keep audience attention levels high and will 
likely generate better audience response and recall. 
Likewise, good visual aesthetics and well-designed 
interaction frameworks make visual exploration 
an enjoyable task while reducing stress, which can 
be a significant factor in today’s fast-paced data 

analysis scenarios. Stress caused by unpleasant de-
sign makes people less able to cope with difficul-
ties, less flexible, and less creative. So, aesthetic 
design plays an important role in the problem-
solving task that’s at the core of visual analytics 
systems. For more detail on academic research and 

(a)

(b)

Figure 6. Abstraction for information visualization. (a) Traditional 
parallel coordinates. (b) Illustrative parallel coordinates with abstraction 
derived via statistical data analysis.
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Figure 7. Colorization of transmission-electron-microscopy data to 
indicate relative importance, where (a) object class A is the most 
important, (b) class B is the most important, and (c) class C (the long, 
elliptical cells) is the most important.
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practical guidelines relevant to visual aesthetics, 
see the “Related Work” section in the paper “Color 
Design for Illustrative Visualization.”8

Keeping up good aesthetics while pursuing (and 
achieving) a goal is a challenge for every public 
speaker. It requires a well-balanced interplay of 
emphasis and aesthetic design. Otherwise, conflicts 
emerge—speakers don’t want to overemphasize the 
intent and make the overall experience less enjoy-
able. The previous section discussed color as an im-
portant means for emphasis. A basic design rule is 
that viewers perceive excessive use of vivid colors as 
unpleasant and overwhelming. So, you should use 
them between duller background tones.

We recently conducted a user study to gain in-
sight on how to use color for highlighting while 
preserving an aesthetic design (Figure 8 shows 
some results). We formulated this (and other) in-
sight and color design principles into a rule-based 
system for data colorization.8

Sender and Identity
Speakers and authors typically have recognizable 
styles that provide them a sense of identity. For vi-
sual analytics, knowing the origin of an original 
or derived fact or hypothesis can be interesting 
and informative. Illustrative visualization offers 
tremendous opportunities to watermark personal 
identities into a visual rendition of these elements. 
We could embed this information either as a frame 
around the corresponding visual encoding or di-
rectly into the abstraction style. The latter approach 
would give each abstraction style a specific person-
ality that can be identified with a specific informa-
tion source (such as an agency or an analyst).

Human Feedback
So far, we’ve focused mostly on how computers can 
communicate visually with human observers. The 

visual analytics communication loop in Figure 1 
also requires human feedback. Besides traditional 
media such as keyboards, mice, and voice, multi-
touch (gesture) interfaces have become increas-
ingly popular, thanks mostly to Apple’s iPhone 
and iPad. However, exploitation of gestures as a 
feedback device in visual analytics is still at an 
early stage.

We augmented our touch-pad multidimensional-
navigation interface4 with a two-finger multitouch 
interaction framework that lets users position 
and orient the two orthogonal projection axes in 
high-dimensional space simultaneously. This af-
fords much more direct and fluid interaction with 
the virtual spaceship, thus fostering more direct 
high-dimensional-space exploration and a better 
understanding of high-dimensional relationships.

How to Train Your Computer
How can a computer actually become, or evolve into, 
a better communicator? The best way is through 
formal user studies involving teaching sessions 
with the intended user group. A visual reasoning 
environment, particularly a collaborative one, will 
potentially incorporate very different people with 
considerably different qualifications, preferences, 
and backgrounds. These parameters will determine 
the visualization’s inherent complexity and style. 
The “Measuring the User” sidebar provides further 
thoughts and information on this topic.

For example, we devised a preference-measuring 
methodology based on conjoint analysis, which we 
demonstrated in a study on measuring the per-
ceived quality of volume rendering.10 We also used 
our methodology to devise the color design rules 
we mentioned earlier.8 These studies produced 
many interesting insights. For example, we found 
that participants disliked visualizations of engine 
blocks when the engine is oriented as if it’s stand-
ing on a corner, whereas they didn’t object to such 
a view for medical foot datasets. We concluded 
that feet are often oriented at arbitrary positions 
in everyday life, whereas an engine flying through 
the air appears threatening. Likewise, we found 
that participants considered black backgrounds 
more aesthetic but deemed white backgrounds bet-
ter for studying detail.

Computers, through visualization, have access to 
a rich repertoire of communication patterns. 

Although more research is necessary until a com-
puter can truly master the art of communication, we 
believe that the growing ease of online user studies 
will greatly facilitate the training required.�
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Figure 8. Aesthetics versus highlighting. For both 
images, feature A (in red) is the most important, 
and both images were among the top four in terms 
of correct identification of the most important feature. 
However, the right image was one of the four rated least 
aesthetic, so the left image’s coloring is preferred.
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A main obstacle to achieving true human-like (artificial) intel-
ligence is that human consciousness depends greatly on 

highly personal semantic models, knowledge, experiences, skills, 
preferences, and the like. These things are hard to capture and to 
encode in machines. We face the same obstacles when encoding 
data and information into visual representations. These differ-
ences are expressed horizontally (same complexity, but different 
representation) and vertically (reduced complexity). Whereas the 
former is more a function of personal preferences, possibly mo-
tivated by professional or community background, the latter is a 
function of educational background, classification of the informa-
tion visualized, and task-mandated (minimal) requirements. So, 
no single visual reasoning environment will fit all participants, yet 
it must let all participants communicate with each other and the 
computing engine.

The key is to develop parameterized models of users and tasks, 
methodologies to acquire and test those models, procedures to 
generate the user- and task-suitable visualizations, and appropri-
ate means to translate one representation into another (also called 
grounding1,2). For this, we must capture personal preference 
vectors (in terms of visualization paradigms) and correlate them 
with other user information, such as background and education 
level. We can then use these frameworks to parameterize tasks 
and knowledge.

To provide these models, we need a rich suite of user stud-
ies. Market research has developed statistical frameworks (such 
as conjoint analysis3,4) to efficiently acquire user studies, with a 
minimal set of users and minimal user involvement. Such mod-
els will yield adaptive user interfaces that can eventually predict 
the best visual representations of the information at hand. Once 
we’ve formulated these models, systems can automatically coach 
analyst users in developing strategies for more complex analyses. 
Furthermore, we’ll be able to generate templates covering the 
best strategies for the most efficient analysis.
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