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Abstract. Blockchain, a decentralized, distributed and encrypted ledger,
was created to eliminate the need for a central trusted entity. Blockchains
provide users with a secure, trusted, auditable, and immutable record of
transactions and are applicable to systems that require a trustworthy
record of information. Our work explores the use of blockchain in col-
laborative visual analytics systems where users share and store a record
of the visual analysis of some data. We built Share.va, a framework that
allows users to store and share the states of visual analytics dashboards
through a blockchain. We apply Share.va to an existing visual analytics
dashboard and conduct a pilot study to understand the effectiveness and
limitations of blockchain in collaborative visual analytics.
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1 Introduction

In the collaborative analysis of data, analysts need to share data analysis tools,
visualizations, and maintain a shareable history of their explorations. Such an
auditable record is essential to shared decision making [5]. At the same time,
to ensure trust among collaborators, their content must remain private and se-
cure when being shared [8]. For example, in the collaborative analysis of medical
records, multiple doctors and medical technicians may need to analyze a pa-
tient’s sensitive data in order to diagnose the patient. Here, the patient needs to
ensure that only trusted doctors and technicians analyze and share the data. The
inherent properties of blockchain make it a viable candidate to support such sce-
narios. It’s encryption based distributed consensus mechanism ensures that the
blockchain only logs trusted updates and the log is authentic and unchangeable.

In our work, we aimed to explore the viability of a blockchain back-end for
collaborative visual analytics (C-VA) systems. Most literature on C-VA sys-
tems do not address the need for security and trust among collaborators. Using
blockchain can address such issues, however, CV-A systems are highly interac-
tive and require low latency communication and can be affected by the estab-
lished performance issues with blockchain [10]. Our work explores the limits of
blockchain in such systems.
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We built Share.va; a framework that uses blockchain to log changes and
insights derived through visual analytics dashboards. We also designed a visual
metaphor to represent each collaboratively created state stored on the blockchain
thus aiding the navigation of the blockchain. We demonstrate and evaluate the
capabilities of our framework through a case study. Here, we retrofit an existing
visual analytics dashboard used by social scientists with Share.va. We then ob-
served the scientists collaboratively analyze their data both synchronously and
asynchronously as well as record the analysis on the blockchain. By observing
the scientists collaborate with the dashboard, we learned about the limitations
of blockchain during real-time collaboration and how users worked around them.

2 Background

Blockchain was originally introduced to support the bitcoin cryptocurrency [7],
but its ability to establish trust in a decentralized environment has led to many
applications in the finance, health, and education sectors [3]. As explained by
Swan [9], it is fundamentally a distributed ledger database that shares and syn-
chronizes all records of digital transactions across multiple entities. Transactions
are recorded into a block and added in a sequential manner so every block con-
tains a hash to the previous block. This means every ledger entry is re-traceable
across the full history of the blockchain. Before a transaction is added to the
blockchain, all relevant parties need to agree that the block is valid. Once there
is agreement on the validity of a block and it is recorded, it cannot be changed.
These properties make blockchain a suitable technology that can be applied to
any system that requires a trustworthy record of information [11].

Prior to implementing our framework, we first ensured that blockchain is
suitable for our application by addressing the five key questions to determine
the appropriateness of blockchain use [3]. First, users are required to have a
shared database of datasets and insights in collaborative visual analytics. Next,
they must be able to write to this database to add transformed data or insights.
Additionally, in scenarios such as the medical analysis example, the patients
need to trust that their information was only reviewed by approved doctors and
other related individuals. In such cases, blockchain’s disintermediation protocol
ensures trust among collaborators. It does so by removing the need to trust a
central entity as in traditional databases managed on a central server. Finally,
the blockchain’s ability to store an ordered, immutable and auditable record of
the analysis inherently provides provenance of the analysis.

3 The Share.va Framework

Share.va is designed for web-based collaborative visual analytics dashboards and
addresses the general requirements of or most C-VA systems[4]. It enables users
to share interactions, data filters, annotations, and notes. It also allows users
to make use of heterogeneous dashboards, i.e. dashboards that have different
visual configurations but analyze the same data. Every user interaction leads
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to a change in the dashboard state which our framework logs to a back-end
blockchain thus storing the provenance of an analysis. The blockchain can later
be polled for prior dashboard states.

3.1 Representing Dashboard States

To represent a dashboard’s shared state, we designed a specific data structure
that supports the use of heterogeneous dashboards as well as sensemaking tools.
The structure is concise due to the size limitation of blockchain and consists
of three main subparts - data, view, and metadata. As we target web-based
dashboards, the state is stored as a JSON with each subpart being stored as a
field in this JSON. Each subpart is explained below:

Data: The data subpart of the state stores the data (or a pointer to it),
and any functions that are used to manipulate the data along with the function
parameters. These functions are often triggered by user interactions. They can
be as simple as a list of filters over each data attribute or they could be more
complex such as a clustering or layout algorithm. Changing a function’s param-
eters can trigger a change in the visualizations, for example it may cause points
to be highlighted or repositioned. Additionally, user-generated notes are stored
in this subpart. Notes are the insights collaborators have gained at a particular
dashboard state during their analysis. Although collaborators can have differ-
ent dashboard views (with heterogeneous dashboards) the data insights would
be the same as the functions applied to the data are always shared. Notes are
essential to asynchronous collaboration as they communicate a user’s thought
process to his or her collaborators.

View: The view subpart stores information about the visual properties of
the dashboard. The view is stored as a list of visual components, their locations

(a) Meta-data (b) Data (c) View

Fig. 1: An example of the three dashboard state components from our case study.
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in the dashboard, and annotations associated with them. The annotations, like
the notes, are used for sensemaking but are more specific to the chart and often
point to particular data points. Additionally, transforms that are chart specific
are not essential for data sharing can also be maintained as part of the view, for
example zoom levels or axis scales. When using heterogeneous or personalized
views, the user can choose to ignore this view subpart of a shared state and use
a personalized view. For example, a visual component that shows an overview of
the data may either use a scatter plot or a parallel coordinate plot. By ignoring
the view component one user could use a parallel coordinate plot and the other
a scatter plot to visualize the same data, they could even use the scatter plot at
different zoom levels.

Meta-data: While the data and view subparts reflect changes made to the
content, an essential requirement for collaborative sense-making is knowing who
made that change and when it was made. The meta-data section of the state
is used to store this information. Additional information about the state is also
maintained here such as which collaborators were present during the creation of
the state and the type of change that led to the creation of the state (a data or
view change). This meta-data is primarily used by history glyphs we designed to
help users navigate states on the blockchain. The glyph is shown in figure 2 It is
based on a dining table metaphor. A wireframe of the dashboard in the centre is
the “dining table” and the arc segments along the circumference are the “seats”
around this table. The arcs represent collaborators that were present during a
state’s creation and the circle behind the wireframe is colored and connected to
the creator’s arc. Panels in the wire-frame are highlighted to indicate in which
panel a change occurred

An example of the state of a dashboard used in our case study is shown in
figure 1. Here, the meta-data section (figure 1a) of the state stores the state’s
identifier in the id field, its creator in the creator field, the status of collaborators
(present or absent) during the state’s creation in the collabStatus field, and the
type of change the state caused and the visualization it affected in changeInfo
field. The data section (figure 1b) of the state stores a pointer to the dataset
being analyzed in the datasetName field. The list of attributes in the dataset,
the filters applied to them, and user notes are also stored in the dataAttributes,
dataFilters, and notes fields of the data section. Adding or modifying a filter will
cause a data change that is reflected across all visualizations. The view section
(figure 1c) of the state has a list of fields that store the location and visual
properties of the dashboard’s visual elements. For example, the rankingChart
field stores the normalized location and size of a line chart used to represent
ranks of animals in the loc sub-field. It also has an algorithm sub-field which
allows users to select a ranking algorithm and a scale sub-field to select the kind
of scale, in this dashboard the user could choose between item count and clock
time. Since the view section can be ignored by collaborators, they could use
different ranking algorithms and scales for this chart while collaborating with
each other. The view section also stores annotations made to the dashboard in
the annotations field.
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Fig. 2: The history glyph which help users navigate states on the blockchain.
In (a) all seven collaborators were present when a change was made to the top
left panel (dark gray highlight) while in (b) one collaborators was absent (green
segment) when a change was made in the panel on the right (dark gray highlight).

Blockchain Implementation Due to the complexity of our framework’s data
structure as well as other constraints and criteria, it was necessary to seek out
the appropriate blockchain implementation from the many emerging options.
We reviewed the available blockchain implementations (MultiChain, OpenChain
and ScaleChain) to find one that best aligned with our needs. It should be noted
that at the time of evaluation, promising candidates such as Hyperledger were
rejected based on their maturity level but these may now be equally suitable
for use in the framework. We had two primary design goals: (1) store data in a
JSON object and (2) process client requests asynchronously.

We selected MultiChain, an open source system that stood out since it ful-
filled our requirements as well as allowed us to store the largest size of data in
the blocks. It provides a stream feature that allows raw text data to be writ-
ten to the blockchain. This gave us the ability to encode our application data
in JSON format, while still leveraging the auditable features of the blockchain.
Additionally, MultiChain provides a permission management system that allows
admins to grant read or write permissions to the blockchain. In our use case, the
creator of a collaborative session is the admin who can then add collaborators
to that session. Based on the permission a collaborator has, he or she can either
contribute (write) to an analysis or only review (read) an analysis. The assign-
ment of permissions is tracked by the blockchain ledger, much like a coin would
be. This means that the assignment of read and write permissions would benefit
from being traceable and auditable as well. A downside is that MultiChain uses
JSON-RPC which requires synchronous communication with a client thereby
making the client unresponsive until MultiChain replies to it. To overcome this
issue, we implemented a Java program that acts as an interface between Multi-
Chain and the client. Here we use the REST architecture to communicate with
the client asynchronously while communicating MultiChain synchronously.

Writing to the Blockchain Having selected an appropriate blockchain imple-
mentation, we explored the possible methods of using it to store and share states
among collaborators. In Share.va, a dashboard state is stored as a blockchain
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transaction and we employed two methods of storing this state - appending states
and updating states - which are explained as follows:

Appending States: Appending a state is straightforward. For every user ac-
tion, the current state of the user’s dashboard is generated; this is essentially the
entire JSON state described previously. This state is then sent to the blockchain
and stored as a single transaction. As users generate annotations and notes, the
number of items stored in the annotation and notes fields of the state increases.
This increases the packet size of items being stored to the blockchain which can
degrade the overall performance.

Updating States: Updating a state is a more involved process; for every user
action, only the fields that have changed in the JSON are dispatched. The
blockchain, however, is append-only and so does not allow stored states to be
modified. Therefore, the latest state is duplicated and the changes are merged.
This modified state is then appended to the blockchain.

Both methods are supported in the current implementation of Share.va. How-
ever, we recommend using the update method when one collaborator’s interface
is lagging. This causes less disruption for collaborators whose interfaces are not
lagging. For example, if a user’s interface is lagging, he would essentially be work-
ing on an older state of the dashboard. Now if he is is five updates behind his
collaborators, then using the append state method would cause collaborators to
receive a state that has the five changes undone and a new change added which is
effectively six changes. On the other hand, when using the update state method,
the collaborators would receive just a single change that may not make sense to
the collaborators since it was based on an older version of the state. While both
methods cause disruptions, using updates is not as jarring as appending states
with a lagging user. This is because with the update method the collaborators
would always receive a single incorrect change while the append method can
cause the collaborators to receive multiple incorrect changes.

4 Blockchain Performance

Before conducting our case study, we tested the response time of the blockchain
while varying the number of users. The results are shown in table 1. These re-
sponse times are much slower than traditional databases and can cause problems
when the frequency of user interactions is very high. Specifically, states can ap-
pear to be rejected when the blockchain receives too many requests before it
finishes creating a new block. Consider the case of one or more users performing
two or more interactions in under one second. As shown in the update method,
it takes the blockchain 1.35 seconds at the very least to create a block. Thus
only the first interaction in the one second period is logged to the blockchain
with the others timing out. Such high response times are unacceptable in highly
interactive environments such as multiplayer games, but as we show in our case
study visual analytics tasks have a significantly higher threshold. Additionally,
asynchronous collaboration does not suffer from these issues as requests to the
blockchain would be infrequent.
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Table 1: The time taken to read and write (with the append and update methods)
a block to the blockchain as the number of collaborators increase.
No. of Users 1 2 3 4 5 6 7 8 9

Read Time (sec) 0.85 0.86 1.21 1.41 1.58 1.75 2.43 13.43 28.23
Append Time (sec) 0.58 0.58 0.59 0.59 0.63 0.63 1.78 7.72 20.49
Update Time (sec) 1.35 1.35 1.35 1.35 1.45 1.47 3.06 17.89 54.12

5 Case Study

To demonstrate and evaluate Share.va, we tested it on a real-world application.
We took an existing dashboard used by social scientists [2] and augmented it with
Share.va. The Share.va enabled dashboard, shown in figure 3, allowed scientists
to load one of many datasets that contain an interaction record of an animal
group and analyze it collaboratively.

5.1 Procedure

In this study, two social science professors (P1 and P2) and their research as-
sistant (A1) who are familiar with the original dashboard used the Share.va
enabled version of the dashboard. They collaboratively explored a new unstud-
ied dataset acquired by them. The study consisted of three sessions. In the first
session participants P1 and P2 performed a joint exploration of the datasets.
The second session was an individual analysis of the data by A1 that was unre-
stricted. This was a deeper analysis than in the first session. In the final session,
P1 and P2 jointly reviewed the dashboard states and insights generated by A1
during session 2. The sessions were conducted over a period of one week with the
participants being allowed to use the interface independently during the course
of the week. The first session lasted for 28 minutes and the third for 42 minutes
and an author moderated the sessions and provided minimal help to the users.
The second session was an independent analysis in which the participant could
take as much time as she wanted. This second session was not moderated but
A1 was able to contact the author for technical support when needed and her
interactions could be reviewed through the blockchain. Prior to the first session,
participants were given a demo of the Share.va enabled dashboard. The demo
showed the participants how to use the various features that support collabora-
tion. After the demo the participants were asked to perform three practice tasks:
change a visual representation, add an annotation and add a note. During the
two sessions with P1 and P2 we recorded their screens and verbal communica-
tions. Additionally, we had a post session interview with the participants and
asked them about their experience. All participants used desktop computers run-
ning with 27 inch screens at a resolution of 1920 by 1080 and ran our tool on a
browser of their choice. Verbal communication was supported by a commercial
VoIP service which is not part of our current system.
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(a) P1’s dashboard (b) P2’s dashboard

Fig. 3: A snapshot of our participants’ dashboards during the case study. Here the
collaborators are synchronizing the data but not the view, this can be observed
in the right panel where (a) shows P1 using the compressed state space and (b)
using the full state space. The single item selected in (a) (gray circular highlight)
maps to 9 items selected in (b).

5.2 Observations

During the first and third sessions which were synchronous collaborations be-
tween P1 and P2, we observed that right before or during an interaction with
the dashboard they always verbally indicated which dashboard item they were
looking at or interacting with. They did this because their mouse pointer’s posi-
tion was not shared due to the high-latency of the blockchain. We also observed
that during the analysis, P1 and P2 would take turns performing a set of in-
teractions and they would often have small discussions between interactions.
The turn taking behavior was primarily due to each participant hypothesizing
an insight and trying to verify it through a set of interactions while the other
participant observed and discussed the changes in the visualization. The small
discussions between interactions actually complimented the blockchain’s high la-
tency as they gave the blockchain enough time to record an interaction before
processing the next request. Finally, we observed that P1 and P2 did not make
use of notes they made handwritten notes instead. Additionally, they only used
annotations when they could not verbally indicate an item’s position.

In the second session, A1 performed an asynchronous analysis which was later
reviewed by P1 and P2 in the third session. As A1 interacted with the dashboard
alone, she did not face any latency issues. All her interactions were recorded and
she did not have to undo or redo any part of her analysis. During her analysis,
she applied multiple filters to the data and annotated visualizations with her
observations at every stage of her analysis. She also made notes for P1 and P2.
During session three, P1 and P2 spent the first half of the session reviewing A1’s
analysis. They first located the start of her analysis recording on the blockchain
using the history glyphs. They then reviewed each of her actions by sequentially
loading each state she created. Again, here one participant loaded the states
while the other just viewed the dashboard and discussed A1 findings. Thus the
blockchain never received two or more concurrent read requests. Also, since they
spent time discussing each state, the blockchain had enough time to process each
read request and was never overloaded.
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6 Discussion

6.1 Latency

The main issue with blockchain is that it is slow due to its computational re-
quirements. Our performance test showed that the blockchain could only allow
a maximum of six users without rendering the system unfit for synchronous col-
laboration. The fastest time to read or write from the blockchain was just above
half a second but on average it was longer. Most groupware applications would
suffer from such a high response time. However, it might be acceptable for C-
VA. Studies in information visualization have shown that most human cognitive
tasks take one second or less [1]. On the other hand, Liu et al. [6] show that
a 500ms delay in an interactive visualization has a significant effect on mouse
movements and brushing but not in other tasks such as zooming and panning.
Delays also cause users to change their interaction strategies. Our study partic-
ipants adapted to delays by resorting to a turn taking behavior as well as filling
time between interactions with discussions. The delays in a blockchain with a
greater number of users are much larger but such delays have not been tested in
C-VA. We hypothesize that users would also change strategies here and we plan
to test this in future work. However, when using Share.va asynchronously, the
study participants did not run into any performance related issues. This leads us
to believe that blockchain might be more suitable for collaborative data analyses
that are asynchronous or turn-based such as the case where a doctor and lab
technician take turns analyzing a patient’s data.

6.2 Space Limitations

The blockchain’s storage constraint is another issue we had to deal with when
designing Share.va. Most implementations support the storage of a few bytes of
data which is insufficient for most C-VA systems. Today data being analyzed
can exceed hundreds of gigabytes thus making it is impossible to store on a
blockchain. In our case study, every user had a local copy of the dataset and
only data transformation functions were shared and stored on the blockchain.
Thus the security and authenticity of the dataset itself is not guaranteed by the
blockchain; instead users need to rely on a third-party to secure the dataset.

6.3 Linearity

Another challenge with applying blockchain to C-VA is that it stores blocks in a
linear manner and it does not support branching. On the other hand, in C-VA at
a certain point analysts may choose to branch off into different paths of analysis.
Due to the linear nature of blockchain only one branch can actively be shared
and appended to the blockchain in real time. To support branching on a single
chain, additional branches would need to be temporarily cached and appended
to the blockchain sequentially at a later stage. This effectively makes the other
branches asynchronous analyses. Thus blockchain is more suitable for collabora-
tive analyses without branching or asynchronous turn-based collaboration.
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7 Conclusion

In this paper we presented Share.va: a proof-of-concept framework that supports
secure C-VA using a blockchain back-end. To the best of our knowledge, this is
the first system to apply blockchain in this fashion. We tested our framework
in a real world scenario by having a group of social scientists use our system
to analyze their data collaboratively. While this study yielded insight in how
our method and system is used in practice, it also revealed some of the system’s
limitations, and of blockchain technology applied for the purpose of C-VA overall.
We found that while our use of blockchain in this way was viable for smaller
numbers of users or for asynchronous collaboration.
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