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Abstract—Color filter array (CFA) interpolation, or 3-band
demosaicking, is a process of interpolating the missing color
samples in each band to reconstruct a full color image. In
this paper, we are concerned with the challenging problem of
multispectral demosaicking, where each band is significantly
undersampled due to the increment in the number of bands.
Specifically, we demonstrate a frequency-domain analysis of
the subsampled color-difference signal and observe that the
conventional assumption of highly correlated spectral bands for
estimating undersampled components is not precise. Instead, such
a spectral correlation assumption is image dependent and rests
on the aliasing interferences among the various color-difference
spectra. To address this problem, we propose an adaptive
spectral-correlation-based demosaicking (ASCD) algorithm that
uses a novel anti-aliasing filter to suppress these interferences,
and we then integrate it with an intra-prediction scheme to
generate a more accurate prediction for the reconstructed image.
Our ASCD is computationally very simple, and exploits the
spectral correlation property much more effectively than the
existing algorithms. Experimental results conducted on two
datasets for multispectral demosaicking and one dataset for CFA
demosaicking demonstrate that the proposed ASCD outperforms
the state-of-the-art algorithms.

Index Terms—Color difference, demosaicking, frequency anal-
ysis, multispectral color filter array, spectral correlation.

I. INTRODUCTION

A. Background

STANDARD color images are usually represented by three
spectral components, namely, red (R), green (G), and

blue (B). However, multispectral imaging systems capture
more than three spectral bands, which means they retain more
information of a scene than standard color imaging systems,
with each band representing a narrow wavelength of visible
light. Due to the increase in the number of bands, multispectral
imaging can reveal much more information, and thus it has
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become very useful in the fields of satellite imaging [1],
computer vision [2], and medical imaging [3].

In recent years, a variety of multispectral imaging systems
have been proposed, with different mechanisms to capture
images. These systems can be classified into three categories
[4]: (i) Single-camera-multi-shot systems [5-6], which capture
images at a high spectral resolution but require multiple shots
to obtain the images, and thus need special equipment, such
as a high-speed lighting system [7], for real-time imaging;
(ii) multi-camera-one-shot systems [8], which capture images
using several cameras with different color filters in one shot,
resulting in a system that is quite complicated as it requires
perfect alignment of multiple cameras; and (iii) single-camera-
one-shot systems [9-14], such as consumer RGB cameras (for
three bands), which overcome the problems of the first two
categories of systems in terms of size, cost, and real-time
imaging. To reduce the production cost, such RGB cameras
use a single image sensor, instead of three sensors, with a
color filter array (CFA). The CFA allows only one color to be
measured at each pixel location, and thus two missing color
elements at each pixel must be estimated from the adjacent
pixels. This process is called CFA interpolation or demosaick-
ing. The most famous CFA is the Bayer CFA [15], which is
shown in Fig.1(a). Single-camera-one-shot systems, such as

(a) Bayer CFA (b) MSFA (c)

Fig. 1. (a) Bayer CFA (US Patent 3971065), (b) 5-band MSFA [4,12],
(c) Schematic spectral sensitivities of different bands [4,12].

RGB cameras, can be extended to multispectral imaging by
replacing the CFA with a multispectral filter array (MSFA),
where more than three spectral bands are subsampled [9-
14]. Fig.1(b) shows a particular 5-band MSFA sensor, and its
schematic spectral sensitivities are shown in Fig. 1(c). Several
other MSFA patterns are shown in Fig. 2 and it can be seen
that due to the increment in the number of bands in the MSFA
pattern, each band is significantly undersampled, which makes
the multispectral demosaicking a challenging problem.

So far practical realizations of MSFA cameras have been
achieved by [10-13]. Geelen et al. [10] designed a camera that
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captures near infra-red bands, whereas Martinez et al.’s [11]
and Monno et al.’s [12] cameras operate in the visible range.
Thomas et al. [13] designed a prototype of a camera which
captures both visible and near infra-red bands on the same
sensor chip. Another architecture for multispectral imaging
using CFA is presented in [14], but it requires four sensors
to capture the spatial and spectral information in a scene.

(a) (b) (c)

(d) (e) (f)

Fig. 2. Several MSFA patterns [9]: (a) BTES [16], (b) Brauers [17], (c)
Uniform [18], (d) Random [18], (e) 4-band pattern, (f) 8-band pattern.

B. Related Works

In this subsection, we provide a brief history of MSFAs and
discuss the related works on MSFA demosaicking.

1) Brief history of MSFA patterns: A comprehensive review
of MSFA sensors was given by Lapray et al. in [9]. Miao et
al. [16] introduced the first systematic way to generate MSFA
patterns for multispectral imaging. They proposed a binary
tree-based generic scheme, which generates MSFA patterns
(Fig. 2(a)) by recursively separating the checkerboard pattern
based on a binary tree decomposition defined by the number
of spectral bands and the probability of the appearance of
each band. Brauers et al. [17] introduced a six-band MSFA
pattern (Fig. 2(b)), which consists of color filter blocks of
dimension 3× 2, while Aggarwal et al. proposed two MSFAs
[18], known as a random MSFA and a uniform MSFA, which
can be generalized to any number of bands. Recently, Monno
et al. [12] proposed a 5-band MSFA pattern based on the
density requirement and the derivative requirement. In this
MSFA pattern, which is shown in Fig. 1(b), the density of
the G-band is higher among all the bands, and it also satisfies
the derivative requirement, where each spectral band must be
arrayed so that derivatives can be calculated at every pixel
location from the raw MSFA data. Fig. 2(e) and Fig. 2(f) shows
a particular 4-band and 8-band MSFA pattern respectively.

2) Related works on MSFA demosaicking: Several demo-
saicking algorithms with the popular CFA pattern [15] have
been proposed in the literature. But very few algorithms ad-
dress the challenging problem of multispectral demosaicking.
One way to reconstruct the undersampled components is to
extend the CFA demosaicking methods to MSFA patterns.
Yasuma et al. [19] used the classical linear interpolation,
Wang et al. [20] extended the classical median filtering to

MSFA demosaicking, and Brauers et al. [17] extended one
of the widely used techniques in CFA demosaicking known
as color-difference interpolation (CDI) [15,31-37]. CDI-based
techniques assume that the color channels have similar edges
or texture structures, and the method in [17] extends this idea
to MSFA demosaicking to reconstruct multispectral images by
taking into account inter-color correlation. These extension-
based MSFA demosaicking algorithms are computationally
very simple and easily extended to all the MSFA patterns,
but their performance is insufficient and produces artifacts.

Miao et al. [21] proposed a generic demosaicking method,
known as the binary tree edge sensing (BTES) method, based
on the MSFA design in [16]. The BTES method uses the
same binary tree that generates the MSFA pattern [16] and
interpolates the missing pixels for each band by utilizing the
edge correlation information. The algorithm iteratively per-
forms edge-sensing interpolation to generate a full multispec-
tral image. Although the BTES method is a generic method
and reconstructs all of the MSFA patterns, its performance
suffers in cases of severely undersampled patterns which have
sparsely sampled bands, such as the pattern in Fig. 1(b).

Monno et al. [4,12,22] proposed several algorithms to
address the interpolation of the MSFA pattern shown in Fig.
1(b). In [4] and [22] they first generated a guided image from
the subsampled (G) band and then used it as a reference
image for the interpolation of other subsampled components.
In [4], they used an adaptive-kernel-based method for the
reconstruction of each component, and then improved it in
[22] by a guided filter. Both of these algorithms ([4],[22])
follow the assumption of color-difference smoothness, i.e., the
color channels have similar edges and texture structures. Thus
these algorithms are image dependent and the reconstructed
results have visible artifacts around the edges. To improve the
performance of [22], the authors developed multiple guided
images in [12] and used them to drive the interpolation of
different bands.

Recently, Wang et al. [23] proposed a linear-interpolation-
based generic MSFA demosaicking scheme inspired by the
mathematical analysis of CFA demosaicking in [24]. Basi-
cally, they combine the linear minimum mean square error
(LMMSE) technique and the residual interpolation method
[25] to get an accurate demosaicking. The LMMSE between
the original and the reconstructed images is achieved by
Wiener estimation and the artifacts are further reduced in
the second step by the residual interpolation method [25].
Mihoubi et al. [26] proposed an MSFA demosaicking method
in which they assume that both the spatial and spectral
correlations are correlated and then combine them to estimate
the missing pixels. Wang et al. [27] extended the DWT-based
CFA methods [32] to MSFA demosaicking by estimating the
low-frequency and high-frequency components of unknown
bands in the wavelet domain. The high-frequency component
is estimated using inter-channel correlation, whereas the low-
frequency bands are interpolated individually and linearly.

In summary, the existing works on MSFA demosaicking
have the following limitations:

1) Classical CFA algorithms, like median filtering, linear
demosaicking, etc., can be easily extended to any MSFA
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pattern and are computationally very simple. However,
the results are not impressive as they produce artifacts.

2) The performance of the methods in [21] and [23] depend
on the pattern and the post-processing step (second
step), respectively. Other demosaicking schemes are
either dependent on spectral correlation [4,22,26,27] or
dependent on spatial correlations [26], and their results
are lacking in terms of quality.

C. Our Contribution
The color-difference interpolation (CDI)-based approaches

[15,31-37] assume that the high-frequency components, such
as edges and textures of different channels, are very similar
or correlated, which makes the color-difference signal a low-
pass signal. These algorithms further assume that applying a
low-pass filter to a subsampled color-difference signal extracts
the color-difference signal, and they take advantage of this
property to estimate the missing samples. These assumptions
have been widely used in the history of CFA demosaicking
because of their low computational consumption. We have
studied these assumptions and observe that they are not valid
for all images, which reduces the overall quality of the
reconstructed image. A similar observation is discussed in [38-
40], but it has not been analyzed properly and is limited to
CFA demosaicking. The main contributions of our paper are
as follows:

1) To overcome the problems in existing MSFA and CFA
demosaicking, we efficiently demonstrate a frequency-
domain analysis of the subsampled color-difference sig-
nal and analyze the conventional assumptions of the
CDI-based scheme to find the conditions under which
they are valid.

2) Based on the frequency-domain analysis, we pro-
pose an adaptive spectral-correlation-based demosaick-
ing (ASCD) algorithm that modifies the assumption of
the CDI technique, and we then integrate it with an intra-
prediction scheme to reconstruct the undersampled com-
ponents. The integration is done on an LMMSE basis to
generate a more accurate prediction for demosaicking.

3) Our approach can reduce the level of artifacts since
it exploits the relationship of inter-color correlation
among the different bands more effectively than existing
algorithms. Moreover, our algorithm is computationally
very simple and can be easily extended to any CFA or
MSFA patterns.

Extensive simulation results demonstrate that the proposed
algorithm achieves the best performance in most cases, both
in the case of CFA demosaicking and MSFA demosaicking,
as compared to the state-of-the-art demosaicking methods. A
preliminary version of this work has been presented in [41]
but is limited to CFA demosaicking.

The remainder of the paper is organized as follows. In
Section II, we formally introduce the assumptions of the CDI-
based algorithm and then analyze them in the frequency-
domain. Section III describes the proposed ASCD scheme,
which exploits the spectral correlations effectively. Simulation
results are shown in Section IV, and concluding remarks are
given in Section V.

II. FREQUENCY-DOMAIN ANALYSIS OF THE COLOR
DIFFERENCE INTERPOLATION (CDI)-BASED TECHNIQUE

A. Overview of the CDI-based Technique and its Assumptions

The CDI-based technique has been used in 3-band demo-
saicking methods to exploit the spectral correlation of images
[15,31-37]. These methods make a key assumption that the
high-frequency components between different spectral bands
are not only correlated but are very similar to each other. Based
on this assumption, they have shown that color-difference
signals (subtracting one band from another) contain mainly
low-frequency components, i.e., color-difference signals are
low-pass signals. We observe, however, that this assumption
is image dependent and may not work for all images.

(a) (b) (c) (d) (e)

Fig. 3. MSFA pattern [12] : (a) GMSFA pattern, (b) RMSFA pattern, (c)
BMSFA pattern, (d) OrMSFA pattern, (e) CyMSFA pattern.

To prove the same, we make an analysis of this assumption
in the frequency-domain for MSFA demosaicking. We choose
a 5-band MSFA pattern for the analysis, which is shown in
Fig. 3. Our analysis can be easily extended to other MSFA
and CFA patterns. Fig. 3. shows that, except for the G band,
all the other spectral bands are significantly undersampled,
which makes multispectral demosaicking a challenging task.
We consider only the reconstruction of the G band and R
band in the analysis, as reconstruction of other spectral bands
may be treated in a similar manner.

A brief overview of the existing CDI-based algorithm is
presented as follows. First we interpolate the green compo-
nent since the G pixels are densely sampled and thus can
preserve high frequencies of the G channel. We denote the
reconstructed green component as Ĝ in our discussion. For
the reconstruction of the red component, the CDI algorithm
estimates the color-difference KR = Rs− Ĝs at the available
R pixels, where Rs and Ĝs denote the R and Ĝ components
sampled at the available R positions, as shown in Fig. 3(b).
The formal definition of KR is presented in (5) in the next
subsection. Each color component, such as R (or G), can
be decomposed into a low-frequency term, Rl (or Gl), and a
high-frequency term, Rh (or Gh), and the reason behind the
color-difference phenomenon can be interpreted in the two
assumptions made by CDI.

1) Correlation Assumption (Assumption-1): The first as-
sumption of the CDI technique is about the similarity
of inter-color high-frequency components [15, 31-37],
i.e., Rh ≈ Gh, based on which we have

R−G = (Rl +Rh)− (Gl +Gh) ≈ (Rl −Gl). (1)

The difference signal (R − G) does not contain high-
frequency components, and it is therefore called a low-
frequency signal (Rl −Gl).
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2) Low-Pass Assumption (Assumption-2): Based on this
analysis, CDI further assumes that the low-frequency
signal (Rl−Gl) can be estimated from the corresponding
subsampled versions, as given below:

ζ{KR} = ζ{Rs − Ĝs} ≈ Rl − Ĝl, (2)

where ζ{.} denotes low-pass filtering, i.e., the low-pass
filtering of Rs and Ĝs gives the low frequencies of R
and Ĝ respectively.

Using both the assumptions in (1) and (2), we can also write
ζ{KR} ≈ (Rl− Ĝl) ≈ (R− Ĝ). Therefore, if an interpolated
Ĝ is fully available by some method, then the red component
interpolated by the CDI method can be recovered using the
assumptions in (1) and (2),

R̂CDI = ζ{KR}+ Ĝ ≈ (Rl − Ĝl) + Ĝ ≈ R. (3)

Here R̂CDI refers to the red component reconstructed by the
CDI method. We first make an analysis of these assumptions in
the frequency-domain, and based on this analysis, we propose
a demosaicking scheme that works for all sets of images.

B. Frequency-Domain Analysis of the Subsampled Color Dif-
ference Signal

Frequency-domain analysis [42-48] emerged as an outstand-
ing tool to address the issues of CFA demosaicking, and
has also been extended to other problems, such as sub-pixel
downsampling [49-50]. This tool has been mainly used to
study the characteristics of CFA patterns either to recover the
full demosaicked image or to design an optimal CFA pattern,
as shown by Hirakawa et. al. [43]. However, in this paper,
we perform frequency-domain analysis of the subsampled
color-difference signal (KR), and will particularly analyze
the validity of both of the assumptions of the CDI-based
technique.

Let H represent an original high-resolution input image of
dimension M × N, where H ∈ {R,G,B,Or,Cy}. We
use HMSFA to represent the incomplete image obtained by
applying the corresponding MSFA pattern to the original high-
resolution H image. For instance, RMSFA is obtained by
applying the corresponding MSFA pattern (Fig. 3(b)) to the
original R image. A 4× 4 block of RMSFA will always have
two red components, as shown in Fig. 3(b), and the missing
color components in RMSFA are represented as zero. We can
write RMSFA in terms of R, and it is given as

RMSFA(i, j) =


R(i, j), for

(
i = 4k − 3, j=4l − 2

)
and

(
i = 4k − 1, j=4l

)
0 otherwise,

(4)
where R(i, j) is the red component at the (i, j)th co-ordinate
of the image and k = 1, .....,M/4, l = 1, ....., N/4 and i =
1, .....,M , j = 1, ....., N . For the analysis of the subsampled

color-difference signal, the color-difference KR = RMSFA −
Ĝ is estimated at the available R pixels and is given by

KR(i, j) =


RMSFA(i, j)− Ĝ(i, j),

for
(
i = 4k − 3, j=4l − 2

)
and

(
i = 4k − 1, j=4l

)
0 otherwise.

(5)
We can further write (5) as

KR(i, j) = (R(i, j)− Ĝ(i, j))∆R
MSFA(i, j), (6)

where ∆R
MSFA(i, j) is the modulation signal for the color-

difference signal and is given by

∆R
MSFA(i, j) =

1

16
(1 + sin

πi

2
)(1− (−1)i)(1− cosπj

2
)(1 + (−1)j)

+
1

16
(1− sinπi

2
)(1− (−1)i)(1 + cos

πj

2
)(1 + (−1)j).

(7)

Taking the discrete-time Fourier transform (DTFT) of (7), we
get

∆̃R
MSFA(u, v) =

1

8
∆(u)T



−a
4

0
a

2
0
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0
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4


∆(v),

(8)
where the DTFT is denoted as [̃.], ∆(u) =

[δ(u +
1

2
), δ(u +

1

4
), δ(u), δ(u − 1

4
), δ(u − 1

2
)]T , ∆(v) =

[δ(v+
1

2
), δ(v+

1

4
), δ(v), δ(v− 1

4
), δ(v− 1

2
)]T , a = ejπ/2/8,

and [.]T denotes transposition. Taking the Fourier transform
of KR in (6) and using the result of (8), we get

K̃R(u, v) = 1
8 .

1T
3 .


3a

2
K̃(u+ 1

4 , v + 1
4 ) 0

3a

2
K̃(u+ 1

4 , v −
1
4 )

0 K̃(u, v) 0
3a

2
K̃(u− 1

4 , v + 1
4 ) 0

3a

2
K̃(u− 1

4 , v −
1
4 )

13,

(9)

where K̃(u, v) = R̃(u, v) − ˜̂
G(u, v) and 13 = [1 1 1]T.

We only show the 3 × 3 spectrum in (9) because the rest of
the spectrum appears periodically in the (u,v) space.

We evaluate the magnitude of K̃R(u, v) and show all
13 replicated spectra of K̃ in Fig. 4. Let A= 1/4 be the
horizontal and vertical shift of the spectra such that the main
spectrum is at location (0, 0), the nearest diagonal spectra
are at (+A,−A), (−A,+A) and the nearest anti-diagonal
spectra are at (+A,+A), (−A,−A). We can see that the main
spectrum at the (0, 0) location is free from aliasing in the
horizontal and vertical directions, but it may be affected by
the diagonal and anti-diagonal spectra. If we apply a low-pass
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filter (ζ{.}) on K̃R in (9), it may not exactly give the low
frequencies of K̃ and thus violates the Low-Pass Assumption
(Assumption-2) of the CDI algorithm. This assumption remains
valid only when there is no interference between the diagonal
and the center spectra, and only in such a special case does
applying a low-pass filter (LPF) on K̃R give exactly the low
frequency of K̃.

Fig. 4. Frequency spectra of sub-sampled color-difference signal (K̂R(u, v)).

To get a better insight into the interferences, we plot some
possible cases of interference caused by the diagonal and
the center spectra in Fig. 5. The blue curve represents the
center spectrum (K̃(u, v)) at the (0, 0) location, and the red
curve represents the diagonal spectra at (+A,-A) in K̃R in (9).
Fig. 5(a) depicts the case when the Low-Pass Assumption is
satisfied, i.e., the center spectrum has no interference with the
diagonal spectra, and thus applying an LPF on K̃R will extract
K̃. Fig. 5(b) suggests the case when the center spectrum has
interference with the diagonal spectra, and the red stripes
under the red curve within the LPF (f ∈ (0, fc)) indicate
the aliasing interference. In such a case, applying the LPF
on K̃R will give a low-pass version of K̃(u, v) with aliasing
interference and thus violates the Low-Pass Assumption.

(a) (b)

Fig. 5. Spectrum interference analysis: (a) no interference, (b) interference.

In summary, there will be no interference among the spectra
only when the spectrum K̃ is compact, which implies that
the color-difference signal (K) has to be a low-frequency
signal, i.e., the Correlation Assumption (Assumption-1) has
to be satisfied. The Correlation Assumption is possible only
when the high-frequency components between different bands

TABLE I
AVERAGE CORRELATION COEFFICIENT (ρ) BETWEEN HIGH-FREQUENCY

COMPONENTS OF DIFFERENT BANDS

Dataset ρRhGh
ρBhGh

ρOrhGh
ρChGh

Monno (5-band) 0.57 0.56 0.67 0.72
Cave (5-band) 0.82 0.81 0.88 0.75
McMaster (3-band) 0.57 0.55 – –
Kodak (3-band) 0.79 0.77 – –

are highly correlated. We observe that such an assumption
is image dependent and remains valid only for a limited set
of images. For different image datasets, we have calculated
the correlation coefficient (ρ) between the high-frequency
components of Gh with different bands, and the results are
shown in Table I.

For this particular experiment, we apply the Canny edge
detection method on the different bands to extract the
edges/textures and consider them as a high-frequency compo-
nent of the bands. From Table I, we can see that the average
correlation coefficient is not around 1; some coefficients are
higher (e.g., Kodak), while some are lower (e.g., McMaster). A
similar observation was drawn for different datasets by Wang
et al. in [27], where they analyzed the correlation coefficient
between the high-frequency sub-bands in the wavelet domain.

Based on this observation and analysis, we propose to
modify the Low-Pass Assumption in order to estimate the
distortion of the CDI method in terms of spectral correlation.
We can then show the effect of both of the assumptions on
the estimated distortion and then propose an adaptive spectral-
correlation-based demosaicking scheme that works for all
types of images.

C. Generalized Low-Pass Assumption of CDI Method

We propose to generalize the Low-Pass Assumption of the
CDI method in terms of spectral correlation, i.e., applying the
LPF on the KR image gives the low-pass version of K with
some interference artifacts, as shown in Fig. 5(b):

ζ{KR} = ζ{Rs − Ĝs} = (Rl − Ĝl) + (R− Ĝ)AI , (10)

where (R− Ĝ)AI refers to the diagonal/anti-diagonal spectra
that cause interferences with the center spectrum. Assuming
the LPF operation ζ is linear, we can further write (10) as

ζ{Rs− Ĝs} = ζ{Rs}− ζ{Ĝs} = (Rl +RAI)− (Ĝl + ĜAI),
(11)

where RAI and ĜAI are the aliasing interference components
occurring when the LPF (ζ) is applied on the individual
subsampled components Rs and Ĝs respectively. Comparing
(10) and (11), we can write (R − Ĝ)AI = RAI − ĜAI . If
there is no interference on the center spectrum in Fig. 5(b),
then (R− Ĝ)AI = 0, which implies either both RAI and ĜAI
are zero or (RAI − ĜAI) = 0.

D. Distortion Analysis of CDI Method in Terms of Spectral
Correlation

In this subsection, we estimate the distortion of the CDI
method in terms of spectral correlation to study the effect of
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both assumptions on it. The interpolated R̂CDI , by substituting
(11) into (3), can be written as

R̂CDI = ζ{Rs − Ĝs}+ Ĝ = (Rl +RAI) + (Ĝh − ĜAI),
(12)

where Ĝh (or Ĝ − Ĝl) is the high-pass filtered image of the
Ĝ component. The distortion (DCDI ) between the original
R component and interpolated R̂CDI component can be
estimated as

DCDI = R− R̂CDI = R− (Rl +RAI)− (Ĝh − ĜAI)
=⇒ DCDI = (Rh −RAI)− (Ĝh − ĜAI),

(13)

where Rh = R−Rl is the high-pass filtered image of the R
component. In the case of no interference artifacts, i.e., (RAI−
ĜAI) =0, the above equation will reduce to DCDI = Rh−Ĝh.
To simplify the process and without loss of generality, we
denote Rh− = Rh−RAI , Ĝh− = Ĝh− ĜAI , substitute them
back into (13), and take the square of both sides to get

D2
CDI = (Rh−−Ĝh−)2 = R2

h−+Ĝ2
h−−2×Rh−×Ĝh− . (14)

Now Ĝh− and Rh− contain high-frequency components and
DCDI is the residual image. As a well-known fact, high-
frequency components and a residual image can be modeled as
a zero mean Laplace distribution [49-51], i.e., E[DCDI ] = 0,
E[Rh− ] = 0, and E[Ĝh− ] = 0. In such a case, the variance
can be given by σ2

Rh−
= E[R2

h− ], σ2
Ĝh−

= E[Ĝ2
h− ] and

σ2
DCDI

= E[D2
CDI ] respectively. Then the average distortion

is calculated by taking the expected value on both sides of
(14), i.e.,

E[D2
CDI ] = E[R2

h− ] + E[Ĝ2
h− ]− 2× E[Rh− × Ĝh− ]. (15)

The correlation coefficient estimated between Ĝh− and Rh−

is given by ρRh− Ĝh−
= E[Rh− × Ĝh− ]/(σRh− ×σĜh−

), and
the above equation becomes

σ2
DCDI

= σ2
Rh− +σ2

Ĝh−
−2×σĜh−

×σRh−×ρRh− Ĝh−
. (16)

The above equation is the variance of the distortion ob-
tained by the CDI method for the R component. In (16),
ρRh− Ĝh−

∈ (−1,+1), and it tells the similarity between the
high-frequency components of two channels. A higher value of
ρRh− Ĝh−

means the edge structures among the components
are quite similar, and a smaller ρRh− Ĝh−

means the edges
are not similar. If the correlation coefficient among the bands
increases, then σ2

DCDI
decreases. In the case of no aliasing

interference, i.e., (RAI − ĜAI) =0, then DCDI = (Rh− Ĝh),
and (16) can be reduced to

σ2
DCDI

= σ2
Rh

+ σ2
Ĝh
− 2× σĜh

× σRh
× ρRhĜh

. (17)

In Table II, we show the distortion of the CDI method
(σ2
DCDI

) in both the case of aliasing and non-aliasing. We
can observe that poor spectral correlation leads to higher
distortions in both cases. Thus we propose the following to
reduce the effects of the two assumptions of the CDI-based
scheme:

1) To reduce the effect of poor correlation among the
bands, i.e., when the Correlation Assumption fails, we

TABLE II
EFFECT OF CORRELATION COEFFICIENT ON CDI METHOD

Aliasing No Aliasing
ρR

h− Ĝ
h−

= −1 (σR
h− + σĜ

h−
)2 (σRh

+ σĜh
)2

ρR
h− Ĝ

h−
= 0 σ2

R
h−

+ σ2
Ĝ

h−
σ2
Rh

+ σ2
Ĝh

ρR
h− Ĝ

h−
= 1 (σR

h− − σĜ
h−

)2 (σRh
− σĜh

)2

propose to interpolate the undersampled components
independently, without using the other bands (intra-
prediction).

2) To reduce the effect of aliasing interference among the
spectra, i.e., when the Low-Pass Assumption fails, we
propose to use a differently shaped LPF that can reduce
the effect of aliasing and preserve more frequencies than
the traditional rectangular LPF.

We then integrate the intra-prediction scheme with the mod-
ified CDI on an optimal basis to generate a more accurate
prediction for reconstruction of undersampled components.

III. PROPOSED ADAPTIVE SPECTRAL-CORRELATION-
BASED DEMOSAICKING (ASCD) ALGORITHM

In this section, we present our proposed ASCD algorithm
and choose the 5-band MSFA pattern, which is shown in Fig.
3, for the explanation. Under a similar rationale, our proposed
method can be generalized to other MSFA patterns. Since the
density of the G pixels is much higher than that of other
bands, we first address the reconstruction of the green (G)
component and then use it to drive the interpolation of the
other undersampled bands.

A. Interpolation of G Component

We use GMSFA to represent the incomplete image obtained
by applying the corresponding MSFA pattern (Fig. 3(a)) to
the original high-resolution G image, where a 2 × 2 block
of GMSFA will always have two green components, and the
missing color components in GMSFA are represented as zero.
We can write GMSFA in terms of G, and it is given as

GMSFA(i, j) = G(i, j)∆G
MSFA(i, j), (18)

where ∆G
MSFA(i, j) is the modulation function, and it is given

as

∆G
MSFA(i, j) =

1

4
(1− (−1)i)(1− (−1)j)

+
1

4
(1 + (−1)i)(1 + (−1)j).

(19)

Using a similar derivation to (8), the Fourier transform of
GMSFA in (18) can be written as
G̃MSFA(u, v) = 1

2 .

13
T.


G̃(u+ 1

2 , v + 1
2 ) 0 G̃(u+ 1

2 , v −
1
2 )

0 G̃(u, v) 0

G̃(u− 1
2 , v + 1

2 ) 0 G̃(u− 1
2 , v −

1
2 )

 .13.

(20)
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We evaluate the magnitude of G̃MSFA(u, v), and it is shown
in Fig. 6(a). We can see that there are five replicated spectra
of G̃. Let A = 1

2 be the horizontal and vertical shift of the
replicated spectra in (20) such that the center spectrum is at
location (0,0). The horizontal and vertical shift in G̃MSFA

(A = 1
2 ) is two times more than in K̃R(u, v) (A = 1

4 ) in (9),
and thus we can say that the frequency localizations of G̃ are
highly separated from each other. We can see that a rectangular
filter can extract the center spectrum, but we observe that a
circular filter can reduce the aliasing effect much better than
the rectangular filter and thus leads to better results.

In Fig. 6(a) and Fig. 6(b), we show both a rectangular and
circular LPF respectively. In both cases, there is no aliasing in
the horizontal and vertical frequency, but there can be aliasing
among the diagonal spectra. It can be theoretically shown that
a circular filter can extract a higher passband area of the center
spectrum than the rectangular filter. The other filter that can
be used to retain more frequency of the center spectrum is a
band-pass filter, as discussed in [48]. In the band-pass filter,
we need to manually select f based on the image content.
For simplicity, we choose a circular LPF in the simulation. In
practical implementation, one can chose a butter-worth filter of
order n for the implementation of different LPFs. If the value
of n in the butter-worth filter is kept 1, the LPF shows a smooth
transition at the cut-off frequency and limits the artifacts.
When the value of n increases the transition gets sharper. One
can also consider the Gaussian filter with different σ values
for the implementation of different LPFs.

(a) (b)

Fig. 6. Filter study: (a) rectangular filter, (b) circular filter.

The larger the cut-off frequency, the higher the passband
area of the center spectrum that will be retained, and thus a
better reconstruction of G̃(u, v) can be achieved. Since the
magnitudes of the spectra in (20) are equal, we choose the
cut-off frequency for the circular filter as half of the distance
between the center spectrum and the diagonal spectrum, i.e.,
the cut-off frequency is given as

√
A2 +A2/2 = A/

√
2.

Choosing a circular filter or band-pass filter may not totally
eliminate the aliasing effect on the center spectrum, but it can
reduce the effect of aliasing much better than the traditional
rectangular LPF and thus leads to better results. We use the
circular filter in (9) as well to extract the color-difference
spectrum (K̃) to reduce the effects of aliasing interferences,
and thus address the issue of the Low-Pass Assumption of
the CDI method. In a similar way, we compute the cut-off
frequency in (9) to extract K̃ as it is done in (20).

B. Interpolation of Other Components

Based on the frequency-domain analysis of the assumptions
of the CDI method in the previous section, we observe that the
method is highly reliant on a strong correlation coefficient, and
in the case of poor correlation, it fails to work. Therefore, we
propose an adaptive spectral-correlation-based demosaicking,
which incorporates an intra-prediction scheme (to be analyzed
in Section III-B (1)) for the poorly-correlated case and the
CDI method for the highly-correlated case, so as to make a
better reconstruction.

1) Analysis of intra-prediction based interpolation method:
The simplest way to do multispectral demosaicking is to apply
a LPF to each undersampled band independently, without us-
ing the other bands. We denote the interpolated red component
by an independent LPF as R̂LPF , and it is given as

R̂LPF = ζ{Rs} = Rl +RAI . (21)

We use a circular LPF for interpolation in (21) to reduce
the effect of aliasing and keep the same cut-off frequency as
used in (10), and (11) for the CDI method. Thus RAI in (21)
(aliasing interference component) also remains the same as it
is in (11). The distortion between the original R component
and the interpolated R̂LPF component can be estimated as

DLPF = R− R̂LPF = R−Rl −RAI = Rh −RAI = Rh− ,
(22)

where Rh = R − Rl is the high-pass filter output of the R
component. Assuming DLPF follows the Laplace distribution
[49-51] with zero mean, i.e., E[DLPF ] = 0, then the variance
of the final distortion (σ2

DLPF
) is equal to the variance of Rh−

(σ2
Rh−

), i.e.,

σ2
DLPF

= E[(R− R̂LPF )2] = E[R2
h− ] = σ2

Rh− . (23)

Here σ2
DLPF

is the variance of the distortion obtained when an
LPF is applied to an undersampled component independently,
without using the other bands.

2) Analysis of the proposed demosaicking scheme: The
proposed ASCD algorithm makes judicious use of both the
CDI method and the independent LPF method by taking into
account the spectral correlation. We first compare the perfor-
mance of both methods by analyzing the spectral correlations,
and based on this analysis, we then propose to optimally
combine both schemes to generate a more accurate prediction
for reconstruction.

By comparing σ2
DCDI

in (16) and σ2
DLPF

in (23), we
can write the distortion of the CDI method in terms of the
distortion of the independent LPF method, and it is given as

σ2
DCDI

= σ2
DLPF

+ σĜh−
× (σĜh−

− 2× σRh− × ρRh− Ĝh−
).

(24)
We know that σĜh−

> 0, and if σ2
DCDI

< σ2
DLPF

, it implies
that the CDI method has lower distortion than the independent
LPF method. In such a case, from (24), we can write

σĜh−
− 2× σRh− × ρRh− Ĝh−

< 0,

=⇒ ρRh− Ĝh−
> 0.5× σĜh−

/σRh− .
(25)

If the above condition is satisfied, then we can say that the CDI
method can achieve a better prediction than the independent
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LPF method by exploiting the correlation property effectively;
otherwise we should use the independent LPF method for
reconstruction to increase the prediction accuracy of the demo-
saicking. By rearranging the terms in (25), we have generalized
the condition for both cases, and it is shown in (26):

ρRh− Ĝh−
×σRh− /σĜh−

=

{
> 0.5 if σ2

DCDI
≤ σ2

DLPF

< 0.5 if σ2
DCDI

> σ2
DLPF

.
(26)

The condition in (26) plays a crucial role in determining
which method should be used for reconstruction. In view
of this observation, we propose a linear combination of the
LPF method and CDI method on a block-by-block basis to
generate a more accurate prediction for demosaicking, and
optimal weights are estimated in a LMMSE sense for each
block. We denote the proposed interpolated red component by
R̂ASCD, and it is expressed as

r̂ASCD = w1r̂LPF + w2r̂CDI . (27)

Here r̂ASCD ∈ R̂ASCD is the interpolated block of size m×
n, and r̂LPF ∈ R̂LPF and r̂CDI ∈ R̂CDI are reconstructed
blocks of the same size obtained by the LPF method and CDI
method respectively. w1 and w2 are the weighted coefficients
for the combinations. Thus the distortion (dASCD) between
the original block (r ∈ R) and the interpolated block (r̂ASCD)
can be written as

dASCD = r − r̂ASCD = r − (w1r̂LPF + w2r̂CDI)

=⇒ dASCD = w1dLPF + w2dCDI .
(28)

Here dLPF ∈ DLPF and dCDI ∈ DCDI are the distorted
blocks obtained by the LPF and CDI methods respectively. To
obtain the optimal weights (w1, w2) in the LMMSE sense, the
problem can be formulated as follows:

min
w1,w2

E[d2ASCD]

s.t
∑
i=1,2

wi = 1.
(29)

To minimize the residual energy (E[d2ASCD]) of each block,
we differentiate it with respect to w1 and w2, and the optimal
weights can be expressed as{

w1 = E[dCDI(dCDI − dLPF )]/E[(dCDI − dLPF )2],

w2 = E[dLPF (dLPF − dCDI)]/E[(dCDI − dLPF )2].
(30)

By substituting (30) into (27), we can efficiently interpolate
the missing samples of the block for the red component.
Unfortunately, to estimate dLPF and dCDI in (30), we need
the original block (r), which is not available in practice. In
our experiments, we propose to use the resultant image of
an existing method as an initialization to our algorithm. We
choose the method in [12] as it is computationally very simple
and has already been implemented in the hardware set up in
[12]. However, other existing algorithms could also be chosen
for the initialization, and this is discussed (Table V) in the
next section.

We find that the optimal weights (w1, w2) satisfy the
condition in (26), and this validates the efficiency of the
proposed ASCD method. A brief description is as follows:
We know dLPF = Rh− from (22), and substituting it
into (14) results in dCDI = dLPF − Ĝh− , which implies
dLPF − dCDI = Ĝh− . Substituting both of them into
(30) and using the definition of the correlation coefficient
(ρRh− Ĝh−

= E[Rh− × Ĝh− ]/(σRh− × σĜh−
)) and variance

(σ2
Ĝh−

= E[Ĝ2
h− ]), we can write w2 in (30) as

w2 = E[Rh−Ĝh− ]/E[Ĝ2
h− ] = ρRh− Ĝh−

× σRh− /σĜh−
.

(31)
Now suppose the correlation coefficient among

Rh− and Gh− is very high. This implies that the
Correlation Assumption of the CDI method is satisfied,
and thus we can say that the CDI method can do a better
reconstruction than an intra-prediction method, i.e., we can
write σ2

DCDI
< σ2

DLPF
. In this case the CDI method should be

given more weight than the independent LPF method in (27)
for effective utilization of the spectral correlation property. So
by comparing (26) and (31) in the case of σ2

DCDI
< σ2

DLPF
,

we get w2 > 0.5 and w1 = 1 − w2 < 0.5, which validates
that the CDI method is given more weight in (27). A similar
analysis can be drawn when the correlation among the bands
is poor, i.e., when the Correlation Assumption fails. From
the above analysis, we can say that the proposed algorithm
is adaptive to spectral correlation and assigns the optimal
weights judiciously to both of the methods.

C. Distortion Comparison of LPF, CDI, and Proposed ASCD

The proposed ASCD algorithm has the potential to work
well, even in the case of poor spectral correlation. To prove
this, we express the distortion of the proposed ASCD in terms
of the spectral correlation. Substituting dLPF = Rh− , dCDI =
Rh− − Ĝh− , and w1 + w2 = 1 into (28), we can write

dASCD = Rh−−w2Ĝh− , d2ASCD = (Rh−−w2Ĝh−)2. (32)

Taking the expected value on both sides, we get

E[d2ASCD] = E(R2
h−) + w2

2E(Ĝ2
h−)− 2w2E(Rh−Ĝh−).

(33)
Using the result of (31), i.e., E(Rh−Gh−) = w2 × E[Ĝ2

h− ],
and incorporating it into the above equation, we get

E[d2ASCD] = E(R2
h−) + w2

2E(Ĝ2
h−)− 2w2

2 × E[Ĝ2
h− ]

=⇒ E[d2ASCD] = E(R2
h−)− w2

2E(Ĝ2
h−).

(34)

Since we know E[R2
h− ] = σ2

Rh−
and E[Ĝ2

h− ] = σ2
Ĝh−

, and
substituting w2 from (31) into the above equation, we get

σ2
DASCD

= σ2
Rh− − (ρRh− Ĝh−

× σRh− /σĜh−
)2σ2

Ĝh−

=⇒ σ2
DASCD

= σ2
Rh− (1− (ρRh− Ĝh−

)2).
(35)

We plot a curve of σ2
DLPF

given in (23), σ2
DCDI

shown in
(16), and σ2

DASCD
as a function of the correlation coefficient,

and it is shown in Fig. 7. In the curve, the distortion of the in-
dependent LPF method remains constant as it is not dependent
on other bands during reconstruction, while the distortion of
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 8. Visual analysis of weight (w2) map for the CHINADRESS image in the Monno Dataset: (a) high-frequency component of R band, (b) high-frequency
component of G band, (c) correlation coefficient map of (a) and (b), (d) optimal weight (w2) map. Bottom row is a zoomed-in version of the red box in (a).

Fig. 7. Distortion analysis of methods in terms of correlation coefficient.

the CDI method is much higher in the case of poor correlation
and then decreases with an increase of the correlation among
the bands. We can see that only after a certain point does the
CDI method work better than the independent LPF method.
This implies that the CDI method can work only when the high
frequencies of different spectral bands are highly correlated,
whereas the distortion of the proposed method is a downward
parabola, which is maximum at zero correlation and works
well at all correlation coefficients.

D. Algorithm Steps

In summary, the main steps of the algorithm are as follows:
1) The green component (Ĝ) is interpolated by using a

circular filter to get a precise reconstruction.
2) To interpolate the missing samples of a block in the

red component, its corresponding r̂CDI and r̂LPF are
computed. To compute r̂CDI , we use the circular filter,
as shown in Fig. 4, to suppress the aliasing interference
artifacts in (9). The same filter is used with the same
cut-off frequency for computing r̂LPF in (21) by the
independent LPF method (intra-prediction).

3) Then the optimal weighted parameters (w1, w2) are
calculated using (30), and r̂ASCD is estimated from (27).

4) Step 2 and step 3 are repeated to reconstruct the whole
image.

In a similar manner, other undersampled components can
likewise be reconstructed efficiently.

IV. SIMULATION RESULTS AND DISCUSSION

We implement the proposed algorithm, test its performance
on different datasets, and compare the results with different
state-of-the-art algorithms. For the evaluation of the 5-band
demosaicking methods, we use two standard multispectral
image datasets, the Cave dataset [19] and Monno dataset [12].
The Cave dataset consists of 31-band multispectral images of
32 scenes, and the image size is 512 × 512. These 31-band
images are acquired at every 10 nm from 400 nm to 700 nm,
and the ground-truth 5-band images are simulated from these
31-band images. The other dataset is the Monno dataset [12],
which consists of 5-band multispectral images of 12 scenes,
and the image size is 1368 × 1800. For CFA demosaicking,
we test the performance of the proposed algorithm on the
IMAX dataset [39] since it is commonly used for evaluating
performance, and it contains 18 test images. All three datasets
consist of images having highly textured regions as well as
smooth regions, and thus the efficiency of the demosaicking
algorithms can be tested thoroughly.

A. 5-band Demosaicking

For the performance comparison, we first down-sample a 5-
band ground truth image according to the MSFA pattern given
in Fig. 1(b) and then conduct the demosaicking process by
various methods. We also show the performance of different
methods on the MSFA pattern shown in Fig. 2(a). The number
of green and cyan samples are identical in both the MSFA
patterns, whereas the number of samples is changed for other
colors. We follow a similar strategy for the reconstruction
of undersampled components for the MSFA pattern in Fig.
2(a). We use CIE D65 (daylight) [52] illumination for the
evaluation. Our proposed algorithm is compared with state-of-
the-art demosaicking methods: practical one-shot multispectral
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TABLE III
AVERAGE PSNR (IN DB) RESULTS OF THE MONNO AND CAVE DATASETS (HIGHEST PSNR IS HIGHLIGHTED IN BOLDFACE).

Monno Dataset Cave Dataset
MSFA Pattern Algorithm R G B Or C Mean R G B Or C Mean

MSFA [12]

BTES [21] 45.73 47.90 43.64 44.72 41.39 44.67 42.60 46.54 40.46 39.41 37.84 41.37
LI [23] 46.91 48.45 44.96 45.82 42.90 45.80 43.79 47.05 41.05 40.65 39.12 42.33
IID [26] 52.40 48.48 47.10 49.61 45.95 48.72 44.10 46.31 43.34 43.12 42.52 43.87
GF [22] 52.70 49.02 47.23 50.83 46.95 49.34 44.61 47.65 43.31 42.13 41.25 43.79
POS [12] 52.13 48.58 47.97 50.70 46.49 49.17 45.36 48.06 43.96 44.75 44.69 45.36
PROPOSED 54.64 51.87 47.88 51.72 47.80 50.78 45.81 47.85 44.94 45.20 44.60 45.68

MSFA [16]

BTES [21] 43.35 47.89 40.04 47.92 41.35 44.10 39.26 46.54 37.30 42.11 37.84 40.61
LI [23] 45.52 48.45 41.19 49.21 42.91 45.45 40.22 47.04 38.19 43.32 39.11 41.57
IID [26] 50.30 48.48 44.56 51.32 46.96 48.32 41.95 46.32 39.42 44.18 42.50 42.87
GF [22] 50.18 49.05 38.83 53.43 46.90 47.67 41.67 47.65 38.83 44.43 41.27 42.77
POS [12] 50.72 48.54 46.59 53.17 46.50 49.10 43.59 48.06 41.81 45.02 44.69 44.63
PROPOSED 52.95 51.87 46.45 54.16 47.84 50.65 44.05 47.85 42.79 45.86 44.60 45.03

(a) SPONGE (sRGB) (b) ORIGINAL (c) GF (d) BTES

(e) LI (f) IID (g) POS (h) PROPOSED

Fig. 9. Visual comparison of Or band of SPONGE image in Cave dataset. (Gamma correction is applied for the display.)

demosaicking (POS) [12], BTES [21], guided-filter (GF) [22],
linear interpolation (LI) [23], and iterative intensity difference
(IID) [26]. We show both the peak signal to noise ratio (PSNR)
and structural similarity (SSIM) [53] for quantitatively evalu-
ating the objective performance of the demosaicking process.
For fair comparison, we also investigate the subjective quality
of the reconstructed image obtained from these methods.

The proposed ASCD algorithm adaptively assigns higher
weights to the CDI scheme in the case of higher spectral
correlation, whereas in the case of lower spectral correlation it
assigns higher weights to the intra-prediction scheme in (27)
to achieve an accurate prediction. In Fig. 8, we present a visual
analysis of the CHINADRESS image (Fig. 10) to support the
rationale of our algorithm. Fig. 8(a) and 8(b) are the high-
frequency components of the R and G band respectively,
where we can observe that most of the edges/textures are not
similar to each other and have different orientations (see (e)
and (f) for better visual analysis). We also compute the spectral
correlation or correlation coefficient of these two components,
and this is shown in Fig. 8(c), where the red dots denote the
correlated edges and the blue dots denote the uncorrelated
edges. Hence we can see that the spectral bands are not highly
correlated, and the Correlation Assumption of the CDI method
fails in such cases. Thus any algorithm that is based on such an
assumption reduces the quality of the reconstructed image. In

Fig. 8(d), we show the proposed optimal weight (w2 in (30))
map, which assigns smaller weights to the CDI scheme in the
case of uncorrelated edges, whereas in the case of correlated
edges, it assigns higher weights. Thus we can say that the
proposed ASCD is adaptive to the spectral correlation.

We can see, however, some inconsistencies between Fig.
8(c) and (d) at the top-right region, where high weights are
assigned for low correlation. The reason behind this is as
follows: In Fig. 8(b), we can see that there is no high-
frequency (HF) component at the top-right region of the G
band, which implies that the standard deviation of the HF
component of the G band (σĜh−

) in that region is a small
number (≈ 0). If we substitute a small value of σĜh−

into
(31), we get a higher w2 in that region. This is why there are
inconsistencies in that region; however, they will not affect
the performance of the proposed algorithm. We can make
this conclusion because, intuitively, in the top-right region, for
the reconstruction of the R band, there is no use of G band
since the HF component of the G band is zero. Thus, we only
need an intra-prediction scheme for the reconstruction in that
region. This intuition holds true in the case of proposed ASCD
method and it can be explained as follows: since w2 ≈ 1
and w1 ≈ 0 in that region, substituting these weights into
(27) results r̂ASCD ≈ r̂CDI ≈ r̂LPF + Ĝh− ≈ r̂LPF . Thus,
we can see that our algorithm satisfies the intuition that an
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TABLE IV
AVERAGE SSIM RESULTS ON THE MONNO AND CAVE DATASET (HIGHEST SSIM IS HIGHLIGHTED IN BOLDFACE).

Monno Dataset Cave Dataset
MSFA Algo. R G B Or C Mean R G B Or C Mean

MSFA [12]

BTES [21] 0.9598 0.9934 0.9574 0.9781 0.9557 0.9689 0.9724 0.9801 0.9710 0.9610 0.9524 0.9674
LI [23] 0.9610 0.9937 0.9611 0.9801 0.9641 0.9720 0.9780 0.9889 0.9791 0.9671 0.9612 0.9749
IID [26] 0.9891 0.9937 0.9797 0.9859 0.9780 0.9843 0.9795 0.9874 0.9802 0.9701 0.9807 0.9796
GF [22] 0.9899 0.9943 0.9804 0.9939 0.9805 0.9878 0.9805 0.9910 0.9801 0.9770 0.9790 0.9815
POS [12] 0.9889 0.9939 0.9834 0.9942 0.9801 0.9881 0.9831 0.9922 0.9822 0.9840 0.9825 0.9848
PROPOSED 0.9975 0.9965 0.9771 0.9949 0.9826 0.9897 0.9841 0.9917 0.9856 0.9865 0.9821 0.9860

MSFA [16]

BTES [21] 0.9598 0.9934 0.9418 0.9875 0.9557 0.9676 0.9664 0.9801 0.9512 0.9770 0.9524 0.9654
LI [23] 0.9610 0.9936 0.9589 0.9895 0.9641 0.9734 0.9687 0.9889 0.9561 0.9791 0.9612 0.9708
IID [26] 0.9891 0.9936 0.9745 0.9941 0.9780 0.9859 0.9703 0.9874 0.9610 0.9803 0.9807 0.9759
GF [22] 0.9899 0.9943 0.9325 0.9972 0.9805 0.9789 0.9728 0.9910 0.9589 0.9831 0.9790 0.9770
POS [12] 0.9889 0.9939 0.9812 0.9964 0.9801 0.9881 0.9765 0.9922 0.9742 0.9858 0.9825 0.9822
PROPOSED 0.9975 0.9965 0.9801 0.9981 0.9826 0.9910 0.9782 0.9917 0.9791 0.9875 0.9821 0.9837

(a) CHINADRESS (sRGB) (b) ORIGINAL (c) GF (d) BTES

(e) LI (f) IID (g) POS (h) PROPOSED

Fig. 10. Visual comparison of R band of the CHINADRESS image in the Monno dataset. (Gamma correction is applied for the display.)

intra-prediction scheme is needed for the reconstruction in this
region.

Table III gives the PSNR performance of the different
methods on both the Cave and Monno datasets. In the case
of the MSFA pattern (Fig. 1(b)) [12], we can observe that our
algorithm achieves the highest average PSNR in almost all
the bands for both datasets. Similarly, for the MSFA pattern
(Fig. 2(a)) [16], we can see that our algorithm consistently
performs well in all the band images. The Cave dataset consists
of images having more smooth objects with higher spectral
correlation (Table I), and thus the PSNR performances of the
other algorithms are closer to that of the proposed algorithm.
Images in the Monno dataset consist of textured objects with
lower spectral correlation, and thus the proposed algorithm
significantly outperforms the other methods, as it is adaptive
to spectral correlations.

Table IV gives the SSIM performance comparison of the
different algorithms for both datasets. The SSIM model is
more consistent with human visual perception, and when the
SSIM value is close to 1, the reconstructed image is similar

to the original image. We can clearly see that the proposed
algorithm achieves a higher SSIM in almost all the bands
for both datasets. From Table III and IV, we can say that
the objective performance of the proposed algorithm, both in
terms of PSNR and SSIM, outperforms the existing methods.

For the subjective quality evaluation we show the recon-
structed images of the different methods and compare them
with the proposed algorithm. Fig. 9 shows a visual comparison
of the demosaicked Or band of the SPONGE image produced
by different methods. The reconstructed image by the GF
[22] method looks sharper than the original image and has
artifacts, as indicated by the red arrows, whereas the image
reconstructed by the BTES [21] method has lost all its detail.
Similarly, the reconstructed images of LI [23] and POS [12]
show artifacts as well as unclear text, whereas the proposed
algorithm preserves the edges as well as produces clearer
text. We also observe that although IID [26] uses both spatial
and spectral correlations for reconstruction, its performance
is lacking when compared to the proposed algorithm. Our
algorithm is designed in such a way that it is adaptive to
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Fig. 11. Visual comparison of sRGB of the FRUIT image in the Monno dataset. (Gamma correction is applied for the display.)

TABLE V
AVERAGE PSNR PERFORMANCE OF PROPOSED ALGORITHM USING

DIFFERENT TECHNIQUES AS INITIALIZATION ON THE MONNO DATASET.

R B Cy Or Mean
GIF [57] 53.65 46.90 49.99 46.65 49.29
JBU [56] 53.92 47.11 50.99 47.01 49.75
AKU [4] 54.55 47.11 51.25 47.47 50.09
GF [22] 54.95 47.32 51.77 47.92 50.49
POS [12] 54.63 47.88 51.72 47.80 50.50
IDEAL 56.07 48.63 53.52 50.22 52.11

spectral correlations and assigns the weights judiciously to
both the intra- and inter-prediction methods.

In Fig. 10, we show a visual comparison of the demosaicked
R band of the CHINADRESS image that consists of textured
regions. From the visual comparison, we can see that the
existing methods either lose the fine details or add extra
artifacts in the reconstructed results, whereas our algorithm
suppresses these artifacts and produces a better reconstruction
as compared to the existing algorithms.

Fig. 11 shows a visual comparison of the FRUIT image
in the Monno dataset. We convert both the original and
reconstructed 5-band images to the standard RGB (sRGB)
domain for illustration purposes, and the transformation is
done using spatio-spectral Wiener estimation [4,12]. From
the visual comparison, we can see that the existing methods
either blur the edges or produce significant color artifacts on
the text, whereas the proposed algorithm reduces the artifacts
significantly and also preserves the edges at the same time.
From both the objective and subjective quality assessments, we
can say that the proposed algorithm has the ability to reduce
the artifacts as compared to the existing algorithms.

To estimate the optimal weights in (30), the proposed algo-
rithm uses an existing method for initialization. This is akin
to most of the multispectral demosaicking algorithms, which
also need an initial interpolation for initialization and then
incorporate the result into their reconstruction frameworks. All
the RI-based algorithms [28,29,30,54,55] generate an initial
interpolation using a guided filter [57] and then use it in their

proposed framework to drive the interpolation of each band.
AKU [4] uses the joint bilateral upsampling (JBU) method
[56] to generate a guided image, whereas GF [22] and POS
[12] use a guided image filtering (GIF) [57] method to develop
a reference image.

To make a fair comparison, we investigate the performance
of the proposed algorithm using these techniques as the
initialization for our framework, and the results are shown
in Table V. We can see that most of them yield a similar
performance, but we use POS [12] for our framework as
it is computationally very simple and is feasible in a real
hardware setup. We also show the performance of the proposed
algorithm in the ideal case using a ground-truth image for
initialization, and as expected, the proposed algorithm in the
ideal case has superior performance than in the practical cases.

B. 3-band Demosaicking

Our proposed algorithm can easily be extended to CFA
patterns for 3-band demosaicking. The density of the G pixels
in the CFA pattern (Fig. 1(a)) and the MSFA pattern is the
same, whereas the density of the other bands in the CFA
is higher than that in the MSFA pattern and thus eases the
interpolation process. The reconstruction of the G band is done
in exactly the same manner as is done in the case of 5-band
demosaicking. For the R and B band, the modulation signal in
(8) is changed, and thus the color-difference signal KR(u, v)
in (9) will be changed as well. We follow a similar strategy
in estimating the cut-off frequency for the circular LPF in (9)
and in (21) in the case of CFA demosaicking.

We evaluate the performance of the proposed algorithm on
the IMAX dataset, which consists of images dominated by
highly textured regions with low spectral correlations. We
compare the performance of the proposed algorithm with
state-of-the-art demosaicking methods: the integrated gradi-
ent (IGD) [36], gradient-based threshold free demosaicking
(GBTF) [37], local directional interpolation and nonlocal
adaptive thresholding (NAT) [39], four-direction interpola-
tion (FDI) [54], minimized-Laplacian residual interpolation
(MLRI) [55] and iterative residual interpolation (IRI) [30].
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(a) ORIGINAL (b) IGD (c) GBTF (d) NAT

(e) MLRI (f) FDI (g) IRI (h) PROPOSED

Fig. 12. Visual comparison of FLOWER image in IMAX dataset.

TABLE VI
AVERAGE PSNR AND SSIM RESULTS ON THE IMAX DATASET.

AVG. PSNR AVG. SSIM
Algo. R G B R G B
IGD [36] 34.83 37.38 33.96 0.9423 0.9622 0.9082
GBT [37] 33.48 36.59 32.71 0.9317 0.9558 0.8927
SSD [38] 35.02 38.27 33.80 0.9471 0.9779 0.9114
NAT [39] 36.31 39.82 34.50 0.9604 0.9787 0.9266
MLRI [55] 36.35 39.90 35.36 0.9601 0.9785 0.9384
IRI [30] 36.80 40.28 35.42 0.9633 0.9818 0.9411
FDI [54] 36.31 39.99 35.02 0.9601 0.9790 0.9391
PROPOSED 37.18 39.80 35.71 0.9822 0.9782 0.9599

In Table VI, we present the performances of the aforemen-
tioned methods and present the PSNR and SSIM performances
on the IMAX dataset. For G band reconstruction, our algo-
rithm is lacking both in terms of PSNR and SSIM as we do not
use other bands as prior information. In this paper, we focus
more on the other subsampled bands by exploiting the property
of spectral correlation in a more adaptive manner. This is why
our algorithm achieves better results in other bands, both in
terms of PSNR and SSIM, as shown in Table VI.

In Fig. 12, we show a visual comparison of a 3-band demo-
saicked image, FLOWER, with different methods and compare
the same with the proposed algorithm. We can observe that
the existing methods produce artifacts (shown by blue arrows)
near the red petals and are not able to preserve the edges,
whereas the proposed algorithm reduces the artifacts and thus
achieves a superior performance to the existing algorithms.

In summary, our algorithm outperforms the existing resid-
ual interpolation (RI)-based approaches [30,55] as well as
algorithms based on the color-difference assumption [15,31-
37] both in terms of objective and subjective quality. Algo-
rithms based on color-difference assumptions are sensitive to
spectral correlation. In the case of lower spectral correlation,
the Correlation Assumption of such methods fails, and thus
aliasing interferences increase in (9), which results in the

failure of the Low-Pass Assumption. Differently, we introduce
a circular LPF and an intra-prediction scheme to address
these issues. Our algorithm focuses more on other bands as
they are significantly undersampled, and thus reconstruction
becomes a challenging task. To improve the performance of
the proposed algorithm, especially for the G band, we can
use some post-processing techniques, as used in the CFA
demosaicking method [30], to achieve a superior performance.

Fig. 13. (a) 16-band MSFA, (b) RGB NIR [9,12], (c) Performance analysis
of proposed algorithm on different MSFA patterns (R component of CHI-
NADRESS image)

C. Performance of Proposed Algorithm on Different Patterns

In the previous subsections, we show the performance of
the proposed algorithm on 5-band MSFA and 3-band MSFA
patterns, where the sampling density of the G band is higher
than that of other bands. However, our proposed algorithm is
not limited to such patterns and is designed in such a way that
it can be extended to any arbitrary pattern. In this subsection,
we discuss the performance of the proposed algorithm with
other MSFA patterns and also study its behavior with different
sampling densities of the G band.

In Fig. 13 (c), we show the performance of the proposed
ASCD algorithm on 3-band MSFA (Fig. 1(a)), 5-band MSFA
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TABLE VII
AVERAGE PSNR PERFORMANCE OF PROPOSED ALGORITHM WITH

DIFFERENT BLOCK SIZES.

R band B band
Size Cave Monno IMAX Cave Monno IMAX
4× 4 45.78 54.55 37.08 44.91 47.81 35.64
6× 6 45.81 54.64 37.18 44.94 47.88 35.71
8× 8 45.76 54.55 37.08 44.90 47.82 35.63
10× 10 45.70 54.42 37.01 44.85 47.71 35.55
12× 12 45.63 54.38 36.90 44.80 47.63 35.62

(Fig. 1(b)), 4-band MSFA (Fig. 2(e)), 8-band MSFA (Fig. 2(f))
and 16-band MSFA (Fig. 13 (a)). A general observation that
can be drawn from Fig. 13(c) is that the performance of the
proposed algorithm decreases from the 3-band to the 16-band
MSFA which is very obvious. This is because if we array
more bands in the MSFA pattern, the sampling densities of
each spectral band become lower and it becomes a challenging
task for the demosaicking. More observations are as follows:

1) Although the sampling density of the R band is the same
for the 3-band (Fig. 1(a)) and 4-band MSFA (Fig. 2(e)),
the reconstruction performance is lower in the case of the
4-band MSFA as the density of the G band is decreased.
A similar analysis can be made for the 5-band and 8-
band patterns.

2) We have shown the reconstruction for a 16-band MSFA
pattern, where each color appears only once in a 4× 4
pattern (Fig. 13(a)), and thus it can be considered as a
case in which all the bands are severely undersampled.
In this case, we can see that the performance decreases
significantly as compared to the other MSFA patterns.
However, we believe that the existing algorithms may
suffer too, because most of them either use inter-color
correlation or spatial correlation for the reconstruction.

With the performance analysis given above, we can say that
when all the bands are severely undersampled, the proposed
method will show a drastic change in performance. The
performance also depends on how other bands are arranged
on the image sensor.

Our proposed algorithm can also be extended to MSFA
patterns that consist of spectral bands beyond the visible
range. For reference, we have shown a pattern in Fig. 13 (b),
which consists of RGB and near-infrared (NIR) bands. In this
particular pattern, all the bands are equally sampled, and thus
the demosaicking problem in such a case is equivalent to the
one we show for the 16-band pattern in Fig. 13(a). Both in
the case of the 16-band pattern and the RGB NIR pattern, we
follow the same strategy for reconstruction as is done in the
case of the 5-band MSFA.

D. Discussion of Block Size and Computational Complexity

Our algorithm works on a block-by-block basis (non-
overlapping) to generate a more accurate prediction for recon-
struction. We test the performance of the proposed algorithm
on all the datasets using different block sizes, and the results
are shown in Table VII. We can observe that a block size of
6× 6 has a reasonable performance as compared to the other
block sizes for all the datasets. In the case of higher spectral

correlation (Cave dataset), even when we increase or decrease
the block size, the spectral correlation among the bands does
not vary much, and thus the validity of both the assumptions
remains unchanged with different block sizes. This is why
the performance of the proposed algorithm doesn’t vary much
for the Cave dataset with different block sizes in Table VII.
However, in the case of lower spectral correlation (IMAX and
Monno), with a change in the block size, spectral correlation
may vary, and thus the performance also varies with different
block sizes.

Our algorithm is computationally very simple and requires
only basic operations, in contrast to other existing methods.
For each block, we perform a 2-D low pass filtering on (9)
and (21) to estimate r̂CDI and r̂LPF respectively and then
estimate the optimal parameters (w1, w2) from (30). On a
desktop computer with an Intel Core i7 CPU, our MATLAB
implementation of the proposed algorithm takes about 0.7 sec
to reconstruct an image of size 512× 512 and 1.7 sec for an
image of size 1368× 1800 using a block of size 6× 6.

V. CONCLUSION

In this paper, we have addressed the challenging problem
of multispectral demosaicking by demonstrating a frequency-
domain analysis of the subsampled color-difference signal.
With the help of this analysis, we studied the important as-
sumption of spectral correlation and explained why it is image
dependent, which leads to aliasing interferences among the
color-difference spectra. To address the issues, we proposed an
adaptive spectral-correlation-based demosaicking (ASCD) that
uses a novel anti-aliasing filter to reduce the interferences, and
we incorporated an intra-prediction scheme to generate a more
accurate reconstruction of the undersampled components. The
proposed scheme can be easily extended to any CFA and
MSFA patterns by exploiting the spectral correlation property
more effectively than the existing algorithms. Our approach
is computationally very simple and outperforms the existing
methods both in terms of objective and subjective quality.
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