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Abstract

Visual inspection of x-ray scattering images is a power-
ful technique for probing the physical structure of materi-
als at the molecular scale. In this paper, we explore the
use of deep learning to develop methods for automatically
analyzing x-ray scattering images. In particular, we apply
Convolutional Neural Networks and Convolutional Autoen-
coders for x-ray scattering image classification. To acquire
enough training data for deep learning, we use simulation
software to generate synthetic x-ray scattering images. Ex-
periments show that deep learning methods outperform pre-
viously published methods by 10% on synthetic and real
datasets.

1. Introduction
X-ray scattering is used in a wide variety of domains,

from determining protein structure to observing realtime
structural changes in materials. Broadly speaking, x-ray
scattering can probe the physical structure of materials at
the molecular and nanoscale. The technique consists of
shining a bright, collimated x-ray beam through a mate-
rial of interest; detailed information about structural order is
then inferred from the far-field pattern of scattered rays [3].
The scattering images contain visual features, such as rings,
spots, and halos, which encode detailed information about
the size, orientation, and packing of atoms, molecules, and
nanoscale domains [16]. Modern x-ray detectors can gener-
ate 50,000 to 1,000,000 images/day (1-4 TB/day); thus it is
crucial to automate the image processing workflow as much
as possible. The lack of immediate feedback during x-ray
scattering experiments currently limits the scientific pro-
ductivity of this technique. Manually curated image anal-
ysis becomes a bottleneck, due to the enormous diversity
of possible image features; we propose instead to develop
computer vision algorithms to automate the process of im-
age analysis.

Our task is to classify x-ray scattering image attributes.

Figure 1: Examples of x-ray scattering images. Images
are shown using (arbitrary) false-colors; source images are
grayscale. We explore the use of deep learning methods to
automatically recognize the attributes of x-ray images. The
first row of this figure shows some attributes that we want
to recognize; from left to right, the attributes are: TSAXS,
Linear Beamstop, Halo, and Powder. Automatic attribute
recognition is a challenging problem due to the high intr-
aclass variance. Images with the same attribute can look
very different; the second row of this figure shows example
images with the attribute ‘ring.’

These attributes represent a diverse set of characteristics
ranging from the type of measurement, e.g. ‘small-angle
x-ray scattering (SAXS)’ or ‘wide-angle x-ray scattering
(WAXS)’, to instrumental information, e.g. ‘linear beam-
stop’ or ‘beam off image’, to appearance-based scattering
features, e.g., ‘halo’ or ‘ring’, to chemical composition
and physical properties of the materials, e.g., ‘powder’ or
‘SiO2’. Figure 1 shows example images with the ‘ring’ at-
tribute, which signifies the appearance of a circle or arc of
high intensity. As these examples show, images with the
same attribute can otherwise be strikingly different. This
makes classification of x-ray images extremely challenging.

To the best of our knowledge, there exists little work for
automatically analyzing x-ray scattering images. The most
closely-related prior work is that of Kiapour et al. [6], which
also aimed to recognize the set of image attributes consid-



ered in this paper. Their work used hand-designed features
such as HOG [1] and SIFT [13]. Unfortunately, these types
of features were designed for natural images instead of x-
ray images. As a consequence, the method developed by
Kiapour et al. [6] lacks the performance that would be de-
sired for trustworthy automated analysis of real scientific
data.

In this paper, inspired by the recent success of deep
learning methods [9], we propose to investigate the use
of deep learning for x-ray image classification. In partic-
ular, we propose to use Convolutional Neural Networks
(CNN) [7, 10, 11] (in particular Residual Networks) and
Convolutional Autoencoders [5] to extract features that are
important for x-ray image classification. Convolutional fil-
ters are able to extract local patterns across whole images.
With stacking of multiple convolutional layers, CNN is able
to extract hierarchical features from images.

However, the size of the previously-available x-ray im-
age dataset is quite small; far too small for robust applica-
tion of deep learning methods. The dataset collected by [6]
only contains 2832 images. Manually labeling x-ray im-
ages requires a significant amount of domain experts’ time,
which could otherwise be spent on high-level scientific dis-
covery. It becomes infeasible for experts to tag a large
dataset containing millions of images. In this paper, we
propose a synthetic dataset which is generated based on the
known physics underlying x-ray scattering experiments and
ad hoc features to emulate the artifacts and defects present
in experimental images. By utilizing the synthetic dataset,
we can train deep networks for x-ray scattering images. The
trained networks can be used to extract feature representa-
tions for both synthetic and real x-ray scattering images.
Using this type of feature representation, we obtained a
method that outperforms hand-crafted features [6] by 10%
on both synthetic and real datasets.

The rest of the paper is organized as follows: In section 2
we introduce the real and synthetic datasets used in our ex-
periments. In section 3, we describe the deep learning tech-
niques for x-ray scattering image attribute classification. In
section 4, we report the performance of our methods.

2. Datasets
We used two datasets for developing and evaluating deep

learning methods for analyzing x-ray scattering images.

2.1. X-ray Materials Discovery Dataset (XMD)

X-ray Materials Discovery Dataset (XMD) [6] contains
2832 x-ray scattering images collected from thirteen x-ray
scattering measurement runs. The number of images in
each experiment varies between 54 and 618. The dataset
includes a wide range of samples: nano-particles in solu-
tion, lithographic gratings, self-assembling polymer films,
organic semiconductors, etc. All images are single-channel

with intensities in the range [0, 216]. The images have been
tagged with 98 attributes by a domain expert. Images are
labeled with an average of 11.7 attributes.

Since the images within the same measurement run can
be much more similar than across different runs, cross val-
idation should be performed by leaving one measurement
run out [6]. In other words, we perform 13-fold validation;
in each fold, we train the model on all runs except one and
use the resulting model to test and predict on the one that is
excluded from training.

Due to the unbalanced distribution of attributes—for
example, SAXS and WAXS attributes may be prevalent
in many samples however specific material attributes like
SiO2 is quite rare—classification accuracy is not a useful
evaluation metric. Following [6], we use Average Precision
(AP) for evaluation, which is more appropriate for unbal-
anced data than accuracy.

2.2. Synthetic Dataset

Deep learning methods generally require large and di-
verse training sets to yield good performance. Unfortu-
nately, the available human-tagged experimental datasets
are very small. To effectively exploit deep learning methods
for x-ray scattering image classification, we propose using
large datasets with synthetic scattering images. We imple-
mented our own simulation software to generate synthetic
datasets by mixing ad-hoc methods and physics-based sim-
ulations of scattering data. In the case of ad-hoc images,
relevant features such as rings or spots are generated and
summed together. In the case of simulations, we combine
a variety of well-known methods, including using known
analytic models for the expected scattering of certain ob-
jects (e.g., spherical nanoparticles) or assemblies (e.g., cu-
bic lattice of objects). The simulation code also includes a
module allowing the scattering to be computed for arbitrary
arrangements of entities that represent atoms, molecules,
or nanoparticles. A particular synthetic image is generated
by selecting a random set of simulation modules, and sum-
ming together their outputs (based on randomly-selected in-
put variables). The final image is then adjusted to simulate
a variety of experimentally-realistic effects, including back-
ground noise, shot noise, gaps and shadows arising from ex-
perimental geometry. Overall, the simulated images cover
a wide space of possibilities, both in terms of the types of
observed structures/patterns and the quality of images.

The simulation code allows the generation of an arbi-
trary number of training images; where each image carries
the appropriate tags (which are known based on the selected
simulation modules). In the present experiments, we gener-
ate a synthetic dataset which contains 100,000 x-ray scat-
tering images. Figure 2 visualizes the differences between
synthetic images and experimental images. We observe that
synthetic images and real experimental images are visually
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Figure 2: Comparison between synthetic images and real experimental images. The first and second rows are real experimen-
tal images, while the third and forth rows are synthetic images. Images in the same column have the same attribute. From left
to right, the attributes are: Ring: Isotropic, Ring: Anisotropic, Halo: Isotropic, Halo: Anisotropic, Diffuse low q: Isotropic,
and Diffuse low q: Anisotropic. Visually, synthetic and real images are indiscernible.

similar. This suggests the potential usefulness of synthetic
data as training examples.

3. Deep-learning Methods

In this section, we describe two deep learning techniques
to extract features for x-ray scattering images. Rather than
using hand-crafted features, which are often designed for
natural images, we use Convolutional Neural Networks to
automatically extract features that are important for x-ray
images. Once the features are extracted, we train one vs. all
support vector machines (SVMs) classifiers [15] to predict
x-ray image attributes. We adopt two methods for feature
extraction: one is based on supervised learning, and the
other is unsupervised learning. In rest of this section, we
will discuss the two methods in details.

3.1. Residual network

We train a Convolutional Neural Network (CNN) on the
synthetic dataset to classify x-ray image attributes. We use
the recently proposed 50-layer Residual Network [4] as our

Figure 3: The building block of residual networks [4]. With
network bypasses, residual networks explicitly reformulate
the layers as learning residual functions with reference to
the layer inputs.

architecture. Figure 3 shows the basic learning block in the
residual network. Using bypass connections, a residual net-
work explicitly reformulates the layers as learning residual



layer name output size kernels

conv1 112×112 7×7, 64, stride 2

conv2 x 56×56

3×3 max pool, stride 2 1× 1, 64
3× 3, 64
1× 1, 256

 × 3

conv3 x 28×28

 1× 1, 128
3× 3, 128
1× 1, 512

 × 4

conv4 x 14×14

 1× 1, 256
3× 3, 256
1× 1, 1024

 × 6

conv5 x 7×7

 1× 1, 512
3× 3, 512
1× 1, 2048

 × 3

pooling 1×1 average pooling
fc 1×1 2048×num of attributes

Table 1: The architecture and parameter settings of the con-
volutional neural network developed here. It is based on the
50-layer residual network [4].

functions with regard to the input layer. By adopting such
a framework, deeper networks are easier to optimize than
those without bypass connections, gaining accuracy from
a considerably deep architecture. Table 1 shows the de-
tailed architecture of our adopted network. We modify the
softmax layer to a binary sigmoid layer because image at-
tributes are not mutually exclusive. The dimension of net-
work output is equal to the number of attributes, and each
element in the output vector represents the probability of
having that attribute. The final loss function is the summa-
tion of the losses incurred by each attribute.

We train the residual network on a synthetic dataset with
100,000 x-ray images. During training, we did not train the
network to predict the entire set of attributes to avoid the
problem of unbalanced data: some attributes appear in the
majority of images while some attributes are really rare. We
pick a subset of 17 attributes which are not rare and guar-
antee that every x-ray image has at least one of these 17
attributes. Table 2 lists the 17 selected attributes. Once the
network has been trained, we can use it to extract the fea-
ture representation for an image patch as follows. First, the
image patch is resized to 224×224, and subsequently fed
into the network, and secondly, the activation of the network
right before the output layer is taken as the feature vector
representation. This feature vector has 2048 dimensions,
and is conventionally referred to as fc7 feature vector [7].

Figure 4 visualizes the first layer’s filters learned by our
residual network. As can be seen, many filters of the the
first layer tend to pick up edge-like signals.

Figure 4: Visualization of the filters of the first layer of the
learned residual network.

BCC Beam Off Image Circ. Beamstop
Diffuse high-q Diffuse low-q FCC
Halo High background Higher orders
Linear beamstop Many rings Polycrystalline
Ring Strong scattering Structure factor
Weak scattering Wedge beamstop

Table 2: The list of 17 attributes for training the residual
network. These attributes were selected to be representative
of the diversity of labels associated with x-ray scattering
images.

We use the learned network to extract feature vectors for
the real experimental XMD dataset. The size of each im-
ages in this dataset is 1024×1024, which is larger than the
expected input size of the the CNN, which is 224×224. To
compute the feature vector representation, we first resize
a 1024×1024 image to three different scales: 256×256,
384×384, and 512×512. At each scale, we crop five im-
ages of size 224×224 (at the center and four corners), and
feed them into the previously-trained network to obtain the
corresponding feature vector. We average the correspond-
ing fifteen feature vectors as the final feature representation
for the x-ray image.

3.2. Convolutional Autoencoder network

The second method to extract feature vectors is the con-
volutional autoencoder. Instead of performing autoencod-
ing on full-size images, we perform autoencoding on image
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Figure 5: Architecture of the convolutional autoencoder.
The difference between this architecture and the traditional
autoencoder is that we add a softmax layer after the output
of encoder and we use this vector, of which the size is 1024,
as the feature vector for an image patch.

patches because: i) the size of original images is too big
to train an autoencoder; and ii) downsampling original im-
age to a smaller resolution such as 256× 256 or 128× 128
may lose some important details, such as sharp, localized
peaks. Since we train the autoencoder at the patch level,
even though we have a limited number of real experimen-
tal images (2832 images in XMD dataset), we still obtain
many image sample patches from each image. Therefore,
our convolutional autoencoder network is trained on real
experimental image patches. We resize 1024×1024 im-
ages to multiple scales and randomly extract 1000 32×32
patches per image as the training set for autoencoder. Fig-
ure 5 shows the architecture of our autoencoder for image
patches. The difference between our autoencoder and tradi-
tional autoencoder is that we applied a softmax layer after
the output of encoder and used the output vector with the
size of 1024 as the feature vector for input image patch.
The objective here is to use the autoencoder to cluster im-
age patches. The dimension of the encoder output repre-
sents the number of clusters, and each element belongs to a
data cluster. After applying the softmax function, the vec-
tor represents the possibilities that the input image falls into
different data clusters.

In our experiment, the learned autoencoder has the min-
imum reconstruction error of 0.0044, the maximum of
1.2510, and the average of 0.6817. Figure 6 shows the orig-
inal in the top row and reconstructed image patches at the
bottom row. For left to right, the reconstruction error (the
difference between the top image and the bottom image)
increases. The reconstruction retains the important visual
structures of the original images.

Representation vectors have 1024 dimensions. By set-
ting the representation vector to be one-hot vector (all val-
ues are 0 expect one location is 1), we get the data cluster
represented in that location. By changing the location, we
can get 1024 different data clusters. Figure 7 visualizes 20
data clusters. These data clusters capture the edges with
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Figure 6: Visualization of original image patches (top row)
and reconstructed image patches (bottom row) using convo-
lutional autoencoder. From left to right, the reconstruction
errors are 0.0052, 0.162, 0.209, 0.289 and 1.146. Here the
reconstructed images retain the important visual structures
of the original images even when the reconstruction error is
high (at the right most column).

different angles and the blobs at different locations.
After training the autoencoder, we perform a spatial

pyramid matching (SPM) [8] with three levels to extract the
feature vector descriptor for an image. The SPM partitions
an image into sub-regions of increasingly fine granularity
and computes the histograms of local features found within
each sub-region. This approach allows the classifier to bet-
ter understand the spatial relationship between different ar-
eas of an image. We use sum pooling because we compute
histograms and intent to obtain the frequency of each clus-
ter.

4. Experimental results
In this section, we report the performance of the deep-

learning features for x-ray image classification. We re-
port the average precision values on both synthetic and real
datasets, and compare them with previously published re-
sults.

4.1. Performance on synthetic dataset

We first evaluate the performance of the residual net-
work on the holdout (test subset) of the synthetic dataset
(note that we split the synthetic dataset into two disjoint
train/test subsets). For the test data, the residual network
achieves the mean average precision of 77.1% for the 17 at-
tributes given in Table 3 (note that we trained the residual
network on these 17 attributes only). The result is given
in Table 3. We compare this result with a shallow-learning
method that is based on the Bag-of-Word approach [12, 14].
This approach consists of: i) using k-means to learn a visual
codebook; ii) applying spatial pyramid pooling to generate
a feature vector representation for each image; iii) training a
binary SVM for each of 17 attributes in consideration. This
approach only achieves a mean Average Precision of 67.1%,
which is 10% lower than our method using the feature de-



Figure 7: Visualization of clusters. These data clusters capture edges of different angle, and blobs of different location.

Method mAP

k-means + Bag-of-Words + Spatial Pyramid 67.1
Residual network (deep learning) 77.1

Table 3: Mean Average Precision (mAP) on synthetic
dataset for 17 attributes

scriptors from deep-learning. This indicates the benefits of
using deep-learning for x-ray image classification.

4.2. Performance on XMD dataset

For XMD dataset, we use both the residual network and
the convolutional autoencoder to extract features for each
image, then train a multi-class SVM [2] with a one vs. all
approach on all 98 attributes. Following [6], we report the
performance on these 98 attributes in Table 4. The residual
network features achieve 59.5% mean AP, which outper-
forms hand-crafted features by 8%. The convolutional au-
toencoder features achieve a mean AP of 57%. Combining
the features generated both the residual network and con-
volutional autoencoder, we obtain the mean AP of 61.1%,
outperforming hand-crafted features by 10%. In [6] they
also report the performance using a hierarchical classifier in
which the first classifier is used to separate images into two
categories: small-angle (SAXS) and wide-angle (WAXS),
and subsequently the second classifier is used to classify
the fine-grained attributes in each category. The hierarchi-
cal approach boosts the performance from 51.5% to 55.5%.
In our method, we have not used the hierarchical approach,
and we hypothesize that the hierarchical approach will also
improve the performance of our method. One of our future
works is to build a more fine grained hierarchical structure
based on attributes correlations to boost the performance.

Analyzing the XMD data, we discovered that 18 out of
98 attributes only appear in a single experiment run (of
the 13 experiment runs). Therefore, for the leave-one-
experiment-out cross validation procedure, these attributes
will only appear in either the training set or test set. When
an attribute does not appear in the test set, the average pre-
cision for this attribute is one. When the attribute does not
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Figure 8: Precision-recall curves for recognizing attributes
‘Ring’ and ‘Peaks’.

Feature mAP

lbpphog [6] 51.5
Residual network 59.5
Patch autoencoder 57.9
Residual network + Patch autoencoder 61.1

Table 4: Mean Average Precision (mAP) for all 98 at-
tribute classifiers on the XMD dataset. Deep-learning fea-
tures (Residual network and Path autoencoder) outperform
hand-designed features by a large margin. The best result
is achieved when two types of deep-learning features are
combined.

appear in the train set, the average precision is equal to the
average precision of a random classifier. In both cases, the
results do not depend on the type of the feature represen-
tation. Herein, we suggest to remove these attributes from
the experimental analysis to obtain a more indicative mean
average precision value. The mean average precision on the
80 remaining attributes is shown in Table 5. Figure 8 shows
precision-recall curves of the method that uses residual net-
work features for recognizing ‘rings’ and ‘peaks’.

We also compared the performance of using hand-
crafted features and deep learning features for 30 attributes
of which the APs are explicitly reported in [6]. We con-
sider the AP gap, which is the difference between the AP
obtained by using deep learning features and the AP ob-
tained by the hand-crafted Ibpphog [6]. Figure 9 shows



Feature mAP

Residual network 59.03
Patch autoencoder 56.00
Residual network + Patch autoencoder 59.95

Table 5: Mean Average Precision (mAP) for 80 attributes.
Each attribute in this experiment appears in at least two ex-
periment runs of the XMD dataset.
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Figure 9: Average precision (AP) gap. This shows the
difference between the average precision of deep learning
features and hand-crafted features. The AP of deep learning
features are higher than or equal to the AP of hand-crafted
features for the majority of attributes.

AP gap for all 30 attributes. From the figure, we observe
that the deep learning features outperform the hand-crafted
features by a large margin for detecting multiple attributes,
including Specular rod, Peaks: Isotropic, Ring: Textured,
High order 2-3, Ring: oriented xy, Vertical streaks, Sin-
gle crystal, Block-cropoly, Peaks: Many, Grating, Diffuse
high-q: Isotropical, High order 4-6, and Rubrene. However,
for the attributes such as Ordered, Ring: oriented z, Ring:
Isotropic, PCBM, and Weak Scattering, the deep learning
features do not perform as well as the hand-crafted fea-
tures. We note that both approaches (deep learning and
hand-crafted) perform well for image attributes where the
possible options are disjoint and highly distinct. For in-
stance, detecting the type of detector used in the experiment
(MarCCD vs. Photonics CCD) is an ‘easy’ task for both
approaches. The hand-crafted approach appears to slightly
out-perform deep learning on a small number of attributes,
especially those that denote a rather vague interpretation of
the overall image (e.g., ordered). Conversely, deep learning
achieves a much-improved performance for attributes de-
noting distinct localized features such as Specular rod and
Peaks: Isotropic. Importantly, deep learning can evidently
identify the attributes associated with combining a number

of disparate features throughout image such as single crys-
tal; that is, we confirm that the hierarchical, multi-level in-
ternal representations of deep learning are well aligned with
the complex, multi-feature labels that are frequently used by
domain experts to describe x-ray scattering images.

Figure 10 shows some images where our method using
deep-learning features do not agree with human annotation.
The first two rows show some false positives (which means
a human annotator tags this image as negative for this at-
tribute, but our method predict it with a high scores for this
attribute). The third and fourth rows show some false neg-
ative results (which means a human annotator tags this im-
age as positive for this attribute, but our method labels it
with a low score for this attribute). After consulting with
domain experts, images in the first row reflect some human
annotation error in tagging original images, i.e., our method
successfully identified human annotation errors. Some im-
ages are ambiguous even for a human to detect, e.g., diffuse
high-q scattering is weak and spatially distributed. Even
human experts may disagree with respect to the marginal
(weakly-scattering) examples of this feature. Nevertheless,
our approach failed to classify some images because the tar-
get attribute has unusual appearance or is highly localized:
for example, the positive image with the ‘Ring’ attribute the
the third row and second column. It is rare to see a full ring
appearing in this type of experiment (GISAXS). The lack
of training examples potentially explains why this atypical
scattering pattern was mis-classified. The image on the third
row and first column is another mis-classified example that
is rare and contains a positive ‘Thin film’ attribute. This is
indeed a measurement of a thin film. However, the com-
mon visual features, such as a distinct horizontal stripe, are
not present possibly because of the misalignment during the
experiment. Only the subtle hints exist to help a trained hu-
man expert correctly classify it as a thin film measurement.
There is a broad class of images that even a human expert
finds extremely challenging to classify, owing to the sub-
tlety of the features, the ambiguity of the tag, or the vio-
lation of standard experimental assumptions (e.g., an error
occurs during experiments). Consequently these types of
images are challenging to any deep learning based classi-
fication approach. By augmenting training sets with some
examples of borderline cases, we can improve the classifica-
tion accuracy for these atypical images. Thus, one potential
future work is to augment our simulation code to generate
synthetic images exhibiting a variety of atypical or marginal
patterns.

5. Conclusions
We have explored the use of deep learning methods for

automatic recognition of x-ray scattering images’ attributes.
To overcome the size limitation of available annotated x-
ray image datasets, we used simulation software to gener-
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Figure 10: Example images of mismatch between the pre-
diction of our methods, and the human-assigned tag. The
first two rows show negative images with high score (i.e.,
a human annotator tags this image as negative for this at-
tribute, but our prediction method predicts high scores for
this attributes). The third and fourth rows show positive im-
ages with low score (i.e., a human annotator tags this image
as positive for this attribute, but our prediction method pre-
dicts low scores for this attributes). Attributes from left to
right are: Thin film, Ring, Diffuse low-q, Diffuse high-q.

ate synthetic x-ray images for training. Our features are
based on fully connected layer output of a residual network
and the representation layer of a convolution autoencoder.
Evaluations on both synthetic and real datasets show that
deep-learning features outperform hand-crafted features by
a large margin of 10%, using mean average precision as the
evaluation metric.
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