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Abstract

Computer vision in manufacturing is a decades long effort into automatic inspection
and verification of the work pieces, while visual recognition focusing on the human op-
erators is becoming ever prominent. Semantic segmentation is an exemplary vision task
that is key to enabling crucial assembly applications such as completion time tracking
and manual process verification. However, focus on segmentation of human hands while
performing complex tasks such as manual assembly is still lacking. Segmenting hands
from tools, work pieces, background and other body parts is difficult because of self-
occlusions and intricate hand grips and poses. In this paper we introduce WorkingHands,
a dataset of pixel-level annotated images of hands performing 13 different tool-based as-
sembly tasks, from both real-world captures and virtual-world renderings, with RGB+D
images from a high-resolution range camera and ray casting engine. Moreover, using the
dataset, we can learn a generic Hand-Task Descriptor that is useful for retrieving hand
images and video performing similar operations across different non-annotated datasets.
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Figure 1: WorkingHands is an RGB+D hand-tool interaction dataset of synthetic and real
data, with semantic segmentation annotations for 16 classes.
c© 2019. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.
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Hand Segmentation Hand Grasp, Action and Pose

Work #frames Depth Annotation Work #Syn #Real Seg. #Obj.

EgoHands [4] 4.8K N Man. GUN-71 [27] 0 12K N 28
Handseg [21] 210K Y Auto. MIT CBMM [24] 0 12K N 148
NYU Hand Pose [32] 6.7K Y Auto. Choi et al. [9] 330K 0 N 600
HandSegNet [38] 44K Y Syn. SynthHands [23] 220K 3.2K Y†/N 7
HandNet [34] 213K Y Auto. InterSegHands [5] 0 52K Y†† 28
EGTEA Gaze+ [18] 14K N Man. Yale [6] 0 18K N 11
Khan et al. [16] 1.6K N Man. Garcia et al. [12] 0 105K N 26
TV-Hand [25] 9.5K N Man.

Ours 7.9K††† Y Semi-auto Ours 4.2K 3.7K Y/Y 13

Table 1: Comparison of hand analysis datasets. We compare datasets geared towards seg-
mentation, and others towards hand pose and grasp that may also have segmentation annota-
tion. †: [23] contains only background segmentation and doesn’t separate hand from object.
††: [5] contains only depth images without color. Fig. 2 illustrates these shortcomings.
†††: Note this is the number of raw frames without augmentation.

1 Introduction

Computer vision is now used in many of the manufacturing and fabrication fields. Manu-
facturers are using high-end machine vision for part inspection and verification, as well as
means to track the workers and the work pieces to gain crucial insight into the efficiency
of their assembly lines. Small-scale fabrication, on the other hand, happens virtually any-
where, even at home, at school, or in personal fabrication shops. Still all kinds of fabrication,
mass- or small-scale, share a commonality: manual assembly tasks performed by humans.
This comes as a stark contrast to the minor offering of computer vision methods to under-
stand manual assembly scenes. To this end we offer a dataset of fully annotated images of
assembly tasks with manual tools, named WorkingHands. This dataset includes both real-
world and virtual-world samples, and the dataset is useful for various computer vision tasks
including semantic segmentation and activity retrieval.

Dataset uniqueness. Segmentation of arms, hands and tools can enable very appealing
applications in manufacturing, such as tracking human operators motions, precise actions,
utilization of tools, and verify a correct, safe occupancy of the workstation area. There are
several large-scale datasets to assist in segmentation algorithm development, such as Ima-
geNet [10], COCO [19], SUN [35], PASCAL [11], and ADE20K [37]; but these datasets are
not explicitly developed for hand analysis. Hand image analysis datasets [2, 16, 21, 22, 38]
were proposed for segmentation of hands, but many do not involve hand-object interactions
or other body parts. In parallel, hand-object pose and grasp estimation is another important
topic of research in robotics, and datasets abound [9, 12, 27], however most offerings gener-
ally exclude segmentation annotation data, or provide segmentation data of low quality (e.g.,
no hand-tool or hand-arm separation). Table 1 and Figure 2 compare existing datasets; most
are unsuitable for segmenting hands during assembly tasks with hand-held tools.

Dataset composition. Manually annotating distinct semantic parts in images is tedious,
error-prone, and may be prohibitively expensive. However, a thorough segmentation anno-
tation of the image can enable more powerful downstream applications, such as object and
activity detection. Many recent hand image analysis works (e.g. hand pose, grasp, segmenta-
tion and others) rely on big synthetic data to bootstrap deep learning [12, 23, 38] and follow
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Figure 2: Qualitative comparison of annotation quality in our dataset vs. [5, 19, 23, 37]. Our
annotation is more complete and precise in terms of polygon quality, depth and background
information, arm and hand separation, etc. In addition, other datasets have a far smaller
amount of instances in most object categories (see Table 2).

Tool: Scrwdrv. Wrench Pliers Pencil Scissors Cutter† Hammer Ratchet Tape Saw Eraser Glue Ruler

COCO 0 0 0 0 975 4507 0 0 0 0 0 0 0
SUN 1 64 1 7 3 63 4 0 0 1 0 0 2
ADE20K 2 2 1 8 16 161 5 0 1 1 0 0 4
WorkingHands 1616 2051 1586 2320 864 2021 1066 967 796 1183 846 650 2428

Table 2: Comparison of number of pixel-level annotated object instances among prominent
segmentation datasets and our own. † “Knife” also considered as “Cutter” in other datasets.

up with training on a smaller real-world annotated set. Segment annotation can be easily
extracted in synthetic data and 3D models can be parameterized to augment the scene in a
multitude of novel situations, which led to the creation of specialized generation packages
[36]. WorkingHands contains both real and synthetic high quality annotations not only of
the hands, arms and tools, but also of any unused tools placed on the work desk. To the best
of our knowledge, ours is also the first segmentation dataset that concentrates on small-scale
manual assembly. A sample of our annotated dataset is presented in Fig.1. The entire dataset
is available at http://hi.cs.stonybrook.edu/workinghands.

2 The WorkingHands Dataset

We chose to deliver two types of image data in WorkingHands, real-world and synthetic, so
together they can provide a generalized and practical database for semantic segmentation for
small-scale assembly works.

The structure of the dataset is designed following PASCAL [11], which includes color
images and segmentation class labels (See Fig. 4). The pixel-value of the segments in the
label image ranges from 0 to N−1, where N is the number of classes. In addition, we include
depth images to provide extra information, since depth has been shown to be useful for
understanding human body parts [30, 32]. RGB information is also very hard to generalize
properly. In real world situations there is immense color variability, for example shirt, tool,
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Figure 3: The tools used in WorkingHands. Left: synthetic tool models, Right: real tools.

Tool Task RGB Tool Task RGB

Screwdriver Tight screws FFFF00 Cutter Cut paper 800000

Wrench Tight hex nuts 00FFFF Hammer Drive nail 808000

Tape measure Measure object 800080 Ratchet Tight hex nuts 008000

Pencil Sketch on paper C0C0C0 Pliers Cut wires FF00FF

Eraser Erase a sketch 000080 Saw Cut a board 008080

Scissors Cut paper 808080 Glue Glue papers CD853F

Ruler Draw a line 4682B4

Table 3: Tools used in WorkingHands with their tasks and mask RGB values (as seen in
Fig. 1,2,4,7). RGB for Hand is FF0000 , Arm is 00FF00 and Background is 000000 .

background or skin colors, let alone variation in lighting. Depth images circumvent these
problems while the added cost of obtaining them is not high.

Tools and Tasks Selection. We aim to create a dataset for most small-scale assembly works.
However, assembly is a widely diverse action with many goals that uses a large class of
tools. We chose to feature common tools that exist in most households and manual assembly
pipelines, such as the 13 hand-held tools listed in Table 3. Pictures of the collection of tools
used in our recordings can be seen in Fig. 3. We staged a small workstation with wooden
and paper craft pieces to be used for work pieces, and instructed the “workers” to perform
simple assembly tasks (see Table 3).

Capturing Real Data. Data was captured using a standard Kinect V2 camera, capturing at
1920× 1080 resolution for RGB and 512× 424 for depth at 7 FPS. Depth and RGB streams
are pixel-aligned using the provided SDK and the camera intrinsic and extrinsic parameters.
The camera is mounted above the desk to provide first-person perspective effects. This was
done to allow our data to be used both for segmentation of images from head-mounted gear as
well as top-view cameras in a workbench, which are becoming ubiquitous in the manufactur-
ing world. During the recording, the real time video output was displayed so that the workers
could adjust their postures to avoid excessive occlusion. Given the instructions as shown in
Table 3, three volunteers were recruited (gender: one female, two males; skin pigment com-
plexion: one Caucasian, two Asians). Multiple tools are allowed to use in one task in order to
help complete the work. Per each task, the camera started to capture images after the work-
ers began their work, and stopped automatically after recording 150 frames. A total of 39
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Figure 4: Sample annotations, color, and depth data, real and synthetic.
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Figure 5: Top-left: number of class instances in the WorkingHands dataset; Top-right: av-
erage number of pixels for an instance of each class (e.g., Hand instances cover roughly
13,300 pixels on average). Note the logarithmic scale. Bottom: heatmap illustration of the
pixel-position of a few classes in the Real part of the dataset.

films were captured, of which 26 were fully annotated with segmentation information. We
employed Python-LabelMe (https://github.com/wkentaro/labelme), an open
source image annotation software based on the original LabelMe project from MIT [28], to
annotate different semantic parts and assign appropriate labels to them. The results can be
seen in Fig. 1.

Rendering Synthetic Data. To enrich our dataset with a large number of samples, we
adopted using synthetic data. Recently, tools were presented to create hand pose synthetic
data [36], however not for segmentation. To generate realistic data to be on a par with real
data, we purchased high quality 3D models of tools (see Fig. 3) as well as a highly realistic
pair of hands, and loaded them in the Blender software (http://www.blender.org).
All the manual tasks (or instructions) were simulated by creating realistic key-frame anima-
tions mimicking human motion by observation. To increase the generality of the dataset, so
it can be applied in various physical environments, we use five camera perspectives in the
synthetic dataset.

Unlike real-world captures, annotating semantic parts in a virtual environment is very
straightforward. In Blender, we unwrapped the meshes of tools, hands, and arms to 2D UV
maps, then painted the UV maps using solid colors. Each color is one-to-one mapped to
one class label in our dataset according to the RGB-codes dictionary (see Table 3). Later,
we utilize these colors to retrieve corresponding label numbers. Given a mapped texture
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Figure 6: Augmentations enabled in our dataset. Background can be replaced since all tools
in the scene are annotated. Skin tone and “plumpness” of the synthetic hands are parametric.

in Blender, the software will output rendered images of RGB and semantic labels for all
the designed animation frames automatically. A synthetic depth map can be obtained by
outputting the virtual camera’s z-buffer, and is pixel-aligned to the other streams.

Dataset Parts. The real part of the dataset has 3695 labeled images, while in the synthetic
part has 4170 images. Instances wise, we have 9505 instances of tools in the real dataset,
and 4170 instances of tools in the synthetic parts. Proportions of each tool in both real data
and synthetic data are charted in Fig. 5. Potential data augmentations are shown in Fig. 6.

2.1 Semantic Segmentation Labeling Evaluation

Related work. Semantic segmentation has long been a central pursuit in the computer vision
research agenda, with compelling applications in autonomous navigation, security, image-
based search and manufacturing, to name a few. Recently, segmentation research has seen a
tremendous boost in offerings of deep convolutional network architectures, marked roughly
by Long et al’s Fully-Convolutional Networks (FCN) work [20] as the new era of semantic
segmentation. The key insight in [20], which still resonates in most state-of-the-art con-
tributions today, is using a pre-trained powerful visual feature-extracting network (such as
VGG [31], ResNet [13], or a standalone one) and layer on top of it a decoding and unpooling
mechanism to predict a class for each pixel at the original resolution.

Evaluated Segmentation Methods. We experimented with the following semantic segmen-
tation algorithms from the latest literature: SegNet [3], Mobile UNet [14], Full-Resolution
Residual Networks (FRRN) [26], AdapNet [33], DeepLab [7, 8]. All algorithms were im-
plemented with Tensorflow [1], forking the Semantic Segmentation Suite project [29].

Metrics. We use a standard metric to evaluate labeling performance. The most adopted is
the intersection-over-union metric IoU = T P

T P+FP+FN , where TP, FP, and FN are the numbers
of true positive, false positive, and false negative pixels, respectively [11]. We average over
all classes and then over samples to obtain the mean intersection over union (mIOU).

Evaluation Results. The results of training and testing with the selected evaluation methods
(listed in S2.1) are given in Table 4. We notice that full-resolution residual networks (FR-
RNs) are mostly superior under all categories, followed by the SegNet with skip connections.
In Figure 7 we show example results on the Real test set with FRRN-B and SegNet-Skip.
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Algorithm

Train→ Test AdapNet D.LabV3 D.LabV3+ SegNet SegNet-Sk FRRN-A FRRN-B Mob.UNet Mob.UNet-Sk

Rl. → Rl. 0.174 0.113 0.139 0.257 0.336 0.316 0.283 0.234 0.22
Syn. → Syn. 0.714 0.532 0.584 0.782 0.856 0.856 0.858 0.759 0.842
Syn.+Rl. → Rl. 0.291 0.212 0.227 0.328 0.494 0.502 0.589 0.216 0.388
Syn.+Rl. → Syn. 0.623 0.367 0.313 0.591 0.641 0.776 0.763 0.547 0.713

Table 4: Results of the baseline methods on the WorkingHands dataset, in terms of mIOU.
The first column marks training vs. testing, e.g. ‘Syn.+Rl. → Rl.’ means training on both
synthetic and real images (training set) and testing only on real images (test set held out).
‘Sk’ indicates the use of skip connections in the network.

SegN
et-Skip

FR
R

N
-B

G
round Truth

Figure 7: Results of running FRRN-B [26] and SegNet-Skip [3] on a number of samples
from the Real test dataset. The top row is the ground truth annotation.

Some post processing cleanup on the segmentation result, in particular blob geometry analy-
sis (which we did not attempt), could potentially alleviate the level of noise. Another insight
is that the existence of synthetic data dramatically increases the power of the learners in ac-
curacy over Real data. In the case of FRRN-A, for example, mIOU over the Real test set
shot up from 0.336 when training just with Real images up to 0.502 with synthetic data.

3 A Hand-Task Descriptor for Activity Mining
Knowing which tool is being used at a given moment is useful for both hand pose estimation
and activity recognition. We describe here a Hand-Task Descriptor that can be used to rep-
resent the assembly activity being performed. To obtain the Hand-Task descriptor, we train
a classifier to predict the tool(s) being used by the hands based on the motion of the hands
and the arms. This training procedure requires a dataset with pixel-wise annotations for the
arms, the hands, and the tools being used; and the WorkingHands dataset is particularly suit-
able for this purpose, unlike many existing datasets for hand pose estimation (e.g., [17]) or
hand-object interaction (e.g., [23]) that do not have annotation for the tools being used. As
will be seen, the learned descriptor is useful for retrieving video instances with similar hand
configurations and movements. Figure 8 illustrates this proposed pipeline.
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Retrieved From Synthetic Synthetic+Real

AP@5 AP@10 AP@5 AP@10

Pretrained 3D ResNet-152 0.0836 0.0836 0.6672 0.5168
HandDescriptor-512 (proposed) 0.5145 0.5268 0.9236 0.8913
HandDescriptor-1024 (proposed) 0.5481 0.5740 0.9322 0.9563

Table 5: Average Precision at k (AP@k) for video retrieval. Query videos are real data. Two
cases are considered: 1) the retrieved videos are from the Synthetic data, and 2) the retrieved
data come from both the Synthetic and Real data. Both Hand-Descriptors of 512 and 1024
dimensions outperform the descriptor obtained using the pretrained network.

ScrwDrvr. Wrench Pliers Pencil Eraser Scissors Cutter Hammer Ratchet TapeMeas. Saw Glue Ruler

AP 0.358 0.178 0.327 0.109 0.130 0.110 0.145 0.126 0.063 0.586 0.121 0.162 0.124

Table 6: Average Precision (AP) results for the tool-being-used classifier trained on synthetic
data and tested on the real data of the WorkingHands dataset. Mean AP = 0.1954.

Learning the descriptor. To obtain a hand-task descriptor, we learn a classifier to predict
the tools being used by the hand based on the motion of the hands and arms. Since more
than one tool can be used at a time, we pose this as a multi-label classification problem. The
target output of the classifier is a 13-dimensional binary vector for 13 different tools. The
input to the classifier is a block of 16 frames, encoding the binary masks for the hands and
arms. We use the synthetic data and real data of the WorkingHands dataset for training and
testing, respectively. We also perform data augmentation by flipping the frames horizontally
and vertically. The training set has 940 videos and the test set has 880 videos. The classifier
is a 3D Resnet-152, and it is initialized by as a pretrained network on the Kinetics dataset
[15]. Once the classifier has been trained, the activation values at the penultimate layer is
taken as the feature descriptor for the input video.

Using the descriptor. We can use the Hand-Task descriptor to retrieve videos with similar
hand configuration and movement. Specifically, given a query video, we can extract the
feature vector (from the penultimate layer of the trained 3D Resnet-152) and retrieve other
videos with similar feature vectors (using cosine similarity).

Table 5 reports the quantitative performance of the Hand-Task descriptor, evaluated on
the WorkingHands dataset. We use the Average Precision at k (AP@k) as the performance
metric for the retrieval task. AP@k can be computed as follows. For each query video, we
retrieve the top k videos that are similar to the query video and then compute the precision
value (based on whether the retrieved videos use the same tool(s) as the query video). Finally,
we average the precision values over all query videos. As a baseline, we also evaluate the
performance of a 3D ResNet-152 pretrained on the Kinetics dataset [15]. We also experiment
with different sizes (feature dimensions) for the Hand-Descriptor. As can be seen from
Tab. 5, the Hand-Descriptors outperforms the baseline method, and the former perform well
even when the query video is real and the database videos are synthetic.

Table 6 shows the Average Precision for detecting activity classes. Some activities are
easier to detect than others, and the mean AP is 0.1954. This is a challenging task in general,
given the classifier is trained on the synthetic data and evaluated on the real data.

Figure 9 shows some qualitative results for using the Hand-Task descriptor to retrieve
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Figure 8: Our proposed activity mining pipeline. A tool classifier is trained to bootstrap
the Hand-Task Descriptor, which is useful for mining for similar hand-tool activities from
other datasets without annotation. Purple lines denote gradient flow. ’L’ - cross-entropy loss,
’mAP’ - mean Average Precision.

similar videos on both the WorkingHands and EGTEA Gaze+ datasets. Although the Hand-
Task descriptor was not trained or fine-tuned on the EGTEA Gaze+ dataset, it can accurately
retrieve videos with similar activities. Note also that the EGTEA Gaze+ dataset involves
different activities, and hands in this dataset interact with different objects than the ones in
the WorkingHands dataset. This demonstrates the generalization capability of the Hand-Task
descriptor, and also proves the usefulness of the WorkingHands dataset.

4 Conclusions

To advance the field of computer vision methods for assembly operations, we contribute
WorkingHands, a high-quality fully annotated segmentation dataset with both real and syn-
thetic image data. We present an evaluation of numerous leading segmentation algorithms
on our dataset as a baseline for other researchers. The WorkingHands dataset also lends
itself to create a hand-task descriptor that can predict which object is being used as well as
retrieve similar manual tasks in large corpora without such annotation. We demonstrate this
capability on the EGTEA Gaze+ dataset [18].

Acknowledgments. We would like to thank the Nvidia corporation for their generous dona-
tion of a Titan Xp and Quadro P5000 GPUs, which were used in this project.
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