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Figure 1: Visualization of the attention learned by our method. Our proposed Supervoxel Attention Graph (SVAG) uses
groups of pixels, i.e., supervoxels, as nodes for a graph-based representation of the video. A self-attention mechanism over
nodes gives rise to a hierarchical representation learned by optimizing action recognition performance. The learned attention
scores of each node are illustrated as heat maps for the frames in the figure. Our model spontaneously learns to attend
humans, hands, and object regions near hands, by identifying the most relevant spatiotemporal regions for action recognition
without direct annotation.

Abstract

A significant challenge in video understanding is posed
by the high dimensionality of the input, which induces large
computational cost and high memory footprints. Deep con-
volutional models operating on video apply pooling and
striding to reduce feature dimensionality and to increase
the receptive field. However, despite these strategies, mod-
ern approaches cannot effectively leverage spatiotemporal
structure over long temporal extents. In this paper we intro-
duce an approach that reduces a video of 10 seconds to a
sparse graph of only 160 feature nodes such that efficient in-
ference in this graph produces state-of-the-art accuracy on
challenging action recognition datasets. The nodes of our
graph are semantic supervoxels that capture the spatiotem-
poral structure of objects and motion cues in the video,
while edges between nodes encode spatiotemporal relations
and feature similarity. We demonstrate that a shallow net-
work that interleaves graph convolution and graph pool-
ing on this compact representation implements an effective
mechanism of relational reasoning yielding strong recogni-
tion results on both Charades and Something-Something.

∗This work was done when T.-H. Oh was with Facebook AI Research.

1. Introduction

Over the last few years we have witnessed significant
progress in video understanding thanks to the emergence of
deep spatiotemporal models learned end-to-end and effec-
tively integrating contextual, appearance, motion and tem-
poral features [19, 55, 3, 57, 75, 42, 9, 61, 22, 67, 69].
3D convolutional neural networks (3D CNNs) in particular
have effectively replaced hand-designed spatiotemporal de-
scriptors [28, 59, 25, 6, 29, 45, 68, 86, 40, 27] as the repre-
sentation of choice for video understanding. 3D CNNs im-
plement a deep stack of local spatiotemporal convolutional
operations. To capture longer-range dependencies and to re-
duce the computational cost, pooling and striding are com-
monly adapted over both spatial and temporal dimensions.
Because the size of the receptive field increases with each
layer, in theory, stacking more and more layers should en-
able these models to capture longer-term patterns in the
video. However, in practice, due to memory constraints, 3D
CNNs have limited depth and are typically optimized over
short clips. This limits their ability to capture long-term
dependencies. Recent work has leveraged non-local opera-
tions [65], self-attention [58, 4], and memory modules [71]
to increase the range of spatiotemporal dependencies cap-



tured by these models. While effective, these mechanisms
increase significantly the structural and computational com-
plexity of the model. Thus, the key challenge is to design
a model that can model long-term contextual dependencies
efficiently and effectively.

For this purpose, we propose a model that captures long-
range and contextual dependencies through relational infer-
ence over a graph-based representation of the video. The
nodes of our graph are semantic supervoxels that conform
to the spatiotemporal structure of objects and motion cues in
the video, while edges between nodes capture spatiotempo-
ral relations and feature similarity. We leverage supervoxel
pooling so that each node encodes short-term 3D CNNs fea-
tures pooled from the supervoxel region. The supervoxels
effectively reduce the dimensionality of the convolutional
tensor computed by the 3D CNNs, leading to a represen-
tation that facilitates efficient semantic relational reasoning
over long spatiotemporal volumes.

In our experiments, we demonstrate that 16 nodes (su-
pervoxels) per second are sufficient to provide a rich seman-
tic description of the video. Our graph-based model pro-
vides a compact, yet effective representation that captures
long-range relations and yields state-of-the-art performance
on challenging action recognition datasets. Compared to re-
cent approaches for long-range video modeling which rely
on the non-local operation [65] or additional memory [71],
our approach is more efficient and achieves higher accuracy.

2. Related Work

Video Action Recognition. Early methods in this genre
focused on the manual design of spatiotemporal appear-
ance and motion features that are useful for action recog-
nition [28, 59, 25, 6, 29, 45, 68, 86, 15, 40, 27, 70].
More recently, the surge of deep convolutional models has
enabled the learning of powerful spatiotemporal features
directly optimized for video action recognition [22, 49,
60, 53, 30, 84, 62, 64, 37]. In the last few years, 3D
CNNs [19, 55, 3, 57, 75, 42, 9, 17] have become a domi-
nant approach for short-range video modeling. To leverage
longer temporal extents, recurrent architectures [82, 7, 50,
51, 73, 33, 10, 2, 39, 36, 52] were proposed. However, these
recurrent models are typically built on top of frame-level or
video clip-level holistic scene descriptors, which collapse
the scene information into a single vector. As a result, many
contextual relationships are not properly captured. To ad-
dress these shortcomings, we leverage a supervoxel graph
representation that allows us to preserve local video infor-
mation, while also enabling the capability for efficient long-
term modeling.

Spatial Visual Relationships. Reasoning about object rela-
tionships has been shown useful for improving various com-
puter vision tasks such as object detection [78], scene classi-

fication and segmentation [79, 26], visual question answer-
ing [46], and image captioning [80, 23]. Methods for vi-
sual relationship detection (VRD) [35, 16, 11, 87, 83, 5] and
the prior work leveraging scene graphs [21, 13, 63, 77, 41]
explicitly model object relationships. However, the ba-
sic relationship representation of VRD and scene graphs
is restricted to objects from a predefined set of categories.
Furthermore, the work in [14, 54, 38] leverages pairwise
human-object and object-object relationships for image-
level action recognition. All the aforementioned methods
aim to model spatial relationships within a static image,
whereas our goal is to capture spatiotemporal relationships
useful for long-term video modeling.

Modeling Spatiotemporal Relationships. Non-local net-
works [65] were proposed for modeling unconstrained pair-
wise relations in both space and time. However, because
a non-local operator is applied to every pixel of a given
feature map, this model becomes computationally pro-
hibitive when considering long-range videos. Addition-
ally, a recently introduced long-term feature bank (LFB)
method [71] deploys an external memory that stores fea-
tures from a long temporal window, which is subsequently
used for action classification. However, while LFB method
is capable of capturing long-range dependencies, due to the
structure of its memory indexing, it cannot model spatial
relationships within individual video frames.

The model that is closest to ours is the space-time region
graph of Wang and Gupta [66]. Their graph uses region
proposals obtained from object detectors as nodes. How-
ever, top-ranked object proposals only capture a sparse set
of the video content, essentially only regions correspond-
ing to specific object classes that the detector was trained
to recognize. Such an approach discards too much infor-
mation too early and biases the graph to rely exclusively
on information relating to this predefined set of classes. In
comparison, we adopt a mid-level supervoxel [81, 18] node
representation that allows us to model objects and their parts
regardless of categories. Furthermore, using mid-level su-
pervoxels as our graph nodes allows us to build a compact
video representation that preserves relevant spatiotemporal
cues. Unlike the method of Wang and Gupta [66], our ap-
proach condenses the information from the entire video in
a hierarchical fashion using attention modules that selec-
tively “attend” the most relevant regions for the end task.
Our experiments show that such hierarchical filtering of in-
formation leads to significantly higher action recognition
accuracy compared to that produced by space-time region
graphs [66].

3. Supervoxel Attention Graphs

Our goal is to design a model that captures cues related
to humans and object interactions within a long-range input



video. To achieve this goal we adopt a graph-based rep-
resentation, which we refer to as a Supervoxel Attention
Graph (SVAG). Given an input video, we first decompose it
into a set of supervoxels, which serve as our graph nodes.
Each node is represented as a 3D CNN feature, pooled
within its supervoxel. The edges between nodes are estab-
lished based on feature similarity. Such a design provides a
compact and flexible video representation, which facilitates
efficient long-term video modeling. We now describe each
component of our approach in more detail.

3.1. Computation of Semantic Supervoxel Nodes

We design our graph node representation with the fol-
lowing characteristics in mind: 1) compactness (i.e., a small
number of nodes for representing a long-range video), 2)
coverage (i.e., the nodes of the graph should effectively rep-
resent most relevant cues in a video), 3) semantic represen-
tation (i.e., each node should represent a salient semantic
unit such as an object or its part). We argue that supervox-
els, i.e., spatiotemporal groups of pixels, meet all of these
criteria.

Motivated by [18], we use a softK-means assignment al-
gorithm for supervoxel computation. Given an input video
of N space-time pixels, our algorithm assigns each pixel
to one of the K supervoxels. Each pixel is described
by a C-dimensional feature vector. We encode the fea-
tures of all pixels into matrix F∈RN×C , and represent the
pixel-supervoxel association in matrix Q∈[0,1]N×K . Our
method iteratively updates the association while refining the
supervoxel representation. Initially, we subdivide the video
according to a regular grid uniformly partitioned along the
spatial and temporal axes (Fig. 2a). The cells of this grid
are taken as initial supervoxels. Thus, we initialize the su-
pervoxel centroids S0 ∈RK×C by averaging the features of
pixels within each cell. We estimate the association map Q
and the supervoxel representation S by iterating through the
following procedure:

1. Association update. We compute a normalized simi-
larity measure between a pixel p and a supervoxel k as:

Q(p,k)=
exp[−||F(p,:)−S(k,:)||2]∑
i exp[−||F(p,:)−S(i,:)||2]

(see notation1). Note
that each row of Q (the association values of a pixel to
all supervoxels) sums to one, i.e.,

∑
k Q(p,k)=1.

2. Centroid update. The cluster centroid S(k,:) of super-
voxel k is updated by the weighted average of features,
where the weights are based on the association strengths:
S=Q>F.

We point out that the choice of pixel-level feature rep-
resentation is critical for obtaining supervoxels that cap-

1We denote (·, ·) as row-column entry indexing following the Numpy index
convention; (:, ·) and (·, :) represent the column and row vector indexing,
respectively.

(a) (b)

Figure 2: Visualization of supervoxels on Charades
dataset. (a) A sample frame of input video overlayed with
the initial supervoxel grid; (b) Supervoxels using segmenta-
tion features and TXYRGB channels (spatiotemporal coor-
dinates and color values) computed for three frames of each
sequence. The visualization only shows limited slices in the
temporal video tubes.

ture semantic spatiotemporal structures in the video. To
achieve this goal, we concatenate the (x, y, t) location and
the RGB color values of each pixel to a semantic feature
vector computed with an off-the-shelf Unified Perceptual
Parsing network [74] (UPerNet) pretrained on the ADE20K
dataset [85]. Because UPerNet has been explicitly designed
to recognize as many visual concepts as possible from a
given image, it fulfills our requirement for a rich semantic
description on which we build our mid-level representation.

We apply the procedure above, and obtain the final pixel-
supervoxel association matrix H ∈ RN by hardening the
soft association: H(p) = argmaxk Q(p,k). Figure 2 visual-
izes examples of supervoxels computed with our procedure.

Supervoxel Pooling. To extract high-level features for each
supervoxel, we first feed the original RGB video of size
T×H×W×3 through a pre-trained video backbone network
(e.g. a 3D CNN), which outputs a spatiotemporal tensor V
of size T ′×H ′×W ′×D. Given the supervoxel assignment
map H obtained from the supervoxel computation, we then
define supervoxel average pooling as:

X = svx pool(V,H), (1)

where a vector X(k,:) of the k-th supervoxel is obtained by



averaging all the features within the k-th supervoxel. This
effectively compresses a dense video representation V into
a much smaller set of supervoxel features X ∈ RK×D

where K�THW .

3.2. Graph Network Architecture

Our graph network consists of two distinct branches: a
relational branch and a local branch as illustrated in Fig. 3.
The relational branch leverages graph convolutions for mes-
sage passing, implementing relational learning. The local
branch processes the feature vector of each node indepen-
dently to model relevant local information. We now de-
scribe each of these branches in more detail.

Relational Branch. To deal with the irregular graph struc-
ture, we adopt the framework of graph convolutions [24].
Our model involves a stack of blocks, which interleave
graph convolution and hierarchical pooling. The graph
pooling operations force the model to identify salient graph
nodes, whereas graph convolutions perform message pass-
ing to propagate information within the graph.

A distinctive feature of our graph network is the hierar-
chical node pooling performed using a self-attention mech-
anism. The block implementing this operation is illustrated
in the gray color region of Fig. 3. It consists of graph con-
volution, skip connection, and self-attention graph pooling.

Let (Z0
r,G

0) represent the initial supervoxel graph that
is the input to the relational branch. Z0

r ∈RK×D is the ini-
tial node feature matrix set equal to the original supervoxel
features X. G0 ∈RK×K is the normalized graph affinity
matrix. Entry G0

i←j :=G0
(i,j) encodes the affinity of the di-

rected edge connecting node j to node i. More details about
the computation of G0 are given in the next section.

We define the graph convolution layer as:

GConv[G,Z] := LN[Gf(Z)Wr], (2)

where Wr ∈RD′×D is a trainable weight matrix, and
LN[·] is the layer normalization [1]. For node embedding
operation f(·), we use a simple linear embedding, i.e.,
f(A)=AWf , Wf ∈RD×D′

(D′≤D). The formulation
above enables our model to propagate relevant spatiotem-
poral cues from one node to another.

After every graph convolution, we perform graph pool-
ing, which forces the model to identify the most salient
graph nodes. To achieve this goal we apply the recently
proposed Self-Attention Graph Pooling (SAGPool) [31].
The key idea of SAGPool is to compute an attention
score for each node, and use the attention values to rank
the nodes. First, the attention scores are computed by
a=tanh(Zwatt) ∈ RK given node features Z. Given
a pooling ratio η ∈(0, 1], which determines the portion of
nodes to keep, we obtain the indexes of the top K ′=dηKe
nodes by sorting their respective attention values, i.e.,

idx =top rank(a,K ′). We retain only the top-ranked
nodes for the next round of graph convolutions. Further-
more, we scale their features according to the predicted at-
tention values: Z′ = Z(idx,:)�a(idx), where � is the broad-
casted element-wise product. After discarding supervoxels
with low attention values, the newly-formed graph becames
G′ = G(idx,idx) followed by row normalization. We denote
this entire procedure as:

(Z′,G′) = SAGPool[Z,G]. (3)

Our graph convolution block can then be expressed as:

(Zb
r,G

b) =SAGPool
[
relu(Zb-1

r +GConv[Gb-1,Zb-1
r ]),Gb-1

]
for b ≥ 1, (4)

where b denotes the b-th block of the network within the
stack of B blocks. Note that we add a skip connection and
a relu activation after each graph convolution.

One potential issue with this graph pooling design in Eq.
(4) is that, it may discard relevant information too early. To
mitigate this issue, we attach a lateral connection from Z0

r ,
which encodes original node features (see gray regions of
Fig. 3). Mathematically, Eq. (4) becomes

(Zb
r,G

b) =SAGPool
[
relu(Zb-1

r +GConv[Gb-1, Z0
r]),G

b-1
]

for b ≥ 1, (5)

where Gb = Gb-1
(idxb-1,:) in SAGPool. Note that in this for-

mulation all columns of the affinity matrix are retained. The
distinctive feature of Eq. (5) compared to Eq. (4) is that this
variant discards the low-attentional supervoxel nodes in the
pooled graph, but keeps them in message passing as infor-
mation source only. This is beneficial because discarded
nodes can still provide relevant contextual information. We
refer to these two designs as source-discard (for the model
in Eq. (4)) and source-preserve (for the model in Eq. (5)).
An ablation study shown in Fig. 5(e) demonstrates the ben-
efit of the source-preserve design.

Local Branch. At each block, our local branch processes
and then selects graph nodes according to the pooling in-
dexes obtained from SAGPool at the corresponding block
in the relational branch. The other nodes are discarded,
i.e., X̄ = X(idx,:). Afterwards, we apply a residual layer:
Zl = relu(X̄B+WX̄B). The final number of remaining
nodes is the same as that of the relational branch. We denote
the final nodes as [zl,1, · · · , zl,Ko ] ∈ RD×Ko . The aim of a
local branch is to processes each graph node independently
to retain relevant local information

Fusion and Classification. We concatenate the final out-
puts of the branches

[
zr,k, zl,k

]
for each node, and then use

a linear layer to map each feature vector into a class con-
fidence score. The node scores are aggregated differently
depending on the task, as discussed in Sec. 4.1. We use the
cross-entropy loss to train the final model.



Figure 3: Illustration of our Spatiotemporal Voxel Attention Graph (SVAG). To perform reasoning on the graph we
use two branches: a relational branch and a local branch (the global branch is not used in our final model but is drawn for
reference of the ablation study). The relational branch leverages hierarchical graph convolution and attentional pooling to
capture salient long-range dependencies. The local branch processes each node independently using a residual layer.

3.3. Graph Construction

As was done in [66], we construct the graph G with
a learnable similarity metric. Given the node representa-
tion X∈RK×D, we construct the similarity-based graph
Gsim ∈RK×K with entries computed as:

Gsim
i←j =

exp[F (xi,xj)]∑K
j′=1

exp[F (xi,xj′ )]
, (6)

where F (xi,xj) = 1√
D
query(xi)

>key(xj) measures the
pairwise similarity, and query(·) and key(·) represent two
different transformations defined by simple linear trans-
formations as query(x) =Wqx and key(x) =Wyx with
learnable weights Wq and Wy following [58].

The similarity measure is learned via backpropagation
with supervision from the action recognition task, such that
it captures task-specific relations that are useful for recog-
nition. Thus, the directed edge Gsim

i←j connecting node j
to node i is expected to have a high value if two nodes are
semantically related.

Wang and Gupta [66] suggested adding another type
of hand-designed graph, called spatiotemporal graph. We
found that, with our framework, our learnable similarity
graph provides superior performance compared to a spa-
tiotemporal graph defined over our supervoxels (we refer to
the supplementary material for the corresponding ablation).

Sparsification. We observe that the density of the similar-
ity graph affects the performance of the graph convolutional
layers. We adopt a simple but effective sparsification strat-
egy. In the similarity matrix, we zero out the entries below
the top χ(%) of the similarity scores within each row.

4. Experiments
We conduct experiments on Something-Something2 [12]

and Charades [48]. In this section, we first describe the im-
plementation details specific to the task of each dataset, and
then present the results. To understand the behavior of our
framework, we perform ablation studies on the Charades
validation set. Additional results and further details can be
found in the supplementary material.

4.1. Implementation Details

Backbone Models. We use several backbones to extract
video features: R101-NL[71], TSM [34], and CSN [56].
The backbones are pre-trained on a pre-training video
dataset and then finetuned on the target dataset.

Supervoxel Sampling. As described in Sec. 3.1, when
computing supervoxels, we incorporate high-level seman-
tic segmentation maps as another feature in addition to
the TXYRGB channels (spatiotemporal coordinates and
color values). We use the semantic segmentation model
UPerNet [74] trained on the ADE20K [85] dataset, which
spans a diverse set of 150 stuff/object categories. We
concatenate the activation channels of the network to
the low-level features. When concatenating, similarly to
[18], we scale each features with scaling hyperparameters
(λRGB , λsemantic, λT , λXY ). The hyperparameter values
and details can be found in the supplementary material.

Training & Inference. The datasets used in our experi-
ments involve different tasks: while action recognition on
Something2 is single-label classification, Charades entails
a multilabel classification. Thus, the two datasets require
slightly different network architectures and experimental

2We shorten the name as Something2 for brevity.



Model Backbone Pretrain mAP

CoViAR [72] R50 ImageNet 21.9
Asyn-TF [47] VGG16 ImageNet 22.4
MultiScale TRN [84] Inception ImageNet 25.2

Non-Local Network [65] R101-NL Kinetics-400 37.5
Space-Time Region Graph [66] R101-NL Kinetics-400 39.7
Long-Term Feature Banks [71] R101-NL Kinetics-400 42.5
SlowFast [8] R101-NL Kinetics-400 42.5
SVAG (ours) R101-NL Kinetics-400 44.1

Table 1: Comparison with the state-of-the-art on Cha-
rades (RGB modality). Our proposed graph model
(SVAG) outperforms all models considered in this compar-
ison, including Non-Local Networks and Long-Term Fea-
ture Banks, which are long-range video models based on
the same backbone and the same pretraining dataset.

setups, as also done in [66]. For Charades, we apply the
linear classifier to our final output features {[zr,i, zl,i]},
perform max-pooling, and apply the sigmoid function.
For Something2, which has a single-label per sample, we
average-pool all the final output features across supervox-
els, and apply the linear classifier once followed by the soft-
max function.

Evaluation Metrics. For the Charades evaluation, we use
the metric of mean Average Precision (mAP). Following
prior work [66, 71], we sample 10 clips per video and use
(left, center, right) 3-crop testing. We use max-pooling to
aggregate class confidence scores across all 30 crops. For
Something2, we use the center crop and report the classifi-
cation accuracy.

4.2. Comparison with the state-of-the-art.

Table 1 compares our approach with state-of-the-art
methods on Charades dataset. We include methods that rely
on the same backbone (R101-NL) and the same pretraining
dataset (Kinetics-400) as our method, as well as some his-
torical baselines. We refer the readers to [8, 56, 44, 43]
for more results from leveraging multiple modality or pre-
training with larger dataset. As shown in Table 1, our pro-
posed supervoxel-based graph reasoning approach outper-
forms all recently introduced long-range models based on
the same backbone and the same pretraining: the gains of
our model are 6.6% over Non-local Networks [65], and
1.6% over Long-Term Feature Banks [71]. The accuracy
of SVAG is also 4.4% higher than that produced by the
Space-Time Region Graph [66]. As shown in Table 3, in
addition to achieving higher accuracy, our model is consid-
erably more efficient and less memory-intensive than Non-
local Networks [65].

Table 2 compares our approach with other state-of-the-
art methods on the Something2 dataset. STDF [37] is the
most recent state-of-the-art approach on this dataset. How-

Method Backbone Pretrain # Frame
× # Crop

Top-1 val. Top-5 val. Top-1 test

S3D-G [76] Inception ImageNet 64× 1 48.2 78.7 42.0
ECO [88]

Inception Kinetics
16× 1 41.4 – –

ECOLite 92× 1 46.4 – 42.3
TRN [84] Inception ImageNet 8× 1 34.4 – 33.6
MFNet [32] R101 Scratch 10× 1 43.9 73.1 37.5
STM [20] R50 ImageNet 8× 1 47.5 – –

8× 3 49.2 79.3 –
16× 1 49.8 – –
16× 3 50.7 80.4 43.1

STDF [37] R50 ImageNet L× 2 50.1 79.5 –
R152 L× 2 53.4 81.8 –

TSM [34] R101 Kinetics 16× 1 48.3 77.2 –
SVAG (ours) R101 Kinetics 16× 1 49.8 77.9 –

CSN [56] ip-CSN152 IG-65M 32× 5 52.9† 83.0 –
SVAG (ours) ip-CSN152 IG-65M 32× 5 53.8 83.4 49.4

Table 2: Comparison with the state-of-the-art on
Something2-v1 (RGB modality). SVAG based on a R101
backbone outperforms TSM using the same backbone. By
taking advantage of a stronger backbone (ip-CSN152),
SVAG achieves the best reported number on this benchmark
(53.8% on the validation set and 49.4% on the test set). †

indicates the performance of our own implementation with
5-crop testing (52.9%) while the original paper [56] used
10-crop testing (53.3%). Our conclusion holds due to con-
sistent relative improvement.

ever its backbone model is not available at the time of sub-
mission of this work. Thus, we have built our approach on
top of two other backbone models, TSM [34] and CSN [56].
As shown in Table 2, the proposed graph reasoning im-
proves the performance of both these models. By leverag-
ing the strong CSN backbone and the proposed supervoxel
graph reasoning, our SVAG improves over the previous best
reported result on this benchmark (53.8% vs 53.4%).

4.3. Qualitative Results.

In Figs. 1 and 4, we visualize the node attention scores
as heat maps (mapped into the range of [0, 1]) computed by
the graph pooling. As it can be observed, although the self-
attention mechanism over nodes is learned by optimizing
action recognition performance without direct spatiotempo-
ral annotations, our model spontaneously learns to attend
humans, hands and object regions near hands.

4.4. Ablation.

In this subsection, we study the accuracy of our model
on Charades as we vary the different design choices.

Supervoxel size. As shown in Fig. 2, the supervoxels are
initialized with regular grids. The temporal length τ and
the spatial width ω of the initial grid cells are two hyperpa-
rameters. Fig. 5(a) shows the effect of the initial supervoxel
scale (τ , ω). Based on this study, we use temporal length
τ = 1s and spatial width ω = 64pix. for the computation
of supervoxels on the Charades dataset.



Graph convolutional blocks & pooling rate. Let B be the
number of the graph pooling blocks, and η the pooling rate
for each pooling block. The total effective pooling rate for
the entire graph branch is ηB . Fig. 5(b) shows the effect
of the graph convolutional depth by varying B from 1 to 4
while fixing η=100%. This plot suggests that using two lay-
ers gives us a good balance. In Fig. 5(c), we fix the number
of graph pooling blocks B=2 and decrease η from 100%
to 70%. The best performance is achieved for the total ef-
fective pooling rate of η2=81%. Based on these results, we
use B=2 and η=90%.

Effect of graph pooling. We also study the effect of graph
pooling by removing SAGPool from the proposed network.
As shown in Fig. 5(c), removing SAGPool (red diamond
marker in the Figure) hurts the recognition performance
compared to the top accuracy achieved with SAGPool and
a pooling rate η2 = (90%)2. This demonstrates the effec-
tiveness and benefit of applying graph pooling after every
graph convolution, which forces the model to identify the
most salient graph nodes.

Enforcing sparsity on Gsim. We study the effect of spar-
sification during the construction of Gsim. In Fig. 5(d),
we vary the sparsity percentage χ from 10% to 100%,
while other hyperparameters are kept the same (B = 2 and
η = 90%). Using top 30% of the graph edges in Gsim yields
the best accuracy.

Temporal length T . Fig. 5(e) shows the accuracy of our
model as we vary the temporal span T , compared to the
R101-NL model and LFB [71]. Setting T =10s yields the
best result. Note that here we use 30-crop testing, as de-
scribed in Sec. 4.1. Following prior works [66, 71], we
sample 10 clips per video and use the (left, center, right)
crops of each clip for testing. We use max-pooling to ag-
gregate class confidence scores across all 30 crops.

Graph inference over the entire video. While most prior
models have high computational costs and large memory
footprints which force them to operate on short tempo-
ral windows, SVAG yields a compact representation that
makes it possible to perform our graph inference efficiently
over the entire video. Compared to 30-crop testing using
T = 10 seconds, graph inference over the entire video
achieves slightly lower accuracy (43.6% vs 44.1%). The
videos in the Charades dataset on average last around 30
seconds. This suggests that connecting nodes that are too
far away may obscure the true context and negatively af-
fect the performance. Therefore, for full video testing, we
propose to enforce a temporal constraint on the similarity
graph that no edge exists between two supervoxels that are
more than T seconds away. With T set to 30, 20 and 10,
the full video testing achieves 43.8%, 44.0% and 44.2% re-
spectively. While for the case of Charades the improve-
ment of graph inference over the entire video compared to

Video frame Attention score Top 30% nodes

(a) Someone is cooking something; ...

(b) Sitting on a sofa/couch; Holding a laptop; Working/playing on a laptop; ...

(c) Lying on the floor; Holding a cup of something; Watching television; ...

(d) Tidying up a blanket/s; ...

Figure 4: Visualization of node attention. Supervoxel at-
tention scores computed for a few sample frames are shown
in the 2nd column. The 3rd column shows the top 30% su-
pervoxels according to attention scores. We observe that
highly attended supervoxels are those most relevant to the
action performed in the video. This demonstrates that our
model spontaneously learns to attend regions relating to hu-
mans and objects without any spatiotemporal annotation.

crop-based testing is small (44.2% vs 44.1%), we expect
that the compactness and efficiency of our SVAG will be
even more beneficial for analysis of videos with contextual
dependencies exhibited over longer temporal ranges, where
most prior models become computationally unpractical.

Combining global, local, and relational branches.
Fig. 5(f) compares different combinations of graph
branches (global, local, and relational). We define
the global branch as a global average pooling opera-
tion performed over all nodes of the graph, i.e., zg =
avg pool(X). This operation allows us to capture global
context of a given video. We additionally concatenate zg as
an input to the fusion layer for global branch tests.
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Figure 5: Ablation study. Classification accuracy variation of SVAG on Charades as a function of (a) supervoxel size, (b)
the number of graph convolutional layersB, (c) graph pooling rate η2, (d) density of similarity graph χ, (e) temporal window
length T , and (f) the combination of the used branches.

Classification Head Other components Backbone
(GFLOPS) (Mem@{train, test}) (GFLOPS) (GFLOPS)

Non-Local [65] 107.8 {1830, 680}Mb –
{R101-NL: 645.9,
R50-NL: 452.1,

SVAG (Ours) 1.2 {90, 60}Mb
Supervoxel ip-CSN101: 166.1,
computation: 40.1 ip-CSN50: 124.3}

Table 3: Comparison of required resources for a 10 sec-
ond clip. We compare GFLOPS and memory between our
method and the Non-Local Network of Wang et al. [65].
The input video has a shape of (64f×256p×256p). Super-
voxel computation includes both the UperNet feature ex-
traction and the supervoxel iteration.

Among the single-branch configurations, the relational
branch achieves the highest accuracy (42.5%). Further-
more, the relational branch provides complementary infor-
mation to that captured by the local branch: when paired
together (local, relational) achieve an accuracy of 44.1%.
Adding the global branch to the pair of (local, relational)
does not provide additional gain. It suggests that the local
and the relational branches already contain sufficient global
information. From this study we conclude that the global
branch is not necessary when both the local and the rela-

tional branches are used. Yet, it is an important baseline, so
we consider it for our ablation study.

5. Discussion and Conclusion
In this work, we propose to capture long-range and con-

textual dependencies of video through relational inference
over a graph-based model. The nodes of the graph are
semantic supervoxels that conform to the spatiotemporal
structure of objects and motion cues in the video, while the
edges capture spatiotemporal relations and feature similar-
ity between nodes. Using supervoxels as graph nodes meets
several desiderata: compactness, coverage, and semantic
expressivity. It not only provides the full coverage of the en-
tire video, but also effectively reduces the dimensionality of
the convolutional tensors computed by 3D CNNs. The com-
pactness and coverage of supervoxels facilitate efficient se-
mantic relational reasoning over long-range spatiotemporal
volumes. Our experiments demonstrate that 16 supervoxels
per second are sufficient to provide a rich semantic descrip-
tion of the video, and the proposed hierarchical graph con-
volution and attentional pooling on this compact representa-
tion can capture long-range relations and yield state-of-the-
art accuracy on challenging action recognition datasets.
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