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Large scale shadow annotation and detection
using lazy annotation and stacked CNNs

Le Hou, Tomás F. Yago Vicente, Minh Hoai, and Dimitris Samaras

Abstract—Recent shadow detection algorithms have shown initial success on small datasets of images from specific domains.
However, shadow detection on broader image domains is still challenging due to the lack of annotated training data, caused by the
intense manual labor required for annotating shadow data. In this paper we propose “lazy annotation”, an efficient annotation method
where an annotator only needs to mark the important shadow areas and some non-shadow areas. This yields data with noisy labels
that are not yet useful for training a shadow detector. We address the problem of label noise by jointly learning a shadow region
classifier and recovering the labels in the training set. We consider the training labels as unknowns and formulate label recovery as the
minimization of the sum of squared leave-one-out errors of a Least Squares SVM, which can be efficiently optimized. Experimental
results show that a classifier trained with recovered labels achieves comparable performance to a classifier trained on the properly
annotated data. These results motivated us to collect a new dataset that is 20 times larger than existing datasets and contains a large
variety of scenes and image types. Naturally, such a large dataset is appropriate for training deep learning methods. Thus, we propose
a stacked Convolutional Neural Network architecture that efficiently trains on patch level shadow examples while incorporating image
level semantic information. This means that the detected shadow patches are refined based on image semantics. Our proposed
pipeline, trained on recovered labels, performs at state-of-the art level. Furthermore, the proposed model performs exceptionally well
on a cross dataset task, proving the generalization power of the proposed architecture and dataset.

F

1 INTRODUCTION
Shadows are ubiquitous in images of natural scenes. On

one hand, shadows provide useful cues about the scene includ-
ing object shapes [43], light sources and illumination condi-
tions [34, 46, 47], camera parameters and geo-location [30], and
scene geometry [32]. On the other hand, the presence of shadows
in images creates difficulties for many computer vision tasks
from image segmentation to object detection and tracking. In
all cases, detecting shadows, and subsequently removing them
or reasoning about their shapes and sizes would be beneficial.
Moreover, shadow-free images are of great interest for image
editing, computational photography, and augmented reality, and
the first crucial step is shadow detection.

The problem of single image shadow detection has been
widely studied. Early work such as the illumination invariant
approaches [15, 16] are based on physical modeling of the illumi-
nation and shadowing phenomena [46, 47]. These physics-based
methods only work well with high quality images. In contrast,
statistical learning approaches (e.g., [21, 23, 53, 59, 74]) have
shown significant success in detecting shadows in consumer-
grade photos and web quality images. The performance of these
methods, however, depends on the quality and quantity of training
images. Zhu et al. [74] and Guo et al. [21] were the first to collect
sizable datasets of images with annotated shadows, the UCF and
UIUC datasets respectively. These publicly available datasets with
pixel-level annotations have led to important advances in the field.
They enabled both systematic quantitative and qualitative evalua-
tion of detection performance, as opposed to the prior practice of
qualitative evaluation on a few selected images. In the past few
years, several novel shadow detection methods (e.g., [23, 59]),
gradually advanced state-of-the-art performance in these datasets,
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to the point of saturation. However, shadow detection is still far
from being solved. Due to limited size, UIUC is biased by certain
types of images such as objects in close range shots, whereas
UCF is biased towards scenes with darker shadows. Because of
their limited generality, cross-dataset performance (e.g., training
on UIUC and testing on UCF) degrades significantly [22, 60]. The
more recent ISTD dataset [64] contains 1870 shadow, shadow free,
and shadow mask triplets. The procedure for collecting the ISTD
and UIUC datasets was to take two pictures of the same scene once
with an object casting a shadow, and once with the object removed.
This method can only capture shadows in controlled environments.
Many shadow types such as self shadows (e.g., shadows on the
side of a building that does not “see” the light source) and shadows
caused by unmovable objects cannot be captured. In order to
facilitate the development of robust classifiers, a much larger and
more general dataset is needed. However, creating a large shadow
dataset would require enormous amount of effort, primarily for
obtaining pixel-level annotations.

An alternative approach for robust shadow detection in unseen
domains, is to utilize human input (or human aid) on particular
input shadow images. Existing approaches [18, 19, 70] focus on
shadow removal. Detecting shadow regions is considered a prepro-
cessing step which relies on human input strokes on shadow and
non-shadow regions. However, the shadow detection performance
of these approaches has not been reported. The shadow detection
results are not good enough, and are not intended to serve, as
labels for large scale shadow detection training.

In this work we propose “lazy annotation” with noisy label re-
covery, a method that allows a human to quickly annotate shadow
images with a few brush strokes [20]. Our method has several
advantages compared to other existing approaches [18, 19, 36, 70].
First, our method recovers training labels when learning the
shadow region detection model jointly, using the robust Least-
Squares Support Vector Machines (LSSVM) [61]. This process is
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(a) Annotator’s strokes (b) Segmented shadows (c) Binary shadow mask

Fig. 1: Lazy annotation pipeline for efficient labeling of shadow images. a) An annotator is asked to draw some strokes on some (not
all) shadow areas (white strokes) and non-shadow areas (red strokes). b) Automatically segmented shadow regions. c) Obtained shadow
mask, mostly good with a few exceptions where some shadow regions are mis-labeled as non-shadow. Subsequently, the noisy labels are
corrected using the label recovery method proposed in this paper.

applied on image clusters, instead of individual images separately.
Thus, our method is more robust to noise in training labels intro-
duced by rough brush strokes, compared to to existing approaches
[18, 19, 36, 70]. Second, we extensively evaluate our interactive
shadow labeling approach and for the first time, claim that the
resulting shadow masks are as useful as carefully annotated ground
truth masks, in terms of training shadow detection methods. Fig. 1
shows an example of this process, from the annotator’s strokes
to the generated binary shadow mask. Notice that the initial
annotation is imperfect. Due to the nature of the task, label noise
is asymmetric. The negative class (non-shadow) contains “dirty
negatives”, corresponding to missed shadows. The positive class
(shadow) is significantly cleaner and more reliable, because the
annotator is asked to label some shadows, so the shadow regions
obtained are generally accurately labeled.

Our method jointly learns a classifier and recovers the training
labels. In particular, we use LSSVM [61], consider the training
labels as unknowns and formulate the problem as the minimization
of the leave-one-out error. This leads to a binary quadratic pro-
gramming problem where we constrain the fraction of originally
labeled positive and negative instances that are flipped. To validate
our approach, we relabeled the UIUC and UCF training sets
using “lazy annotation”. Experimental results show that a classifier
trained with recovered labels achieves comparable performance to
a classifier trained on the original, properly annotated datasets.
Our label recovery method improves the accuracy of classifiers
trained on “lazy” labels significantly. Furthermore, we show ex-
perimentally that label recovery is robust up to significant levels of
label noise in the training set. To increase scalability, and since the
leave-one-out error is most meaningful for similar data instances,
we group similar images into smaller clusters and perform label
recovery for each cluster independently. This leads to a scalable
large-scale noisy label recovery algorithm, which combined with
“lazy annotation” is the first contribution of this work.

To address the need for a large-scale shadow dataset, we col-
lected the largest shadow dataset to date. This is the second con-
tribution of this paper. Our dataset of almost 5000 images covers a
wide range of scenes and is 20 times bigger than UCF [74], bring-
ing shadow detection solutions under the large-data paradigm, and
increasing the utility of deep learning approaches. The new SBU
dataset is available at www3.cs.stonybrook.edu/∼cvl/dataset.html.
We carefully annotated shadow masks for 700 images, as a new
benchmark for shadow detection. For the training set, images were
first quickly labeled using “lazy annotation”, then we run our
label recovery method to clean up the annotations. Our dataset has

already been found to be very useful for training shadow detectors
in recent research by several groups [27, 35, 41, 64, 65].

As a third contribution, we propose a novel stacked Con-
volutional Neural Network (CNN) based approach for structured
shadow prediction that takes advantage of the copious cleaned-up
data. Given a large dataset, we design our architecture to learn
not only local shadow cues, but also the discriminative global
context. To do so, our semantics-aware stacked CNN architecture
combines an Image-Level shadow predictor Network (ILN) and a
patch-based CNN (Patch-CNN). The ILN can be any pretrained
semantic segmentation network e.g., FCN [38], DeconvNet [42],
FCN+CRF-RNN [72], SegNet [2]. In our case, we use a Decon-
vNet [42] model pretrained on PASCAL VOC 2012 for semantic
segmentation, and fine tune it on shadow data. We use the outputs
of an ILN together with the corresponding input RGB images to
train the Patch-CNN with a random initialization. Thus, in the
resulting Stacked-DeconvNet, the output of the ILN functions as
an image-level shadow prior that is further refined by the more
local appearance focus of the Patch-CNN.

We show that models trained on the newly collected SBU
training set generalize better on the UCF test set (over 22% error
reduction), compared to state-of-the-art methods [59, 61] trained
on the UCF training set. This is remarkable as our training set
does not overlap with the UCF dataset, proving the generalization
ability of the trained model and the usefulness of the proposed
dataset. Moreover, the proposed stacked architecture is a general
framework in which any semantic segmentation network can
be used as the ILN component for generating the image-level
shadow prior. We have experimented with different semantic
segmentation networks including [2, 38, 72], and in all cases,
the final stacked architecture effectively refines the shadow prior,
significantly improving the overall shadow detection performance.
These experiments confirm the generality and robustness of the
proposed architecture.

2 PREVIOUS WORK

2.1 Shadow datasets and annotation

Annotated shadow datasets fostered work on shadow detection.
However, there are only a few shadow datasets due to the cumber-
some nature of annotation. The human annotator has to identify
all the shadows in the image, and then properly delineate each
shadow contour. It takes much time and attention for the many
mouse clicks to create a polyline for each shadow. Free drawing
to trace a shadow contour also takes considerable effort.

www3.cs.stonybrook.edu/~cvl/dataset.html
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Wang et al. [64] and Guo et al. [21] generated a shadow anno-
tation mask by taking two photographs of the same scene: a photo
is taken with an occluder blocking the light source and casting a
shadow in the scene, then a photo is taken when the occluder is
removed. The shadow mask is generated by comparing the two
images. Alternatively, they would take a second photo blocking
the direct light source. The first approach is only applicable when
the occluder is out of view and removable, whereas the second
approach is limited to indoor environments with sufficient ambient
light. Physically setting up the scene and taking the two shots is
cumbersome, and this approach is not applicable to many scenes
and shadow types. Qu et al. [50] and Gong et al. [18, 19] collected
the Deshadow and the Shadow Removal datasets respectively, also
using the method of taking two photographs of the same scene.
However, the training dataset for the Deshadow paper has not
been released, and no shadow mask ground truth has been given
for either of these two datasets.

Existing publicly available shadow detection datasets are small
or limited to cast shadows of movable objects only. Guo et
al. [21, 22] report the cross-dataset performance of their model
for UIUC and UCF datasets. A model trained on UCF training set
performs well on the UCF test set, but not on the UIUC test set
(90.0% versus 86.4% accuracy), and a model for UIUC dataset
has much less accuracy when tested on the UCF test set (88.3%
versus 79.4%).

2.2 Shadow Detection

A number of shadow detection methods have been developed in
recent years. Guo et al. [21] proposed to model long-range interac-
tion between pairs of regions of the same material, with two types
of pairwise classifiers: same illumination condition and different
illumination condition. Then, they combined the pairwise classifier
and a shadow region classifier with a CRF. Similarly, Vicente et
al. [63] proposed an MRF that combines a unary region classifier
with a pairwise classifier and a shadow boundary classifier. These
approaches achieved good shadow detection results, but required
expensive ground-truth annotation. Khan et al. [23] were the first
to use deep learning for shadow detection, achieving state-of-the-
art results at the time. Vicente et al. [59] optimized a multi-kernel
model for shadow based on leave-one-out estimates, obtaining
even better shadow predictions than [23]. More recently, Shen et
al. [53] proposed a CNN for structured shadow edge prediction.
Nguyen et al. [41] proposed an approach based on a conditional
GAN which was capable of changing its shadow sensitivity. Qu et
al. [50] proposed a method for generating a 3-channel shadow
matte. Wang et al. [64] proposed a method for joint shadow
detection and removal. Very recent works [27, 35, 62, 65] are
also based on deep learning, and significant advances have been
made. Many of these advances were only possible because of
the availability of the large-scale dataset described in this paper.
Furthermore, the proposed stacked CNN architecture provides
complementary benefits to the other deep learning methods and
can be easily combined with them.

2.3 Noisy label recovery

The presence of label noise, also known as class noise, may
severely degrade classification performance [17, 76]. Numerous
methods seek robustness to noisy labels [12, 33, 40, 55]. For
instance, Stempfel et al. [56] deal with training a binary Support
Vector Machine (SVM) when the probability of flipping a label

(a) Input image (b) Adding shadow strokes

(c) Adding non-shadow strokes(d) Initial shadow segmentation

(e) Refined shadow segmentation (f) Output binary mask

Fig. 2: Lazy annotation pipeline. a) Input image. b) Annota-
tor’s shadow strokes in white. c) Annotator’s non-shadow strokes
in red. d) Initial shadow segmentation in green (outer side) and
red (inner side). e) Refined shadow segmentation with a final
shadow stroke in the lower center of the image. f) Resulting
binary mask.

is constant and only depends on the true class. For this, they
replace the objective functional by a uniform estimate of the
corresponding noise-free SVM objective. This becomes a non-
convex problem that can be solved with Quasi-Newton BFGS.
Biggio et al. [5] compensate noise in the labels by modifying the
SVM kernel matrix with a structured matrix modeling the noise.
This approach only models random flips with fixed probability per
class and adversarial flips. That is, for a set number of labels to
be flipped, the adversary tries to maximize the classification error.
These methods are designed to not be affected by label noise rather
than to be effective in using noisy labels for training. Moreover,
these methods focus on asymptotic behavior with unlimited train-
ing data. In contrast, as the training data is very limited for the
shadow detection problem, we aim to make effective use of noisy
labels. Furthermore, our method obviates the need of assumptions
on the nature of the noise such as constant[55], class-dependency
with fixed probability [5], limited noise ratios [40].

3 LAZY ANNOTATION

Our objective is to obtain ground truth shadow annotation with
minimal effort and time. Generating good annotation typically
requires manually segmenting all the shadows in an image. We
simplify the annotation task by redefining its goal. Rather than
segmenting all shadows, we instruct the annotator to focus on at
least one shadow area of the image. This typically corresponds to
the most prominent shadow. We use a semi-automatic shadow
segmentation scheme requiring minimal annotator input. The
annotator only has to draw a few strokes on shadow areas and
a few additional strokes on non-shadow areas.
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3.1 Lazy annotation pipeline

We illustrate our lazy annotation pipeline with an example image
in Fig. 2. First, the annotator draws a few strokes (2-3) on areas
of the image she considers relevant shadows, see Fig. 2.b. Then,
the annotator draws a few strokes (2-3) on non-shadow areas
surrounding the shadow, see Fig. 2.c. After that, a shadow seg-
mentation based on these strokes is presented to the annotator, see
Fig. 2.d. Then, the annotator is able to add a few additional strokes
to refine the shadow segmentation interactively. In Fig. 2.e, the
additional shadow stroke on the concrete ground grows the shadow
region and even segments an extra shadow on the brick wall. The
shadow mask resulting from the user annotation is depicted in
Fig. 2.f. We interactively segment the images using the method of
Gulshan et al. [20]. The method combines geodesic star convexity
shape constraints with the Boykov-Jolly [6] energy formulation
for image segmentation based on user strokes denoting foreground
and background. In our case, shadows correspond to foreground.
We modify the publicly available tool [20] to render a more
streamlined user interface tailored to our task. Mouse interaction
is only required for brush strokes. The remainder of the interface
is commanded by keystrokes: Switching brush type (shadow or
non-shadow stroke), advancing to refinement interactive stage, and
signaling completion. Furthermore, a batch of images is loaded
consecutively one after the next. With this tool, an annotator can
typically label 3 images a minute on average.

3.2 Postprocessing

We frame shadow detection as a region classification problem.
Hence, we need to generate region labels from the binary mask
resulting from the lazy annotation. We followed the region seg-
mentation process in [63] for shadow detection. First, we over-
segment the image into SLIC [1] superpixels (see Fig. 3.a). Then,
we apply Mean-shift clustering in Lab space and merge connected
superpixels in the same cluster into a larger region, see Fig. 3.b.

(a) SLIC superpixels (b) Merged regions

(c) Region over mask (d) Final region ground truth

Fig. 3: From lazy shadow mask to region labels. a) Initial
SLIC superpixels. b) Regions obtained by merging superpixels.
c) Lazy mask overlaid on regions. d) Final region ground-truth.

We overlay the binary mask on the segmented regions (Fig.
3.c). If a region contains a majority of shadow pixels it is labeled
positive, otherwise it is labeled negative. Overall, the proposed
annotation approach is able to generate reasonably good region
labels. Regions labeled as shadows are generally reliable whereas
negatively labeled regions may contain missed shadows. For
example in Fig. 3, a few small shadow regions on the brick wall
in the top left corner of the image are labeled non-shadow.

4 NOISY LABEL RECOVERY

4.1 Formulation

In this section, we describe a method for noisy label recovery.
We pose it as an optimization problem, where the labels of some
training examples can be flipped to minimize the sum of squared
leave-one-out errors. The basis of our formulation is that the leave-
out-out error of kernel LSSVM is a linear function of the labels.
Our noisy annotation recovery framework is based on the Least-
Squares Support Vector Machine (LSSVM) [51, 57]. LSSVM has
a closed-form solution, which, once computed, enables efficient
finding of the solution for a reduced training set, by removing
any one training data point. This permits reusing training data for
further calibration, e.g., [24, 25, 66], and for noisy label recovery.
We introduce a kernelized algorithm for noisy label recovery with
non-linear kernels, which are important for shadow detection [59].

Given a training set of n data points {xi}ni=1
∗ and associated

binary labels {yi}ni=1, LSSVM optimizes the following:

minimize
w,b

λ||w||2 +
n∑

i=1

si(w
Tφ(xi) + b− yi)2, (1)

where si is the weight of the i-th instance. For high dimensional
data (i.e., φ(xi) is large), it is more efficient to obtain the solution
for (w, b) via the representer theorem, which states that w can be
expressed as a linear combination of the training data, i.e., w =∑n

i=1 αiφ(xi). Let K be the kernel matrix, kij = φ(xi)
Tφ(xj).

The objective function becomes:

minimize
α,b

λαTKα +
n∑

i=1

si(k
T
i α + b− yi)2, (2)

where ki is the ith column of matrix K, and si is the instance
weight, allowing the assignment of different weights to different
training instances.

Let α = [α, b],K = [K;1T
n ],R =

[
λK 0n

0T
n 0

]
. Then

Eq. (2) is equivalent to minimizing:

λαTRα +
n∑

i=1

si(k̄
T
i α− yi)2. (3)

This is an unconstrained quadratic program, and the optimal
solution can be found by setting the gradient to zero, i.e., solving:

(R + Kdiag(s)K
T

)α = Kdiag(s)y, (4)

where diag(s) is a matrix with the i-th entry in its main diagonal
equals to si, and zero in all non-diagonal entires.

Let C = R + Kdiag(s)K
T
,d = Kdiag(s)y. The solution

for kernel LSSVM is: α = C−1d. Now suppose we remove the
training data point xi, let C(i),d(i),α(i) be the corresponding
values when removing xi. We have α(i) = C−1(i)d(i). Note that,
even though we remove xi from the training data, we can still
write w as the linear combination of φ(x1), · · · , φ(xn) without
excluding the term φ(xi). The matrices K,K,R remain the same,
and the only change is the removal of si(kT

i α + b − yi)2 from

∗. Bold uppercase letters denote matrices (e.g., K), bold lowercase letters
denote column vectors (e.g., k). ki represents the ith column of the matrix
K. kij denotes the scalar in the row jth and column ith of the matrix K
and the jth element of the column vector ki. Non-bold letters represent scalar
variables. 1n ∈ <n×1 is a column vector of ones, and 0n ∈ <n×1 is a
column vector of zeros.
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Fig. 4: Examples of clusters of similar shadow images. Clusters of images resulting from running modified PGP on SBU training set.

the objective function. Thus we have C(i) = C − sikik
T

i and
d(i) = d − yisiki. Using the Sherman-Morrison formula, we
have:

C−1(i) = (C− sikik
T

i )−1 = C−1 +
C−1sikik

T

i C
−1

1− sik
T

i C
−1ki

, (5)

Using the above equations to develop α(i) = C−1(i)d(i), and let
M = C−1K and H = MTK, we obtain the following formula
for the leave-one-out (LOO) weight vector:

α(i) = α +
(αTki − yi)si

1− sihii
mi. (6)

The LOO error can therefore be computed efficiently: αT
(i)ki −

yi = αT
ki−yi

1−sihii
. Substituting α = Mdiag(s)y into the above,

the leave-one-out error becomes:

k
T

i Mdiag(s)y − yi
1− sihii

. (7)

Let P = diag(s)H and recall that H = MTK. The leave-one-
out error is: pT

i y−yi

1−pii
.t Let ei be the ith column of the identity

matrix of size n, and ai = pi−ei

1−pii
, then the leave-one-out error

becomes aTi y. Because the vector ai only depends on the data,
the leave-one-out error is a linear function of the label vector y.

Let P,N be the indices of (noisy) positive and negative
training instances respectively, i.e. P = {i|yi = 1} and N =
{i|yi = 0}. We pose noisy label recovery as the optimization
problem that minimizes the sum of squared leave-one-out errors:

minimize
yi∈{0,1}

n∑
i=1

(aTi y)2, (8)

s.t.
∑
i∈P

yi ≥ α|P| and
∑
i∈N

yi ≤ (1− β)|N |. (9)

In the above |P|, |N | are the original number of positive and
negative training instances respectively, and α, β are parameters
of the formulation (0 ≤ α, β ≤ 1). The constraint of the above
optimization problem requires that the proportion of original
positive training instances that remains positive must be greater
than or equal to α. It also limits the proportion of flipped negative
data points to be at most 1−β. If α = β = 1, none of the training
labels can be flipped.

4.2 Large-scale Noisy Label Recovery
The label recovery method previously described requires solving a
binary quadratic program in which the number of variables is the
same as the number of image regions. This full-scale optimization
problem is too big to be solved on a large dataset at once. To
bypass this issue, we propose here a simple but effective approach.

We divide images into clusters of similar images, and perform
label recovery for each cluster independently. This approach is
motivated by the fact that our label recovery algorithm is based
on optimizing the leave-one-out errors. Perhaps the wrong label
of a region can be corrected because the region is similar to other
regions with correct labels. As such, for label recovery, dissimilar
regions do not have much impact on each other. Hence, it makes
sense to recover labels within clusters of similar images.

Using our approach, we can recover the labels of hundreds of
thousands of image regions. This approach allows us to consider
superpixels rather than larger regions. We oversegment images
using Linear Spectral Clustering [73]. The oversegmentation min-
imizes frequent inaccuracies in shadow segmentation where small
shadow areas “leak” into large non-shadow regions. After all
shadows are a well known segmentation confounder.

For image-set clustering, we use a modified version of the
Parametric Graph Partitioning method (PGP) [68], which works
well for image and video segmentation [69]. PGP does not require
setting the number of clusters, as opposed to k-means clustering.

Image-set clustering details. We aim to cluster images depicting
similar scenes and therefore similar shadows (the appearance
of shadows depends on scene properties, including illumination,
color, and texture of materials). For feature representation, we use
GIST [44], and the a and b components of the Lab color space. We
compute histograms of a and b from the shadow areas and their
surroundings. For this, we use the initial annotated shadow mask
and dilate it with an area ratio of 3:2 (shadow vs non-shadow). We
used a 30-bin histogram for the a and b features separately, and
the original 512-bin histogram for GIST.

5 STACKED-CNN ARCHITECTURE FOR SHADOW
SEGMENTATION

PGP [68] groups data into clusters by finding and removing
between-cluster edges from a weighted graph, where the graph
nodes are the data points and the edges define neighborhood
relationships where the pair-wise similarity distances are the edge
weights. Given the graph, a two-component Weibull Mixture
Model is fitted over the edge weights. Then, we use the cross-
point of the two Weibull components as the critical value that
represents the cut-off between the within-cluster edge weights
and the between-cluster edge weights. After the critical value is
computed, the edges with weights higher than the critical value
are identified as between-cluster edges and removed, with the
subsequent disjoint sets of sub-graphs as the final clustering result.
For the shadow image-set clustering problem, initial neighborhood
relationships are not explicitly defined. Therefore, we construct the
data graph by linking data nodes with their k-nearest neighbors.
Each node represents an image. We use Earth Mover’s Distance
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Image 
shadow 
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Patch CNN
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Fig. 5: The proposed pipeline for shadow segmentation. A conventional semantic image segmentation CNN [2, 38, 42, 72] takes an
RGB image and outputs an image level shadow prior map. Then a patch level CNN examines local texture and color via a sliding window
approach, taking an RGBP (P is the image level shadow Prior channel) image patch and outputs a local shadow prediction map. The
probability of each pixel being a shadow pixel is computed by averaging results from different patches.

(EMD) as the distance metric for the a and b color histograms,
and Euclidean (L2) distance for the GIST features. Given the three
similarity distances per node pair, we normalize the EMD and L2

distance values to have zero mean and unit variance, perform PCA,
and take the first principal component as the combined similarity
distance for constructing the k-nearest neighbor data graph.

Once the clusters are computed by applying PGP on the graph,
we add a post-processing step to enforce the size of each cluster to
be within nmin = 10 to nmax = 60 images. We iteratively merge
small clusters (with less than nmin images) into the closest cluster;
i.e, the cluster that has the member with the lowest combined
similarity distance to a member of the small cluster. We re-apply
PGP to the clusters larger than nmax until the sizes of all resulting
clusters fall within the desired range.

Most previous shadow detection methods [29, 53, 59, 60, 63]
are based on classification of image regions using local color and
texture cues. This approach, however, ignores global semantic
information, which is useful for disambiguation. For example,
without reasoning about global semantics, a dark cloud in the
sky might be misclassified as a shadow region. On the other hand,
CNN-based semantic segmentation methods [2, 9, 10, 38, 42, 48,
72] focus on whole image level semantic information. However,
shadow regions have distinct texture and color compared to non-
shadow regions, which must be examined in detail. In this section,
we propose a stacked CNN architecture that trains a semantics-
aware patch level CNN, a method that combines global semantics
with local cues for shadow detection.

Our method is based on combining two neural networks.
Combining multiple neural networks has been used in many
applications [11, 13, 28, 31, 49, 52, 54]. One approach is to train
multiple neural networks separately then combine their predictions
[11, 28, 54]. Another approach is to combine the feature maps
of neural networks instead of the final predictions [31]. These
approaches, require the networks to share the same input/output
structure and learning objective. Instead we propose to stack two
CNNs into a single stream, as shown in Fig. 5. The two networks
can have heterogeneous input/output representation and learning
objectives.

In order to introduce global semantics, we first train an
image-level semantic segmentation network, such as FCN [38],
DeconvNet [42], FCN+CRF-RNN [72], SegNet [2], for shadow

localization. Subsequently, the probability map predicted by the
Image-Level shadow predictor Network (ILN) for a training image
is attached to the original RGB image as an additional channel.
We refer to the additional channel as the image-level shadow
prior channel or P. Finally, we train a patch-based CNN on RGBP
patches to predict local shadow pixels, referred to as Patch-CNN.
The final prediction of a shadow pixel is a weighted average
over the prediction outputs for all patches containing this pixel.
The use of a Patch-CNN in addition to the image-level semantic
segmentation network has a “resolution” advantage. Although, the
deep layers of ILN can extract semantic information, the high
resolution texture and color information is minimized due to max-
pooling and down-sampling. Therefore, a local Patch-CNN is
necessary to refine the segmentation result. The Patch-CNN learns
from millions of training patches, leading to a more robust local
shadow classifier. By including the output of the ILN as an image-
level shadow prior channel in the input, we effectively incorporate
semantic information into the Patch-CNN to generate improved
shadow masks, see qualitative examples in Fig. 6.

5.1 Image-Level network (ILN) details
The proposed Stacked-CNN is a combination of an ILN with a
Patch-CNN. In theory, any semantic segmentation network can be
used as an ILN. In this paper, we evaluate several specific semantic
segmentation networks as described below.

Fully Convolutional Network (FCN). We train an FCN [38]
whose architecture is adopted from the VGG-16 network by
changing fully connected layers to convolutional layers [38], on
shadow images to generate the image level shadow prior. We
adopt the FCN-8 network architecture and implementation [38]
and fine-tune the FCN-8 that is already trained on the PASCAL
VOC dataset [14], using the given shadow images and masks.

CRF-RNN. We use the same CRF-RNN layer implementation
applied on the MS COCO dataset [37] by the authors of CRF-
RNN [72] on top of the FCN: the segmentation output of the
FCN is connected to the input of the CRF-RNN layer. Thus, the
FCN+CRF-RNN outputs a more refined segmentation map com-
pared to the FCN. We also initialize the FCN part of FCN+CRF-
RNN with the VGG-16 network (as suggested by the FCN
paper [38]), and initialize the CRF-RNN parameters randomly.
The whole FCN+CRF-RNN network is trained end-to-end.
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Image Image Prior (DeconvNet) Patch-CNN Stacked-DeconvNet Ground truth

Fig. 6: Shadow segmentation examples. Qualitative results using Patch-CNN on RGB images, and on RGBP (P is the image level
shadow prior) images (Stacked-DeconvNet). The Stacked-DeconvNet achieves the best results by incorporating both semantic and subtle
local texture and color information. For example, in the first image, although the color and texture of the tree resemble a shadow, we can
exclude the tree pixels thanks to the DeconvNet generated shadow prior.

SegNet. We adopt the same network architecture and implementa-
tion that the authors of SegNet [2] used on the CamVid dataset [7].
We use a SegNet initialized from a trained VGG-16 network,
and fine-tune it on shadow datasets. The initialization method is
also adopted from the SegNet implementation: the fully connected
layers of VGG-16 are transformed into 1×1 convolutional layers.

DeconvNet. We adopt the network architecture and implementa-
tion that the authors of DeconvNet [42] used on the PASCAL VOC
dataset [14]. We fine-tune the DeconvNet that is already trained on
PASCAL VOC using the given shadow masks. Additionally, same
to the DeconvNet approach [42], we also apply a Dense-CRF as a
postprocessing step.

ADNet. We use the shadow detection network proposed by the
authors of A+D Net [35]. We simply use the network trained by the
authors, and the shadow detection results obtained by the authors.

We combine a patch-level CNN (denoted as Patch-CNN) with the
aformentioned ILNs in a two-step fashion: we first train a ILN,
get the ILN’s prediction, then train a Patch-CNN using the RGB
+ P channels, as illustrated in Fig. 5. The resulting methods are
Stacked-FCN, Stacked-CRF-RNN, Stacked-SegNet, Stacked-
DeconvNet, and Stacked-ADNet, respectively.

5.2 Patch-CNN details

We build a patch level CNN with structured output for local
shadow segmentation, as shown in Fig. 7. The loss function is
the average negative log-likelihood (binary cross-entropy) of the
prediction of every pixel. We extract image patches for training
in three ways. 25% of the patches are extracted at random image
locations to include patches of various textures and colors. 50%
are extracted on Canny edges [8] to include hard-to-classify
boundaries. 25% are extracted at shadow locations to guarantee
a minimum percent of positive instances. This results in an overall
balanced number of shadow pixels and non-shadow pixels in the
training batches for stochastic gradient descent. During testing, we
input all the overlapping patches of each image to the Patch-CNN.
Thus every pixel has a maximum of 32 × 32 = 1024 predicted

values from all the different patches. We use a weighted average
to fuse the multiple predictions. More precisely, suppose there are
n patches containing the pixel, the distances between the pixel and
the center of those patches are d1, d2, . . . , dn, and the predicted
shadow probabilities are p1, p2, . . . , pn respectively. Then the
fused shadow probability is: p = (

∑
iG(di;σ)pi)/

∑
iG(di;σ),

where G(di;σ) is a zero-mean Gaussian with variance σ2. In our
experiments we use σ2 = 8.

6 SBU SHADOW DATASET

We have collected a new shadow dataset, one that is significantly
larger and more diverse than the existing datasets [21, 74], and
used lazy annotation to quickly annotate the images. Our dataset
is available at: http://www3.cs.stonybrook.edu/∼cvl/dataset.html

Image collection. To compile our dataset, we collected almost
5,000 images containing shadows. A quarter of the images came
from the MS COCO dataset [37]. The rest were collected from
the web. This image collection is significantly larger than the
existing UCF [74] and UIUC [21] datasets, which contain less
than 400 images combined. This image collection is also more
diverse than existing datasets, which consist of images from a
few specific domains (e.g., close shots of objects predominate in
UIUC, whereas the majority of the UCF images are scenes with
darker shadows and objects). The image collection covers a wide
range of scenes including urban, beach, mountain, roads, parks,
snow, animals, vehicles, and houses. It also contains different
picture types including aerial, landscape, close range, and selfies.
We split the images into two subsets for training and testing. The
training subset contains about 85% of the images.

Shadow image annotation. We divided the image collection into
disjoint training and test subsets and used two different approaches
for annotation. For 700 test images, we carefully annotated the im-
ages, aiming for pixel accuracy to ensure the validity of numerical
evaluation. We will refer to this test set as SBU-Test. For training
images, we used lazy labeling to quickly annotate a large set of
images. For lazy labeling, we drew a few strokes on shadow areas
and a few other strokes on non-shadow areas. These strokes were

http://www3.cs.stonybrook.edu/~cvl/dataset.html
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Fig. 7: Patch-CNN with structured output. The input is a 32 × 32 RGBP (RGB + image level shadow Prior) image, the output is a
32× 32 shadow probability map.

used as shadow and non-shadow seeds for geodesic convexity
image segmentation [20]. Fig. 1 illustrates this procedure. With
lazy labeling, we were able to annotate the dataset quickly, at the
rate of 3 to 4 images per minute. However, the obtained annotation
was noisy. In particular, there were many “dirty negatives”—
shadow regions that were incorrectly labeled as negative. This was
due to misclassification of shadow regions or poor segmentation
(image regions contain both shadow and non-shadow pixels). Dirty
negatives were more prevalent than “dirty positives”. Since we
focused on drawing strokes on major shadow areas, the chosen
shadow areas were generally well segmented. The final dataset
contains images with shadow labels that have been “cleaned”
using the method described in Section 4.1. Hereafter, we refer to
the dataset with noisy labels as SBU-Train-Noisy and the dataset
with recovered labels as SBU-Train-Recovered.

7 LABEL RECOVERY EVALUATION

In this section we show that our label recovery approach is
effective and yields better shadow region detection performance.
In all experiments, we use an Lease-Squares SVM (LSSVM) with
a X 2 kernel for label recovery on each image cluster obtained with
the proposed PGP-based clustering (except for the non-shadow
datasets used in Sec. 7.4 where we do not apply clustering). We use
an LSSVM with linear kernel as a shadow detector/classifier, to
evaluate the quality of the recovered training set. The LSSVM with
linear kernel is not the state-of-the-art method for shadow region
detection but generates reasonable results[59]. For completeness,
we also include the effect of noisy label recovery on CNN training.

7.1 Relabeling UCF and UIUC with lazy annotation
We relabeled the original UCF and UIUC training sets using
lazy annotation, which we will refer to as UCF-Lazy and UIUC-
Lazy, respectively. Lazy annotation takes roughly 20 seconds per
image (average measured over 110 UCF images). In contrast,
conventional shadow annotation with polylines takes 4.7 minutes
per image (average measured over the first 30 UCF images).

We train a region classifier using the lazy labels and measure
classification performance in the respective test sets. We now
evaluate shadow detection in terms of average precision (AP),
as we are more interested in evaluating the relative impact on
classification performance of the different label types without
thresholding. Since each data point corresponds to a region, we
weigh each region by its area in pixels to approximate pixel AP.

Table 1 shows the classification performance in terms of AP.
For UIUC, the testing performance of the model trained on lazy
labels deteriorates by over 10% compared to training with the
original labels (79.5% vs 88.5%). For UCF, training with lazy
labels is only slightly worse than training with the original labels,
73.5% versus 74.5%. We then run the proposed label recovery
method on the lazily annotated datasets. As shown in Table 1,

(a) Input image (b) Lazy (c) Lazy Recovered

Fig. 8: Shadow detection comparison between models
trained with lazy labels and recovered labels on UIUC. a)
Input image. b) Detection results from model trained on lazy
labels overlaid in yellow. c) Detection results from model trained
on recovered lazy labels overlaid in yellow.

TABLE 1: Classification performance on UIUC and UCF
test sets. Comparison of AP achieved by a linear LSSVM
region classifier trained with original carefully annotated labels
(Original), lazily annotated labels (Lazy), and recovered lazy
labels (Recovered).

Train data Test data AP

UIUC-Original UIUC 88.5
UIUC-Lazy UIUC 79.5
UIUC-Recovered UIUC 87.2

UCF-Original UCF 74.5
UCF-Lazy UCF 73.5
UCF-Recovered UCF 75.6

for UIUC the same classifier trained on recovered labels (UIUC-
Recovered) achieves comparable testing performance to training
with the original ground-truth labels: 87.2% vs 88.5%. Label
recovery achieves almost 10% improvement compared to training
with lazy labels. Fig. 8 shows qualitative comparisons of shadow
detection for the region classifier trained on UIUC-Lazy and
UIUC-Recovered. In the depicted examples. notice how the model
trained on recovered labels correctly detects more shadow regions.

Interestingly, for UCF label recovery improves the testing
performance to 75.6%, outperforming the model trained on the
original labels with 74.5% AP. This indicates that some of the
ground-truth labels provide pernicious training examples.This may
not necessarily imply that the labels were wrongly annotated.

With lazy annotation, the annotator often misses less promi-
nent shadows, and shadows in the background areas. For instance,
in Fig. 9 we show an example from the UCF training set: The
shadow of the smaller brown column in the top right of the image
is missed by the annotator. The initial shadow mask from lazy
annotation is overlaid in blue. However, the label recovery method
is able to correct the annotation; in Fig. 3.(c) the recovered shadow
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(a) Input image (b) Lazy anno. (c) Recovered anno.

Fig. 9: Example of label recovery. a) Input image; b) Lazy
annotation shadow mask overlaid in blue, outer contour in green,
inner contour in red; c) Recovered regions with flipped shadow
label are shown with yellow contours.

is depicted with a yellow contour.
Overall, these experiments suggest that we can achieve similar

results with recovered lazy labels as with carefully annotated
labels, but with significantly smaller annotation effort.

7.2 Comparing to existing interactive shadow detec-
tion methods
In this section we compare our “lazy annotation” with noisy label
recovery approach, to existing baseline methods [18, 19, 36]. We
compare to the interactive shadow labeling method [18, 19]
and the closed-form matting method [36] using the same user
stroke input. Our method gives shadow detection results on three
different phases during the pipeline:

1) Noisy labels: shadow prediction results using user stroke
input. Noisy labels are obtained per image, detailed in Section
3 in the main submission.

2) Recovered labels: recovered, relatively clean labels, by
learning from all noisy labels across all images. This is
detailed in Section 4 in the main submission.

3) Prediction given by Stacked-CNN: our final, fully auto-
matic shadow prediction results. The Stacked-CNN model is
trained on recovered labels. In particular, we use Stacked-
DeconvNet as our Stacked-CNN method, see Sec. 8.1.

We compare all methods on the UCF test set [74]. In particular,
a graduate student draws a stroke input for each image in the UCF
test set, in a non-interactive fashion (if the user drew strokes inter-
actively with any method, the results would be biased). Then, we
obtain the shadow prediction results of: (a) the interactive shadow
labeling method [18, 19]; (b) the closed-form matting method [36];
(c) our lazy annotation method (noisy labels). Finally, we apply
the noisy label recovery method to obtain recovered labels. We
also show the Stacked-DeconvNet results tested on the UCF test
set to compare with.

The comparison results are shown in Table 2. Our noisy
labels have the same BER as the results by Gong et al.[19]. Our
recovered labels have a better BER, while our fully automatic
Stacked-DeconvNet achieves the best performance, even without
user input strokes.

7.3 Recovering added label noise on UCF dataset
To better evaluate our proposed label recovery method, we con-
ducted experiments on the UCF dataset [74]. For the UCF training
images, we have the clean shadow ground truth provided with the
original dataset. Hence, we artificially add noise in the labeling
by randomly flipping the provided labels. In this manner, we can
evaluate the different facets of our label recovery method.

By randomly flipping some shadow region labels on the
original UCF training set we create UCFNoisy. In this noisy
version, ∼21% of the original ground-truth shadow pixels become

TABLE 2: Comparing to interactive shadow detection meth-
ods on the UCF test set [74]. Our noisy labels have the same
BER compared to results by Gong et al.[19]. Our recovered
labels have a better BER, and our fully automatic Stacked-
DeconvNet achieves the best performance.

Method BER Sha. Non.

Interactive shadow labeling method [19] 10.7 12.7 8.6
Closed-form matting method [36] 11.9 7.6 16.2
Noisy labels 10.7 14.2 7.1
Recovered labels 10.2 12.1 8.4
Stacked-DeconvNet (fully automatic) 9.4 10.2 8.6

dirty negatives (false non-shadow labels). See details in the No-
Recovery row in Table 3. As we only flip some of the original
labels for the shadow regions, the precision on shadow pixels is
very high for No-Recovery (almost all of the pixels labeled as
shadow are still shadow). Using this noisy version of the UCF
dataset, we run our proposed label recovery method. We also run
recovery with a linear kernel LSSVM (akin to our experiment in
7.1, but recovery is run on each cluster separately). Finally, we run
the proposed X 2 kernel LSSVM recovery method but on random
equal size clusters. The number of clusters is 10, the same as the
one obtained by our PGP-based clustering method.

TABLE 3: Label recovery on noisy UCF data. Comparison
of our recovery method with X 2 kernel versus linear kernel and
random clustering. We measure precision and recall for shadow
and non-shadow pixels by comparing the original ground-
truth masks and the resulting masks for the different recovery
methods. No Recovery denotes the results from comparing
the noisy masks (UCFNoisy) with original UCF training set
masks. Since UCFNoisy is created by flipping shadow labels,
its recall for shadow pixels decreases significantly, while the
precision remains high (almost all non-shadow pixels remain
non-shadow).

Sha. Non.
Training Set Method Precision Recall Precision Recall

UCFNoisy No Recovery 99.2 79.4 96.1 99.8

UCFNoisy Linear Kernel 92.3 84.5 97.0 98.6
UCFNoisy Random Clusters 94.5 87.0 97.5 99.0
UCFNoisy Proposed 96.5 86.8 97.5 99.4

Table 3 shows the details for experiments on UCFNoisy. Our
proposed method correctly recovers an extra 8% of shadow pixels,
increasing the shadow pixel recall from 79.4% to 86.8%. That is,
we appropriately flip 38% of the dirty negatives back to clean
positives. Our method recovers these dirty negatives by slighty
decreasing the precision on the shadow class by 2.7% (0.6% of
the original non-shadow pixels are now flipped to be shadow,
see Non-Shadow pixels Recall in Table 3). Recovery on random
clusters, and recovery using a linear kernel perform worse than the
proposed method. Overall, the proposed method correctly recovers
most of the shadows with the highest precision.

7.4 Comparison to noise-tolerant methods
Our proposed method addresses label noise by focusing on re-
covering noisy labels, aiming for effective use of all training
data. For completeness, we also compare to existing methods for
classification with label noise. These methods in contrast, focus
on being robust to noisy labels. These methods are designed
to be unaffected by noisy labels rather than to effectively use
noisy labels. These methods focus on asymptotic behavior with
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(a) Noisy Annotation (b) Recovered Shadows (c) Cleaned-up Annotation

Fig. 10: Recovery from noisy annotations. Example of shadow
region label recovery. a) Original shadow annotation depicted
with red boundaries. b) Recovered shadows depicted with blue
boundaries. c) Resulting cleaned-up shadow annotation: shadow
boundaries depicted in red.

unlimited training data while our method focuses on the shadow
detection problem where training data is very limited.

First, we implemented the noise-tolerant C-SVM method [40].
It achieves an average precision of 81.5 and 74.3, on the noisy
UIUC and UCF datasets, respectively. These are significantly
worse results than our method: 87.2 and 75.6, respectively, as seen
in Table 1.

We then evaluate our method on the UCI dataset as in [40].
In these experiments, controlled levels of artificial noise are
introduced in the labels. In Table 4 we report extensive comparison
to several noise-tolerant methods. As we can see, our method is
effective in leveraging noisy labels, even with significant levels of
label noise (ρ+ = .4 and ρ− = .4). These results suggest that our
method is more generally useful.

TABLE 4: Classification accuracy of our method and several
others on noisy UCI datasets. ρ+, ρ− are the portions of noisy
positive and negative labels, respectively. Our method achieves
highest or close to the highest accuracy for most datasets and
noise levels. Entries within 1% from the best in each row are
printed in bold.

Data ρ+ ρ− llog[40] C-SVM[40] PAM[33] NHERD[12] RP[55] Ours

.2 .2 70.1 67.9 69.3 64.9 69.4 74.5
Breast .3 .1 70.1 67.8 67.8 65.7 66.3 74.0

.4 .4 67.8 67.8 67.1 56.5 54.2 72.3

.2 .2 76.0 66.4 69.5 73.2 75.0 76.8
Diabetes .3 .1 75.5 66.4 65.9 74.7 67.7 75.1

.4 .4 65.9 65.9 65.4 71.1 62.8 67.3

.2 .2 87.8 94.3 96.2 78.5 84.0 93.8
Thyroid .3 .1 80.3 92.5 86.9 87.8 83.1 95.6

.4 .4 83.1 66.3 71.0 86.0 58.0 88.9

.2 .2 71.8 68.4 63.8 67.8 62.8 75.8
German .3 .1 71.4 68.4 67.8 67.8 67.4 77.7

.4 .4 67.2 68.4 67.8 54.8 59.8 72.6

.2 .2 83.0 61.5 69.6 83.0 72.9 80.7
Heart .3 .1 84.4 57.0 62.2 81.5 79.3 79.7

.4 .4 57.0 54.8 53.3 52.6 68.2 70.3

.2 .2 82.5 92.0 92.9 77.8 65.3 91.3
Image .3 .1 82.6 89.3 89.6 79.4 70.7 83.9

.4 .4 63.5 63.5 73.2 69.6 64.7 81.9

7.5 Effect of noisy label recovery on CNN training
We call the training dataset of shadow images with noisy shadow
masks labeled with user strokes SBU-Train-Noisy, and the training

dataset with recovered masks as SBU-Train-Recover. For label
recovery, PGP clusters SBU-Train-Noisy into 224 subsets of 10–
60 images. To perform label recovery we allow up to 5% negative
and up to 1% positive labels to be flipped (α = 0.99, β = 0.95).
We use our label recovery framework with a X 2 kernel as the
shadow region classifier. We choose the scaling parameter of the
X 2 kernel that minimizes the leave-one-out error on the noisy
training set. We oversegment the training images into superpixels
using Linear Spectral Clustering [73]. For each superpixel we
compute intensity, color and texture features. We use 30-bin
histograms for each of the channels of the CIELab color space. We
represent texture with texton histograms. We run the full MR8 [58]
filter bank on the input images and on the image density map [13].
Textons from density maps work well for shadow detection [13].
We cluster the filter responses, sampling 2,000 locations per image
(balancing shadow and non-shadow pixels), to build two 128-word
dictionaries. Our method is able to flip labels and correct some
annotation mistakes. Fig. 10 shows examples of label recovery
with new shadow boundaries in cyan.

Since we can not quantitatively evaluate our label recovery
directly, we measure the influence of training with noisy versus
recovered labels in terms of classification performance.

TABLE 5: Label recovery influence on CNNs. We show the
BER of the FCN, the Patch-CNN, and the Stacked-FCN trained
on SBU-Train-Noisy and SBU-Train-Recover, and tested on the
UCF testing set and SBU-Test.

FCN Patch-CNN Stacked-FCN
Train Data UCF/SBU-Test UCF/SBU-Test UCF/SBU-Test

SBU-Train-Noisy 20.0 17.7 14.1 12.6 14.0 12.1
SBU-Train-Recover 16.5 13.0 13.6 12.0 13.0 11.0

In Table 5, we compare the performance of the FCN, the Patch-
CNN, and the stacked-CNN when trained on SBU-Train-Noisy
and SBU-Train-Recover and tested on the UCF testing set and
the proposed SBU-Test. The models trained with recovered labels
outperform models trained with noisy labels. Using recovered
labels reduces the error rate of the stacked-CNN by 7% and 9%
respectively, when testing in UCF and SBU-Test. Similarly, label
recovery reduces the error rate of the FCN by 17.5% and 26.5%.

8 EVALUATION OF SHADOW DETECTION WITH
STACKED CNN
In this section we evaluate our proposed shadow detection
methods. For performance evaluation, we compare the predicted
shadow masks with the high quality annotation/ground truth
masks, measuring classification error rates at the pixel level.
The main performance metric is the Balanced Error Rate (BER).
We avoid an overall error metric because shadow pixels are
considerably fewer than non-shadow pixels, hence classifying all
pixels as non-shadow would yield a low overall error.

CNN implementation details. We use the FCN implementation
by Long et al. [38]. We implement the Patch-CNN using Theano
[3, 4]. For data augmentation during FCN and DeconvNet training,
we downsample the training images by six different factors: 1.0,
0.9, 0.8, 0.7, 0.6, 0.5 and perform a left-right flip. For the Patch-
CNN training, we store original images in memory and randomly
extract patches on the fly, randomly rotate and flip them. The total
training time of the stacked-CNN is approximately 10 hours on a
single Titan X (maxwell) GPU.
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Image Trained on UCF Trained on SBU-Train-Recover Ground truth

Fig. 11: Comparison of Stacked-DeconvNet trained on UCF and SBU-Train-Recover. A Stacked-DeconvNet trained on a larger
dataset shows improved shadow segmentation compared to a Stacked-DeconvNet trained on the UCF training set. Since SBU-Train-
Recover contains a larger variety of scenes, the classifier trained on it is more robust on a general test set.

TABLE 6: Evaluation of shadow detection on UCF [74]. All
methods are trained and tested on UCF training and test subsets.
Stacked-DeconvNet achieves state-of-the-art level results.

Method BER Sha. Non.

Convnets+CRF [23] 17.7 27.5 7.9
LooKOP+MRF [59] 13.2 20.0 6.4
scGAN [41] 10.9 10.4 11.4

FCN [38] 15.3 16.3 14.3
Patch-CNN 13.3 9.8 16.8
Stacked-FCN 11.6 10.4 12.8
Stacked-DeconvNet 9.4 10.2 8.6

8.1 Experiments on the UCF Dataset

We first evaluate our shadow detection method on the UCF
dataset [74]. We train and test on the original UCF dataset (221
images), using the split given by Guo et al. [21]. Measuring
performance in terms of BER, our proposed method (Stacked-
DeconvNet) compares favorably to several state-of-the-art level
methods†. Table 6 shows that our method achieves lower BER
than ConvNets+CRF [23], and the kernel optimization method
LooKOP+MRF [59], bringing a 34% and 12% error reduction,
respectively. Fig. 12 shows some qualitative results of Stacked-
FCN on the UCF test set.

8.2 Experiments with the SBU Dataset

To evaluate the generalization ability of our shadow detection
method, we train our Stacked-CNNs on SBU-Train-Recover and
test on the UCF testing set. As can be seen from Table 7,
the Stacked-FCN and Stacked-DeconvNet trained on SBU-Train-
Recover achieves lower error rate than LooKOP+MRF [59], which
is trained on UCF. This suggests that our Stacked-CNNs trained
on SBU-Train-Recover generalizes well to a totally different
dataset. In Fig. 11, we show qualitative results comparing the

†. [53] cannot be directly compared because it used an extended version of
the UCF dataset that is not publicly available.

UCF Image Prediction SBU Image Prediction

Fig. 12: UCF and SBU qualitative results. Examples of
shadow detection by Stacked-DeconvNet on the UCF and SBU
testing set.

performance of our Stacked-DeconvNet trained on UCF and SBU-
Train-Recover datasets.

We also evaluate the performance of our proposed method on
the newly collected testing set SBU-Test. Our Stacked-DeconvNet
achieves 7.5% BER. Fig. 12 shows qualitative examples of shadow
detection on SBU-Test. As can be seen, our proposed method is
able to correctly identify shadows in a wide variety of scenes.

8.3 Qualitative results on additional datasets
We show qualitative results on the Shadow Removal dataset [18,
19] and the Deshadow dataset [50] in Fig. 14, since shadow masks
are not directly available for quantitative evaluation.

8.4 Alternative models for image level shadow prior
To further evaluate the efficacy of the proposed Stacked-CNN
architecture, we compare each ILN architecture (FCN, CRF-
RNN, SegNet, DeconvNet, ADNet), with its stacked counter-
part (Stacked-FCN, Stacked-CRF-RNN, etc.). Results in Table
8 show that by stacking a Patch-CNN, we are able to improve
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(a) Ground truth (b) Input image (c) Stacked-FCN (d) Stacked-DeconvNet (e) Stacked-ADNet

Fig. 13: Shadow detection comparison between Stacked-FCN, Stacked-DeconvNet, and the Stacked-ADNet. a) Ground truth shadow
mask; b) Input image; c) Stacked-FCN prediction mask; d) Stacked-DeconvNet prediction mask; e) Stacked-ADNet prediction mask.

TABLE 7: Results on the proposed SBU dataset and across
UCF-SBU datasets. We achieve state-of-the-art on the SBU-
Train-Recover dataset. Training on SBU-Train-Recover dataset
generalizes well on the UCF testing set, while the model trained
on the UCF training set does not. ?: The DSC method [27] is
tested on a different UCF test set which only has 76 images,
whereas the other methods tested on a UCF test set with 110
images. †: the results of Deshadownet [50] are obtained by
modifying the authors’ code and retrain it for shadow detection.

UCF-Test SBU-Test
Training Set Method BER Sha. Non. BER Sha. Non.

SBU-Train-
Recover

scGAN [41] - - - 11.5 7.7 15.3
DSC [27]? 8.1 - - 5.6 - -
ADNet [35] - - - 5.4 5.3 5.5
Deshadownet [50]† - - - 10.2 8.3 12.0

UCF Train Stacked-FCN 11.6 10.4 12.8 13.9 13.1 14.7
SBU-Train-
Noisy

Stacked-FCN 14.0 - - 12.1 - -

SBU-Train-
Recover

Stacked-FCN 13.0 9.0 17.1 11.0 9.6 12.5
Stacked-DeconvNet 10.3 8.7 11.9 7.5 4.9 10.1
Stacked-ADNet 9.2 8.4 10.0 4.7 3.7 5.8

TABLE 8: Image-level shadow predictor network (ILN)
comparison. Balanced Error Rate (BER) of shadow prior mod-
els on the UCF and SBU datasets.

Method UCF-Test SBU-Test

FCN 15.3 13.0
Stacked-FCN 11.6 11.0

FCN+CRF-RNN 12.5 13.7
Stacked-FCN+CRF-RNN 10.6 10.4

SegNet 9.9 7.9
Stacked-SegNet 9.8 7.1

DeconvNet+CRF 10.5 8.3
Stacked-DeconvNet 9.4 7.5

ADNet - 5.4
Stacked-ADNet - 4.7

any semantic segmentation network consistently. Additionally, we
achieve state-of-the-art performance on the SBU dataset (named
as SBU-Train-Recover in Table 8). Fig. 13, shows a qualitative
comparison of shadow prediction results between Stacked-FCN,
Stacked-DeconvNet, and Stacked-ADNet. Detection improves on

Image [18, 19] Prediction Image [50] Prediction

Fig. 14: Qualitative results on the Shadow Removal dataset
[18, 19] (left) and the Deshadow dataset [50] (right), given
by Stacked-DeconvNet.

materials with challenging reflectance properties such as dark
materials.

Although DeconvNet [42], SegNet [2], and the U-net based
scGAN [41] maintain spatial information via unpooling layers
or skip connections, due to the capacity of the networks, seg-
mentation results do not stick to shadow boundaries perfectly.
As a postprocessing step, CRFs were used [10, 23] to make the
prediction results more consistent with local texture and color. The
proposed patch-CNN can be viewed as a very high order CRF-like
method, for the same purpose. By comparing the stacked-CNN
against the DeconvNet baseline which has a CRF postprocessing
step, and against the CRF-RNN baseline which has a built-in
CRF in this Section, we see that adding the proposed patch-CNN
instead of CRFs yield significantly better performance.

9 CONCLUSIONS

We have introduced lazy annotation, a framework for efficient
collection of annotated shadow datasets. We have shown how to
leverage the noisy labels through a label recovery process. This
process is efficient as it is based on minimizing the leave-one-out
error of Least Squares SVM. Our experiments show that when
training with recovered labels, the performance penalty is small.

We extended our method to perform large-scale label recovery
of noisily annotated shadow regions. This allowed us to create a
new shadow dataset that is 20 times bigger than existing datasets.
This dataset is well suited for deep-learning, and we proposed
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a novel deep learning framework to take advantage of the new
dataset. Our deep learning architecture operates at the local patch
level, but it can incorporate the global semantics through an
image level shadow prior. This leads to a shadow classifier that
performs well across different datasets. We have shown that our
proposed framework can successfully integrate different semantic
segmentation models adapting them as image-level shadow prior
generators.

The proposed dataset is already being used by recent shadow
detection methods [26, 27, 35, 39, 41, 45, 64, 65, 67, 71, 75],
and we expect it to become the benchmark for shadow detection.
We also plan to adapt our method to combine datasets collected
under different annotation methodologies. Such datasets would
contribute to the progress of shadow detection and scene under-
standing. Furthermore, we will explore generalizing label recovery
to other domains.
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