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Abstract

Human gaze behavior prediction is important for behav-
ioral vision and for computer vision applications. Most
models mainly focus on predicting free-viewing behavior
using saliency maps, but do not generalize to goal-directed
behavior, such as when a person searches for a visual target
object. We propose the first inverse reinforcement learning
(IRL) model to learn the internal reward function and pol-
icy used by humans during visual search. We modeled the
viewer’s internal belief states as dynamic contextual belief
maps of object locations. These maps were learned and then
used to predict behavioral scanpaths for multiple target cat-
egories. To train and evaluate our IRL model we created
COCO-Search18, which is now the largest dataset of high-
quality search fixations in existence. COCO-Search18 has
10 participants searching for each of 18 target-object cate-
gories in 6202 images, making about 300,000 goal-directed
fixations. When trained and evaluated on COCO-Search18,
the IRL model outperformed baseline models in predicting
search fixation scanpaths, both in terms of similarity to hu-
man search behavior and search efficiency. Finally, reward
maps recovered by the IRL model reveal distinctive target-
dependent patterns of object prioritization, which we inter-
pret as a learned object context.

1. Introduction

Human visual attention comes in two forms. One is
bottom-up, where prioritization is based solely on process-
ing of the visual input. The other is top-down, where pri-
oritization is based on many top-down information sources
(object context of a scene, semantic relationships between
objects, etc. [14, 38, 54]). When your food arrives at a
restaurant, among your very first attention movements will
likely be to the fork and knife (Fig. 1), because they are
important to your goal of having dinner.

Code and dataset are available at https://github.com/
cvlab-stonybrook/Scanpath_Prediction.

Figure 1: Predicting fixations in a visual search task.
Left: behavioral scanpath shown in yellow. Right: pre-
dicted scanpath in green. The search target is the fork,
shown in the yellow bounding box.

Goal-directed attention control underlies all the tasks
that we try to do, thus making its prediction a more chal-
lenging and important problem than predicting the bottom-
up control of attention by a visual input. One of the
strongest forms of top-down attention control is in the defi-
nition of a target goal. Arguably the simplest goal-directed
task is visual search—there is a target object and the task
is to find it. Humans are very efficient and flexible in the
image locations that they choose to fixate while searching
for a target-object goal, making the prediction of human
search behavior important for both behavioral and computer
vision, e.g. robotic visual systems [16, 39]. In this paper,
we introduce Inverse Reinforcement Learning as a compu-
tational model of human attention in visual search.

Gaze prediction in visual search. We aim to predict the
fixation patterns made during the visual search of an image.
These patterns can be either spatial (fixation density maps)
or spatial+temporal (scanpaths). Most fixation-prediction
models are of free-viewing behavior. A critical difference
between search and free-viewing tasks is that search fixa-
tions are guided towards a target-object goal, whereas in
free viewing there are no explicit goals. Prioritization of
fixation locations during free viewing is thought to be con-
trolled by bottom-up saliency, and since Itti’s [25] seminal
work the prediction of free-viewing fixations using saliency
maps has grown into a large literature [6, 8, 9, 12, 23, 26,
27, 32–34, 36]. However, saliency model predictions do not
generalize to fixations made in goal-directed attention tasks,
such as target object search [20, 31].

https://github.com/cvlab-stonybrook/Scanpath_Prediction
https://github.com/cvlab-stonybrook/Scanpath_Prediction


Dataset Search Image Class Subj/img Fixation

SALICON [27] 7 10000 - 60 4600K*
POET [42] 7 6270 10 5 178K
People900 [15] 3 912 1 14 55K
MCS [56] 3 2183 2 1-4 16K
PET [18] 3 4135 6 4 30K
COCO-Search18 3 6202 18 10 300K

Table 1: Comparison of fixation datasets. Previous
datasets either did not use a search task, or had very few
target-object classes, subjects, or fixations. *: Fixations are
approximated by mouse clicks.

Early models of target guidance during search used
simple targets having features that were known to the
searcher [53]. This work expanded to include computa-
tional models using images of objects and scenes as in-
puts [15, 57, 58], and the inclusion of target spatial rela-
tionships [4] and global scene context [49] to help guide at-
tention to targets and improve search efficiency. There have
only been a few attempts to use deep network models to
predict human search fixations [2, 52, 59]. Critically, all of
these models use algorithms and knowledge about a particu-
lar source of information (target features, meaning, context,
etc), to prioritize image locations for fixation selection.

Inverse Reinforcement Learning. Our approach to search-
fixation prediction is the opposite. Instead of an algorithm
to prioritize locations in an image, we use Inverse Rein-
forcement Learning (IRL) [1, 17, 21, 41, 60] to learn se-
quences of search fixations by treating each as a potential
source of reward. IRL, a form of imitation learning, aims
to recover an expert’s underlying reward function through
repeated observation. Most IRL algorithms [17, 55, 60] si-
multaneously learn an optimal policy and the reward func-
tion on which the policy is optimized. Although early IRL
algorithms [41, 60] were often restricted to problems with
low-dimensional state spaces, deep maximum entropy IRL
[55] can handle raw image inputs. Recent work [17, 21] ap-
plies adversarial training [19] to learn the underlying reward
function and the policy, treating each as (part of) the dis-
criminator and the generator in adversarial training, respec-
tively. The discriminator assigns high reward to an expert’s
behavior and low reward to a non-expert’s behavior, where
behavior is represented as state-action pairs. The genera-
tor/policy is optimized using a reinforcement learning algo-
rithm to get higher reward by behaving more like the expert.
Here, we use the GAIL (generative adversarial imitation
learning) algorithm [21], because it can imitate behaviors in
complex, high-dimensional environments [21]. We define
a unified information-maximization framework to combine
diverse information sources, in order to select maximally-
rewarding locations to fixate, thus increasing accuracy and
applicability of human search fixation prediction.

Search Fixation Datasets. Our other significant contribu-
tion is the COCO-Search18 dataset, currently the world’s
largest dataset of images annotated with human gaze fixa-
tions collected during search. COCO-Search18 is needed
because the best models of goal-directed attention will
likely be trained on goal-directed behavior data. For free-
viewing fixations, the currently best model is DeepGaze II
[34], trained on SALICON [27]. SALICON is a crowd-
sourced dataset of images annotated with mouse clicks in-
dicating attentionally salient image locations.

There is nothing comparable to SALICON to train goal-
directed attention models. Moreover, the existing suitably
large datasets, each suffer from some weakness that limits
their usefulness (Tab. 1), the most common being that the
fixation behavior was not collected during a visual search
task (as in [37, 42]). Datasets using a search task either
had people search for multiple targets simultaneously [18]
or used only one target category (people [15]) or two (mi-
crowaves and clocks [56]). These inadequacies demand a
new, larger, and higher-quality dataset of search fixations
for model training. We use multiple fixation-based behav-
ioral search metrics to interrogate COCO-Search18, which
we predict using IRL and other state-of-the-art methods.

Contributions. (1) We apply Inverse Reinforcement Learn-
ing (GAIL) to the problem of predicting fixation scanpaths
during visual search, the first time this has been done for a
goal-directed attention. (2) In order to apply IRL to scan-
path prediction we needed to integrate changes in fixation
location with changes in the state representation, a problem
that we solved using Dynamic Contextual Beliefs. DCB is a
novel state encoder that updates beliefs about peripherally-
viewed objects (an object context) based on the movements
of a simulated fovea. (3) We introduce COCO-Search18, a
large-scale, high-quality dataset of COCO images annotated
with the fixations of 10 people searching for 18 target-object
categories. COCO-Search18 makes possible the deep net-
work modeling of goal-directed attention. (4) We show
through model comparison and with multiple metrics that
our IRL model outperforms other state-of-the-art methods
in predicting search scanpaths. We also show that the IRL
model (i) learns an object’s scene context; (ii) generalizes
to predict the behavior of new subjects, and (iii) needs less
data to achieve good performance compared to other mod-
els. (5) Finally, we learn how to quantify a reward function
for the fixations in a search task. This will make possible a
new wave of experimental investigation that will ultimately
result in better understanding of goal-directed attention.

2. Scanpath Prediction Framework

We propose an IRL framework (Fig. 2) to model human
visual search behavior. A person performing a visual search
task can be considered a goal-directed agent, with their fix-
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Figure 2: Overview of the IRL framework. The gener-
ator (policy) generates fake state-action pairs {Bft , aft } by
sampling eye movements from given images and tasks. The
discriminator (reward function) is trained to differentiates
real human state-action pairs {Brt , art} from the generated
ones and provides reward to train the generator. The states
Bft and Brt use DCB representations.
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Figure 3: Overview of DCB. First, an input image and its
low-res image counterpart are converted into the high-res
beliefs and low-res beliefs. The initial state B0 is set as the
low-res belief. At each fixation which is discretized into a
binary fixation maskMt with 1’s at the fixation location and
0’s elsewhere, a new state is generated by applying Eq. (1).

ations being a sequential decision process of the agent. At
each time step, the agent attends to (fixates) a specific lo-
cation within the image and receives a version of the im-
age that is blurred to approximate the human viewer’s vi-
sual state, what we call a retina-transformed image. This is
an image that has high-resolution (non-blurred) information
surrounding the attended location, and lower-resolution in-
formation outside of this central simulated fovea [45]. The
state of the agent is determined by the sequence of visual in-
formation that accumulates over fixations toward the search
target (Sec. 2.1), with each action of the agent depending
on the state at that time during the evolving state represen-
tation. The goal of the agent is to maximize internal re-
wards through changes in gaze fixation. While it is difficult
to behaviorally measure how much reward is received from
these fixations, with IRL this reward can be assumed to be
a function of the state and the action, and this function can
be jointly learned using the imitation policy (Sec. 2.2).

2.1. State Representation Modeling

To model the state of a viewer we propose a novel state
representation for accumulating information through fixa-
tions that we term a Dynamic-Contextual-Belief (DCB).
As shown in Fig. 3, DCB is composed of three compo-
nents: 1) Fovea, which receives a high-resolution visual in-
put only from the image region around the fixation loca-
tion; 2) Contextual beliefs, which represent a person’s gross
“what” and “where” understanding of a scene in terms of
level of class confidence; and 3) Dynamics, which actively
collects information with each fixation made during search.
We discuss each component in greater detail below.

Fovea: The primate visual system has a fovea, which means
that high-resolution visual information is available only at
a central fixated location. To accumulate information from
the visual world, it is therefore necessary to selectively fix-
ate new image locations. Visual inputs outside of the fovea
have lower resolution, with the degree of blur depending on
the distance between the peripherally-viewed input and the
fovea. Rather than implementing a full progressive blurring
of an image input (i.e., a complete retina-transformed im-
age, as in [56]), for computational efficiency here we use a
local patch from the original image as the high-resolution
foveal input and a blurred version of the entire image to ap-
proximate low-resolution input from peripheral vision.

Contextual Belief: Attention is known to be guided to
target (and target-like) objects during search, but more re-
cently it has been suggested that attention is also guided to
“anchor objects” [7, 50], defined as those objects having a
learned spatial relationship to a target that can help in the ef-
ficient localization of that target. For example, people often
look at the wall when searching for a TV because TVs are
often found hanging on the wall. Inspired by this, we pro-
pose to model, not only the target features (as in [59]), but
also other objects and background information in the state.

We hypothesize that people have an internal scene parser
that takes an image input and generates belief maps for that
image based on all the objects and background classes in
that person’s knowledge structure. We believe these be-
lief maps also guide movements of the fovea to capture
high-resolution information and form better beliefs. We
approximate these belief maps using a Panoptic-FPN [29]
for panoptic segmentation [30]. Given an image, Panoptic-
FPN generates a pixel-level mask for each “thing” class
(object) and each “stuff” class (background) in the image.
There are 80 “thing” categories (including a single “other”
class for the 80 “thing” classes) and 54 “stuff” categories
[10, 30, 35]. We create a mask for each category by group-
ing all mask instances belonging to the same category and
use the belief maps of the 134 categories as the primary
component of the state representation. We term these belief
maps contextual beliefs because the collective non-target



beliefs constitute a context of spatial cues that might affect
the selection of fixations during the search for a target.

Dynamics refers to the change in the state representation
that occurs following each fixation. We propose a simple
yet effective heuristic to model state dynamics (see Fig. 3).
Initially, the state is based on the contextual beliefs on the
low-resolution image corresponding to a peripheral visual
input. For each fixation by the searcher, we update the state
by replacing the portion of the low-resolution belief maps
with the corresponding high-resolution portion obtained at
the new fixation location. The state is updated as follows:

B0 = L and Bt+1 =Mt �H + (1−Mt)�Bt, (1)

where Bt is the belief state after t fixations, Mt is the cir-
cular mask generated from the tth fixation, L and H are
the belief maps of “thing” and “stuff” locations for low-
resolution and high-resolution images, respectively. Hu-
mans have different search behaviors on the same image
given different search targets. To capture this, we augment
the state by concatenating it with a one-hot task vector.
Please refer to the supplementary material for more detail.

2.2. Reward and Policy Learning

We learn the reward function and the policy for vi-
sual search behavior using Generative Adversarial Imita-
tion Learning (GAIL) [21]. As shown in Fig. 2, GAIL is
an adversarial framework with a discriminator and a gener-
ator. The policy is the generator that aims to generate state-
action pairs that are similar to human behavior. The reward
function (the logarithm of the discriminator output) maps a
state-action pair to a numeric value. We train the generator
and discriminator with an adversarial optimization frame-
work to obtain the policy and reward functions.

Let D and G denote the discriminator and the generator,
respectively. The discriminator aims to differentiate human
state-action pairs from fake state-action pairs generated by
the policy. This corresponds to maximizing the following
objective function:

LD =Er[log(D(S, a))] + Ef [log(1−D(S, a))]

− λEr[‖∇D(S, a))‖2]. (2)

In the above objective function, Er denotes the expectation
over the distribution of real state-action pairs, while Ef de-
notes the expectation over the fake samples generated by the
generator (i.e., the policy). The last term of the above ob-
jective is the expected squared norm of the gradients, which
is added for faster convergence [46]. The reward function is
defined based on the discriminator:

r(S, a) = log(D(S, a)). (3)

The generator aims to fool the discriminator, and
its objective is to maximize the log likelihood of the

generated state-action pairs, i.e., to maximize: LG =
Ef [log(D(S, a))] = Ef [r(S, a)].

The generator is an RL policy, hence its objective can be
equivalently reformulated as an RL objective and optimized
by Proximal Policy Optimization [48]:

Lπ = Eπ[log(π(a|S))A(S, a)] +H(π). (4)

We use GAE [47] to estimate the advantage function A
which measures the gain of taking action a over the policy’s
default behavior. H(π) = −Eπ[log(π(a|S))], the entropy
in max-entropy IRL [60].

3. COCO-Search18 Dataset
COCO-Search18 is a large-scale and high-quality dataset

of search fixations obtained by having 10 people view-
ing 6202 images in the search for each of 18 target-object
categories. Half of these images depicted an instance of the
designated target object and the other half did not, mean-
ing that we adopted a standard target-present (TP) or target-
absent (TA) search task. All images in COCO-Search18
were selected from the COCO trainval set [35]. Five crite-
ria were imposed when selecting the TP images: (1) No im-
ages depicting a person or an animal (to avoid known strong
biases to these categories that might skew our measures of
attention control [11, 28]). (2) The image should include
one and only one instance of the target. (3) The size of the
target, measured by the area of its bounding box, must be
>1% and <10% of the area of the search image. (4) The
target should not be at the center of the image, enforced by
excluding an image if the target bounding box overlapped
with the center cell of a 5x5 grid. (5) The original image
ratio (width/height) must be between 1.2 and 2.0 to accom-
modate the display screen ratio of 1.6. After applying these
exclusion criteria, and excluding object categories that had
less than 100 images of exemplars, we were left with 32 ob-
ject categories (out of COCO’s 80) to use as search targets.
To exclude images in which the target was highly occluded
or otherwise difficult to recognize, we trained a patch-based
classifier for target recognition (described in supplemental
material) and only selected images in which the cropped
target-object patch had a classification confidence in the top
1%. Finally, we manually excluded images depicting digi-
tal clocks from the clock target category (because the fea-
tures of analog and digital clocks are very different and this
would be expected to reduce data quality by creating vari-
ability in the search behavior), as well as images depicting
objectionable content. This left us with 3101 TP images
over 18 target categories. To select the same number of TA
images for each of these 18 categories, we randomly sam-
pled COCO trainval images with the following constraints:
(1) The image should not depict an instance of the target,
and (2) The image must include at least two instances of



Figure 4: Normalized gaze data [0,1] on response error, re-
action time, number of fixations (NumFix), time to target
(T2T), and number of fixations to target (NumFix2T) av-
eraged over 10 subjects searching for 18 categories in TP
images. Redder color indicates harder search targets, bluer
color indicates easier search.

the target’s siblings, as defined in COCO. For example, a
microwave sibling can be an oven, a toaster, a refrigerator,
or a sink, which are under the parent category of appliance.
We did this to discourage TA responses from being based
on scene type (e.g., a city street scene would be unlikely to
contain a microwave).

Each of the 10 student participants (6 males, age range
18-30, normal or corrected-to-normal vision) viewed all
6202 images, and their eye position throughout was sam-
pled at 1000Hz using an EyeLink 1000 eyetracker (SR Re-
search) in tower-mount configuration under controlled lab-
oratory conditions. For each subject, data collection was
distributed over six sessions in six days, with each session
having equal number TP trials and TA trials (∼500 each)
randomly interleaved. Each session required ∼2 hours. For
each image, subjects made a TP or TA judgment by pressing
a ‘yes’ or ‘no’ button on a game pad. They searched all the
images for one target category before preceding to next cat-
egory. A total of 299,037 fixations were extracted from the
eye position data, over the 10 subjects, although only data
from the TP fixations will be reported here (Fig. 4). TP fixa-
tions occurring on error trials, or after fixation on the target,
were discarded. This left 100,232 TP search fixations to use
for training and testing. All model evaluations are based on
70% training, 10% validation, and 20% test, random splits
of COCO-Search18, within each target category.

4. Experiments

We evaluate the proposed framework and its constituent
components in multiple experiments. We first compare the
scanpath predictions by the IRL-based algorithm to predic-
tions from various heuristic methods and behavior cloning
methods using ConvNets and convolutional LSTM. We then
study the algorithm’s ability to generalize to new human
subjects. Finally, we analyze context effects, the value
of having more training data, and report on an ablation
study. We used only the target-present trials from COCO-
Search18, leaving target-absent data for future analyses.

4.1. Comparing Scanpath Prediction Models

Comparison methods. We compare the IRL algorithm for
predicting scanpaths to several baselines, heuristics, and be-
havior cloning methods: (1) Random scanpath: we predict
the scanpath for an input image by randomly selecting a
human scanpath for the same search target but in a differ-
ent input image. (2) Detector: we train a simple ConvNet
to predict the location of the target and sample a sequence
of fixation locations based on the detection confidence map
over the image. Regions with higher confidence scores are
more likely to be sampled. (3) Fixation heuristics: rather
than sampling from a detector’s confidence map, here we
generate fixations by sampling from a fixation density map
produced by a ConvNet (with a similar network architecture
as the Detector) trained on human fixation density maps.
(4) BC-CNN is a behavior cloning method, where we train
a ConvNet to predict the next fixation location from the
DCB state representation. Note that this state representa-
tion and network structure are identical to the one used by
the IRL policy described in Sec. 2.1. (5) BC-LSTM is a
behavior cloning method similar to BC-CNN, but the state
representation and update are done with a convolutional
LSTM. Instead of having the simple predefined update rule
used by both IRL and BC-CNN, as shown in Eq. (1),
BC-LSTM aims to learn a recurrent update rule automati-
cally with an LSTM: Bt+1 = ConvLSTM(Bt, It), where
ConvLSTM denotes a convolutional LSTM cell [5], Bt is
the hidden state of the LSTM cell and also the searcher’s
belief state after t fixations. It is the input to the LSTM at
time t, and it is defined as It = Mt �H + (1 −Mt) � L.
Recall that Mt is the circular mask generated from the tth

fixation, L andH are the predicted maps from the Panoptic-
FPN [30] for the 80 COCO objects and 54 “stuff” classes
for low- and high-resolution input images, respectively.

Results. Fig. 5 shows the cumulative probability of gaze
landing on the target after each of the first 6 fixations made
by humans and the algorithms in our model comparison.
First, note that even the most predictive models have a per-
formance ceiling lower than that of humans, whose ceiling
over this range is nearly 1. These lower ceilings likely re-
flect a proportion of trials in which the models search was
largely unguided. Second, note the steep increase in tar-
get fixation probability after the first and second fixations.
The slopes of these functions indicate strong target guid-
ance. The target was fixated in the very first movement on
about half of the images, with the IRL model replicating
human search guidance slightly better than its nearest com-
petitors: the Detector and BC-CNN models.

We quantify the patterns from Fig. 5 using several met-
rics. Two of these metrics follow directly from Fig. 5 and
capture aggregate measures combining search guidance and
accuracy. The first of these computes the area under the cu-



0 1 2 3 4 5 6
Number of Fixations Made to Target

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e 

Pr
ob

ab
ilit

y
BC-LSTM
Fixation heuristic
Random scanpath
IRL
Detector
BC-CNN
Human

Figure 5: Cumulative probability of fixating the target
for human searchers and all predictive methods. X-axis is
the number of fixations until the fovea moves to the target
object; Y-axis is the percentage of scanpaths that succeed
in locating the target. Means and standard errors are first
computed over target categories, and then over searchers.

mulative probability of the target fixation curve, a metric
we refer to as Target Fixation Probability AUC or TFP-
AUC. Second, we compute the sum of the absolute differ-
ences between the human and model cumulative probability
of target fixation in a metric that we refer to as Probability
Mismatch. We also report the Scanpath Ratio, which is
a widely used metric for search efficiency. It is computed
by the ratio of Euclidean distance between the initial fix-
ation location and the center of the target to the summed
Euclidean distances between fixations to the target [22]. Fi-
nally, we compute two metrics for scanpath prediction suc-
cess, that both capture the scanpath similarity between fix-
ation sequences generated by humans and sequences gener-
ated by the model. The first of these computes a Sequence
Score by first converting a scanpath into a string of fixation
cluster IDs and then use a string matching algorithm [40]
to measure similarity between two strings. Finally, we use
MultiMatch [3, 13] to measure the scanpath similarity at
the pixel level. MultiMatch measures five aspects of scan-
path similarity: shape, direction, length, position, and du-
ration. We exclude the duration metric because the studied
models do not predict fixation duration. Unless otherwise
specified, each model generates 10 scanpaths of maximum
length 6 (excluding the first fixation) for each testing image
by sampling from the predicted action map at each fixation,
with the results averaged over scanpaths.

As seen from Tab. 2, the IRL algorithm outperforms the
other methods on all metrics. The performance of IRL is
closest to Human, an oracle method where the scanpath of a
subject is used to predict the scanpath of another subject for
the same input image. Fig. 6 also shows that reward maps
recovered by the IRL model depend greatly on the category
of the search target. In the top row, higher reward was as-
signed to the laptop when searching for a mouse, while for

the same image greater reward was expected from fixating
on the monitor when searching for a tv. Similarly, the search
for a car target in the bottom image resulted in the expec-
tation of reward from the other cars on the road but almost
not at all from the highly-salient stop sign, which becomes
intensely prioritized when the stop sign is the target.

Implementation details. We resize each input image to
320×512 and obtain a low-resolution image by applying a
Gaussian filter with standard deviation σ = 2. To compute
the contextual beliefs, we use a Panoptic-FPN with back-
bone network ResNet-50-FPN pretrained on COCO2017
[30]. Panoptic-FPN outputs a feature map of 134 channels,
corresponding to 80 object categories and 54 background
classes in COCO, and it is resized to 20×32 spatially.

For IRL and BC-CNN, we use the same policy network
architecture: a network composed of four convolutional
(conv) layers and a softmax layer. IRL model has two ad-
ditional components—critic network and discriminator net-
work. The critic network has two convolutional layers and
two fully-connected (fc) layers. The discriminator network
shares the same sturcture with the IRL policy network ex-
cept the last layer which is a sigmoid layer. Each conv layer
and fc layer in BC-CNN and IRL is followed by a ReLU
layer and a batch-norm layer [24]. BC-LSTM has the same
policy network as the BC-CNN, with the difference being
the use of a convolutional LSTM [5] to update the states.
BC-CNN and BC-LSTM use the KL divergence between
predicted spatial distribution and ground truth as loss. The
prediction of both behavior cloning models and IRL is con-
ditioned on the search target. We implement the target con-
ditioning by introducing an additional bias term based on
the search task to the input features at each layer [44]. The
human visual system employs Inhibition-of-Return (IOR)
to spatially tag previously attended locations with inhibition
to discourage attention from returning to a region where in-
formation has already been depleted [51]. To capture this
mechanism, we enforce IOR on the policy by setting the
predicted probability map to 0 at each attended location us-
ing a 3×3 grid. See the supplementary for more detail.

4.2. Group Model vs Individual Model

The previous subsection described the IRL model’s abil-
ity to predict a searcher’s scanpath on unseen test images,
but how well can this model predict the scanpaths of a
new unseen searcher without training on that person’s scan-
paths? To answer this question, we perform ten leave-one-
subject-out experiments, with each experiment correspond-
ing to a test subject. For every subject we train two mod-
els: (1) a group model using the scanpaths of the 9 other
subjects; and (2) an individual model using the scanpaths
of the test subject on the training images. We evaluate the
performance of these models on the scanpaths of each test
subject on the unseen test images. Fig. 7 shows that both



TFP-AUC ↑ Probability
Mismatch ↓

Scanpath
Ratio ↑

Sequence
Score ↑

MultiMatch ↑
shape direction length position

Human 5.200 - 0.862 0.490 0.903 0.736 0.880 0.910
Random scanpath 0.795 4.407 - 0.295 0.869 0.558 0.849 0.849
Detector 4.046 1.166 0.687 0.414 0.877 0.676 0.853 0.863
Fixation heuristic 2.154 3.046 0.545 0.342 0.873 0.614 0.870 0.850
BC-CNN 3.893 1.328 0.706 0.409 0.880 0.669 0.865 0.874
BC-LSTM 1.702 3.497 0.406 0.324 0.834 0.567 0.818 0.770
IRL(Ours) 4.509 0.987 0.826 0.422 0.886 0.695 0.866 0.885

Table 2: Comparing scanpath prediction algorithms (rows) using multiple scanpath metrics (columns) on the COCO-
Search18 test dataset. In the case of Sequence Score and Multimatch, “Human” refers to an oracle method where one
searcher’s scanpath is used to predict another searcher’s scanpath; “Human” for all other metrics refers to observed behavior.

Figure 6: Initial reward maps learned by the IRL model
for two different search targets in two test images. Top row:
original image (left), mouse target (middle), and tv target
(right). Bottom row: original image (left), car target (mid-
dle), stop sign target (right). Redder color indicates the ex-
pectation of higher reward for fixating a location.
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Figure 7: No significant differences were found between a
group model (solid), trained with 9 subjects, and an individ-
ual model (striped), trained with one subject.

models perform well, with an insignificant performance gap
between them. This suggests that there is good agreement
between group and individual behaviors, and that a group
model can generalize well to new searchers.

4.3. Context Effects

Search efficiency. With DCB we can ask how an object
from category A affects the search for a target from cate-
gory B. This effect can either increase (guidance) or de-
crease (distraction) search efficiency. To study this, we first
zero out the belief map of category A in the DCB state rep-
resentation and then measure the TFP-AUC (see Sec. 4.1)
on test images for category B. We compute the difference
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Figure 8: Context effect. The six most influential context
objects (grey bars) for knife and car search tasks. The y-axis
is the context object category and the x-axis is a measure of
how much the belief map for a context object contributed
to search efficiency, as measured by TFP-AUC. Larger pos-
itive values mean that the context object improved search
guidance to the target, more negative values mean that the
object distracted attention from the search.

between the TFP-AUC obtained with and without switching
off the belief map for category A in DCB. A positive value
indicates that an object in category A helps to guide search
for a target in category B, while a negative value indicates
the opposite (that the object is distracting). We did this for
the 134 COCO objects and stuff non-target categoriesA and
the 18 target categories B. Fig. 8 shows the six most guid-
ing and distracting objects for the knife and car searches.
Note that the fork was highly distracting when searching
for a knife, likely because the two look similar in periphery
vision, but that the cake facilitated the knife search. Sim-
ilarly for the car search, pavement provided the strongest
guidance whereas trucks were the most distracting.

Directional Prior. Can an object from category A serve
as a directional spatial cue in the search for a target from
category B? Suppose M is the probability map produced
by the policy network of our IRL model, and let M ′ be the
modified probability map from the policy network but with
the belief map of category A in the DCB state representa-
tion being switched off. By computing the difference be-
tween M ′ and M which we call a context map (as depicted
in the top row of Fig. 9), we can see the spatial relationship
between the context object A and the target object B (see



Figure 9: Spatial relations between context and target ob-
jects learned by the model. Top row shows individual con-
text maps for a dining table (left) and a refrigerator (middle)
in a microwave search, and a keyboard (right) in a mouse
search. Bottom row are the belief maps of the correspond-
ing context objects. Gaze is guided to the top of the dinning
table and refrigerator when searching for a microwave, and
to the right of the keyboard when searching for a mouse.

Sequence
Score ↑

Scanpath
Ratio ↑

Prob. ↓
Mismatch

DCB-full 0.422 0.803 1.029
w/o history map 0.419 0.800 1.042
w/o saliency map 0.419 0.795 1.029
w/o stuff maps 0.407 0.777 1.248
w/o thing maps 0.331 0.487 3.152
w/o target map 0.338 0.519 2.926
DCB 0.422 0.826 0.987
CFI 0.402 0.619 1.797

Table 3: Ablation study of the proposed state
representation—dynamic contextual belief. The full state
(DCB-full) consists of 1 history map, 1 saliency map, 54
stuff maps, 79 context maps and 1 target map. We mask out
one part by setting the map(s) to zeros at each time. See the
supplementary for full results.

Fig. 9 for examples).

4.4. Ablation Study on State Representation

DCB is a rich representation that uses top-down, bottom-
up, and history information. Specifically, it consists of 136
belief maps, divided into five factor groups: target object (1
map), context objects (79 maps), “stuff” (54 maps), saliency
(1 map, extracted using DeepGaze2 [34]), and history (1 bi-
nary map for the locations of previous fixations). To un-
derstand the contribution of a factor group, we remove the
group from the full state representation and measure the ef-
fect on performance. From the first block of Tab. 3, we can
see that the most important factor groups were target and
context objects, followed by stuff, whereas saliency and his-
tory weakly impacted model performance. In addition, an
alternative state representation to DCB is the Cumulative
Foveated Image (CFI) [56], but replacing DCB with CFI
degrades the performance of IRL (as shown in the second
block of Tab. 3).
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Figure 10: Performance of IRL (solid line) and BC-CNN
(dashed line) as the number of training images per category
increases from 5 to 20. IRL is more data efficient than BC-
CNN, likely due to an adversarial data generator.

4.5. Data Efficiency

Fig. 10 shows IRL and BC-CNN performance as we vary
the number of training images per object category. Both
methods use DCB as the state representation. IRL is more
data efficient than BC-CNN, achieving comparable or bet-
ter results using less training data. A likely reason for this is
that the GAIL-based [21] IRL method includes an adversar-
ial component that generates augmented training data, lead-
ing to a less prone to overfitting policy network. Data effi-
ciency is crucial for training for new categories, given the
time and cost of collecting human fixations.

5. Conclusions

We proposed a new model for predicting search fixa-
tion scanpaths that uses IRL to jointly recover the reward
function and policy used by people during visual search.
The IRL model uses a novel and highly explainable state
representation, dynamic contextual beliefs (DCB), which
updates beliefs about objects to obtain an object context
that changes dynamically with each new fixation. To train
and test this model we also introduced COCO-Search18, a
large-scale dataset of images annotated with the fixations
of people searching for target-object goals. Using COCO-
Search18, we showed that the IRL model outperformed
comparable models in predicting search scanpaths.

Better predicting human search behavior means better
robotic search applications and human-computer systems
that can interact with users at the level of their attention
movements [43]. It may also be possible to use reward
maps from the IRL model to annotate and index visual con-
tent based on what is likely to attract a person’s attention.
Finally, our work impacts the behavioral vision literature,
where the visual features guiding human goal-directed at-
tention are still poorly understood for real images [58].
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Abstract

This document provides further details about the COCO-
Search18 dataset (Sec. 1), Dynamic Contextual Beliefs
(Sec. 2), and implementation (Sec. 3). We also include ad-
ditional results from experiments and ablation studies, and
interpretation (Sec. 4).

1. Details about COCO-Search18 Dataset

Data source: The COCO-Search18 dataset annotates
COCO [6] with human gaze fixations made during a stan-
dard target-present (TP) or target-absent (TA) search task,
where on each trial the search image either depicted the tar-
get (TP) or it did not (TA). All of the images were selected
from the trainval set, and detailed descriptions of TP and
TA image selection and gaze collection methods are pro-
vided below.

Target present image selection:
In addition to the exclusion criteria described in the main

text, we also excluded images in which the target was highly
occluded or otherwise difficult to recognize. Specifically,
we only selected images in which the cropped target-object
patch had a classification confidence >.99. To train this
classifier, we cropped the target in each image (by bound-
ing box) and used these image patches as positive samples.
Same-sized image patches of non-target objects were used
as negative samples. Negative samples were constrained to
intersect with the target by 25% (area of intersection divided
by area of target) so that they could serve as hard negatives
for specific targets. More than 1 million cropped patched
were collected and resized to 224x224 pixels, while keeping
the original aspect ratio by padding. The classifier is fine-
tuned from an ImageNet-pretrained ResNet-50 model with
the last fully connected layer changed from 1000 outputs
to 33 (32+“Negative”). Images with a classification score
for the cropped target patch that was <.99 were excluded.
This resulted in 18 categories with at least 100 images in
each category, and 3131 images in total. As described in

Category TP images ACC TA images ACC

bottle 166 0.84 166 0.92
bowl 141 0.80 141 0.90
car 104 0.89 104 0.91
chair 253 0.89 253 0.64
clock 119 0.99 119 0.97
cup 276 0.92 276 0.76
fork 230 0.96 230 0.98
keyboard 184 0.92 184 0.98
knife 141 0.89 141 0.97
laptop 123 0.95 123 0.95
microwave 156 0.97 156 0.95
mouse 109 0.97 109 0.97
oven 101 0.91 101 0.93
potted plant 154 0.84 154 0.95
sink 279 0.97 279 0.94
stop sigh 126 0.95 126 0.99
toilet 158 0.99 158 1.00
tv 281 0.96 281 0.93

total/mean 3101 0.92 3101 0.92

Table 1: Number of images and response accuracy (ACC)
for TP and TA images grouped by target category.

the main text, we conducted a final manual checking of the
dataset to exclude images depicting digital clocks (5 im-
ages), so as to make the clock target category specific to
analog clocks, and to remove images depicting content that
participants might find objectionable. This latter criterion
resulting in the exclusion of 30 images, 22 of which were
from the toilet category.

After implemented all exclusion criteria, we selected
3101 target-present images from 18 categories: bottle,
bowl, car, chair, clock, cup, fork, keyboard, knife, laptop,
microwave, mouse, oven, potted plant, sink, stop sign, toi-
let, tv. See Table 1 for the specific number of images in
each category and the average response accuracy (ACC).



Figure 1: Examples of human scanpaths during target-present (top 3 rows) and target-absent (bottom 3 rows) visual search.
From left to right and top to bottom, the 18 target categories are: bottle, bowl, car, chair, clock, cup, fork, keyboard, knife,
laptop, microwave, mouse, oven, potted plant, sink, stop sign, toilet, and tv. Each yellow line represents the scanpath of one
behavioral searcher, with numbers indicating fixation order.

There were an equal number of TA images (for a total of
6202 images), which were all resized and padded to fit the
1050× 1680 resolution of the display monitor.

Gaze data collection procedure: Ten university under-
graduate and graduate students (6 males, age range 18–30)
with normal or corrected to normal vision participated in
this study, which was approved by the Institutional Review
Board. They were naive with respect to experimental ques-
tion and design, and were compensated with course credits
or money for their participation. Informed consent was ob-
tained at the beginning of the experiment, and every partic-
ipant read and understood the consent form before signing
it.

The 6202 images were divided into six days of exper-
iment sessions with each session consisting of ∼500 TP
images and the same number of TA images, randomly in-
terleaved. Images for a given target category were grouped
and presented sequentially in an experiment block (i.e., tar-
get type was blocked). Preceding each block was a calibra-
tion procedure needed to map eye position obtained from

the eye-tracker to screen coordinates, and a calibration was
not accepted until the average calibration error was ≤.51
and the maximal error was ≤.94. Each trial began with a
fixation dot appearing at the center of the screen. To start a
trial, the subject should press the “X” button on a gamepad
while carefully looking at the fixation dot. A scene would
then be displayed and their task was to answer “yes” or “no”
whether an exemplar of the target category for that block ap-
pears in the displayed scene. The subject registered a “yes”
target judgment by pressing the right rigger of the gamepad,
and a “no” judgment by pressing the left trigger. They were
told that there were equal number of target present and ab-
sent trials, and that they should respond as quickly as possi-
ble while remaining accurate. Participants were allowed to
take multiple breaks between and within each block.

Image presentation and data collection was controlled
by Experiment Builder (SR research Ltd., Ottawa, Ontario,
Canada). Images were presented on a 22-inch LCD monitor
(resolution: 1050x1680), and subjects viewed these stimuli
in a distance of 47cm from the monitor, enforced by both
chin rest and head rest. Eye movements were recorded us-



ing an EyeLink 1000 eye tracker in tower-mount configu-
ration (SR research Ltd., Ottawa, Ontario, Canada). The
experiment was conducted in a quiet and dimmed labora-
tory room. Fig. 1 shows some TP and TA images from the
18 object categories, with overlaid human scanpaths.

2. Detailed Description of DCB

DCB: An input image is resized to 320×512 for computa-
tional efficiency (the original image is 1050×1680), while
the blurred image is obtained by applying a Gaussian filter
on the original image with the standard deviation σ = 2.
Both images are passed through a Panoptic-FPN with back-
bone network ResNet-50-FPN pretrained on COCO2017
[4]. The output of the Panoptic-FPN has 134 feature maps,
consisting of 80 “thing” categories (objects) and 54 “stuff”
categories (background) in COCO. Feature maps are then
resized to 20×32 spatially, same as the discretization of fix-
ation history. At a given time step t, feature maps H for the
original image and feature maps L for the blurred image are
combined for DCB:

Bt =Mt �H + (1−Mt)� L (1)

where � is element-wise product and Mt is the mask gen-
erated from fixation history and repeated over feature chan-
nels (see Fig. 2). Note that the above equation is equivalent
to Eq. (1) in the main paper which is written in a recurrent
form.

Encoding the target object category: The task embedding
used in our model is the one-hot encoding maps which spa-
tially repeat the one-hot vector. To make predictions condi-
tioned on the task, inputs of each convolutional layer are
concatenated with this embedding. This is equivalent to
adding a task-dependent bias term for every convolutional
layer.

3. Implementation details

Action Space. Our goal is to predict the pixel location
where the person is looking in the image during visual
search. To reduce the complexity of prediction, we dis-
cretize the image into a 20×32 grid, with each patch corre-
sponding to 16×16 pixels in the original image coordinates.
This descretized grid defines the action space for all models
tested in this paper. At each step, the policy chooses one
out of 640 patches and the center location of that selected
patch in the original image coordinates is used as an action.
The maximum approximation error due to this discretiza-
tion procedure is 1.75 degrees visual angle.

IRL. The IRL model is composed of three components—
the policy network, the critic network and the discriminator
network. The policy network consists of four convolutional

layers whose kernel sizes are 5, 3, 3, 1 with padding 2, 1, 1,
0 and output channels are 128, 64, 32 and 1, and a softmax
layer to output a final probability map. The critic network
has two convolutional layers of kernel size 3 and two fully-
connected (fc) layers whose output sizes are 64 and 1. The
convolutional layers have output sizes 128 and 256, respec-
tively, and each is followed by a max pooling layer of kernel
size 2 to compress the feature maps into a vector. Then this
feature vector is regressed to predict the value of the state
through two fc layers . The discriminator network shares
the same structure with the IRL policy network except that
the last layer is a sigmoid layer. Note that all convolutional
layers and fully-connected layers are followed by a ReLU
layer and a batch normalization layer [2] except the output
layer.

The critic network is jointly trained with the policy net-
work to estimate the value of a state (i.e., expected return)
using smoothed L1 loss. The estimated value is used to
compute the advantage A(S, a) (note that the state S is rep-
resented by the proposed DCB in our approach) in Eq. (4)
of the main paper using the Generalized Advantage Esti-
mation (GAE) algorithm [8]. At each iteration, the policy
network first generates two scanpaths by sampling fixations
from the current policy outputs for each image in a batch.
Second, we break the generated scanpaths into state-action
pairs and sample the same number of state-action pairs from
ground-truth human fixations to train the discriminator net-
work which discriminates the generated fixation from be-
havioral fixations. Lastly, we update the policy and critic
network jointly using the PPO algorithm [9] by maximizing
the total expected rewards which are given by the discrimi-
nator (see Eq. (3) of the main paper).

Training: The IRL model was trained for 20 epochs with
an image batch size of 128. The batch sizes used for train-
ing the discriminator and policy networks were 64. For the
PPO algorithm, the reward discount factor, the clip ratio and
number of epochs were set to 0.99, 0.2, and 10, respectively.
The extra discount factor in the GAE algorithm was set to
0.96. Both the policy network and the discriminator net-
work were trained with a learning rate of 0.0005. It took
approximately 40 minutes to train the proposed IRL model
(for 20 epochs) on a single NVIDIA Tesla V100 GPU. The
training procedure consumed about 5.6GB GPU memory.
Note that the segmentation maps used to construct the DCB
state representation had been computed beforehand.

Additional details on two baseline methods. Detector:
The detector network consists of a feature pyramid net-
work (FPN) for feature extraction (1024 channels) with a
ResNet50 pretrained on ImageNet as the backbone and a
convolution layer for detection of 18 different targets. The
detector network predicts a 2D spatial probability map of
the target from the image input and is trained using the
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Figure 2: Detailed illustration of Dynamic-Contextual-Belief. First, an input image and its low-res image counterpart are
converted into high-res beliefs and low-res beliefs. At each fixation, which is discretized into a binary fixation history map
with 1’s around the fixation location and 0’s elsewhere, a new state is generated by concatenating the output of Eq. (1) with
a one-hot task embedding (best viewed in color).

ground-truth location of the target. Another similar base-
line is Fixation Heuristics. This network shares exactly
the same network architecture with the detector baseline but
it is trained with behavioral fixations in the form of spatial
fixation density map (FDM), which is generated from 10
subjects on the training images.

Scanpath Generation. When generating scanpaths, a fix-
ation location is sampled from the probability map that
the models have produced and Inhibition-of-Return is ap-
plied to prevent revisiting previously attended locations. All
predictive methods including IRL, behavior cloning, and
heuristic methods, generate a new spatial probability map
at every step, while the predicted probability map is fixed
over all steps for the Detector and Fixation Heuristic base-
lines.

4. Additional Experiment Results

Cumulative distribution of sequence scores. In the main
paper we reported the average Sequence Score of 0.422 for
the scanpaths generated by the IRL model. To put this in
perspective, Fig. 3 plots the cumulative distribution of the
sequence scores and shows four qualitative examples that
have sequence scores of 0.33, 0.40, 0.50, and 0.75, respec-
tively.

Comparing different state representations. To evalu-
ate the benefits of having DCB as the state representation,
we compared its predictive performance with the Cumula-
tive Foveated Image (CFI) [11] under the same IRL frame-

work. CFI is created by extracting CNN feature maps on
the retina-transformed images which are progressively more
blurred based on the distance away from the currently fix-
ated location. On the other hand, the DCB is created by
extracting panoptic segmentations [3] on uniform-blur im-
ages which are uniformly blurred except around the fixated
region (the level of blurriness applied in DCB is close to the
middle level in the blur pyramid of CFI [1, 7, 11]). For a
fair comparison, we extract features for CFI using the back-
bone ResNet-50-FPN network from the Panoptic-FPN [3]
that was used in DCB. Both DCB and CFI have the same
spatial resolution of 20×32. As shown in Tab. 2, the IRL
model with DCB achieves significantly higher search ef-
ficiency and scanpath similarity than when using CFI as
state representation. Specifically, DCB reduces the search
gap by approximately 45% and improves the scanpath ra-
tio from 61.9% to 82.6%, much closer to the human be-
havioral ratio of 86.2%. This result is even more impres-
sive considering the size differences between the policy
network used with DCB and CFI: DCB is trained with a
smaller policy network, since it is comprised of 134 chan-
nels, nearly 8x smaller than CFI of 1024 channels. In our
experiment, the policy network with CFI state representa-
tion has 29.6M parameters, while the policy network with
DCB state representation only has 0.3M parameters. Re-
latedly, another benefit of having DCB as state representa-
tion is that it is memory and operation efficient. Creating
DCB requires a smaller computational cost than creating
CFI, since there’s only a single level of blurriness in DCB



Figure 3: Left: cumulative distribution of the sequence scores of the proposed IRL scanpath prediction method. Right: Four
qualitative examples. Human scanpaths are colored in yellow, and the IRL-generated scanpaths are in green. The sequence
score for the generated scanpaths are 0.33, 0.40, 0.50, and 0.75, from top to bottom.

and extracted panoptic segmentation maps are smaller by
an order of magnitude than the feature maps extracted for
CFI. Given that IRL models are particularly difficult to train
in high dimensional environments [10], having an efficient
representation like DCB can be very helpful.

State Ablation. DCB is a rich representation that incorpo-
rates top-down, bottom-up, and history information. The
full representation consists of 136 belief maps, which can
be divided into five groups: target object (1 map), “thing”
(object, 79 maps), “stuff” (background classes, 54 maps),
saliency (1 map, extracted using DeepGaze2 [5]), and his-
tory (1 binary map for the locations of previous fixations).
To understand the contribution of each factor, we removed
the maps of each group one at a time and compared the re-
sulting model’s performance. As shown in Tab. 3, target
object and “thing” maps are the most critical for generating
human-like scanpaths, followed by “stuff” maps, whereas
saliency and history do not have strong impact to the model
performance.

Greedy vs. Non-greedy search behavior. How does hu-
man search behavior compare to generated scanpaths re-
flecting either Greedy or Non-greedy reward policies? Un-
der the greedy policy, the selection of each location to fix-
ate during search reflects a maximization of immediate re-
ward. But the greedy policy is highly short-sighted – it only
seeks reward in the short term. Non-greedy reward seeks to
maximize the total reward that would be acquired over the
sequence of fixations comprising a scanpath. This policy
therefore does not maximize reward in the near term, but
rather allows more exploration that leads to higher total re-
ward. As shown in Tab. 4, we generated greedy and non-
greedy policies from our IRL model and compared their
predictive performance on human scanpaths. The results
show that 1) models using greedy vs. non-greedy policy
produce different search behaviors, with the model using
non-greedy policy generating more human-like scanpaths
by all tested metrics. This is an interesting finding. Despite
the high efficiency of human search in our study (1-2 sec),
the search process was strategic in that the fixations maxi-



State
Representation

Sequence
Score ↑

Scanpath
Ratio ↑

TFP-
AUC ↑

Probability
Mismatch ↓

MultiMatch ↑
shape direction length position

DCB 0.422 0.826 4.509 0.987 0.886 0.695 0.866 0.885
CFI 0.402 0.619 3.412 1.797 0.875 0.666 0.864 0.857

Table 2: Dynamic contextual belief (DCB) vs. cumulative foveated image (CFI) under the framework of IRL.

State
Representation

Sequence
Score ↑

Scanpath
Ratio ↑

TFP-
AUC ↑

Probability
Mismatch ↓

MultiMatch ↑
shape direction length position

DCB with all components 0.422 0.803 4.423 1.029 0.880 0.676 0.841 0.888
w/o history map 0.419 0.800 4.397 1.042 0.882 0.672 0.844 0.887
w/o saliency map 0.419 0.795 4.403 1.029 0.880 0.675 0.840 0.887
w/o stuff maps 0.407 0.777 4.111 1.248 0.876 0.662 0.836 0.875
w/o thing maps 0.331 0.487 2.047 3.152 0.855 0.605 0.852 0.818
w/o target map 0.338 0.519 2.274 2.926 0.866 0.613 0.837 0.820

Table 3: Ablation study of the proposed state representation—dynamic contextual belief. The full state consists of 1
history map, 1 saliency map, 54 stuff maps, 79 context maps and 1 target map. We mask out one part by setting the map(s)
to zeros at each time.

Scanpath
generation policy

Sequence
Score ↑

Scanpath
Ratio ↑

TFP-
AUC ↑

Probability
Mismatch ↓

MultiMatch ↑
shape direction length position

Based on total reward 0.422 0.826 4.509 0.987 0.886 0.695 0.866 0.885
Based on immediate reward 0.375 0.704 3.893 2.143 0.886 0.648 0.873 0.852

Table 4: IRL model predictions using Greedy (immediate reward) and Non-greedy (total reward) policy.

Sequence
Score ↑

Scanpath
Ratio ↑

TFP-
AUC ↑

Probability
Mismatch ↓

MultiMatch ↑
shape direction length position

IRL, 20 ipc 0.415 0.808 4.324 1.140 0.875 0.672 0.832 0.879
CNN, 20 ipc 0.408 0.723 3.906 1.325 0.884 0.664 0.849 0.878
IRL, 10 ipc 0.409 0.774 4.029 1.318 0.881 0.591 0.851 0.819
CNN, 10 ipc 0.397 0.678 3.542 1.657 0.877 0.594 0.847 0.821
IRL, 5 ipc 0.389 0.723 3.696 1.603 0.876 0.588 0.844 0.813
CNN, 5 ipc 0.388 0.678 3.484 1.731 0.886 0.594 0.862 0.828

Table 5: Data efficiency of IRL and CNN. “ipc” means images per category used for training. For exmaple, IRL 10 ipc
means we train the IRL model using 10 images from each category which are randomly selected from the training data. CNN
and IRL are trained and tested on the same images for fair comparison.

mized total reward, even over that short period of time.

Data Efficiency. Table 5 shows the full results of IRL and
BC-CNN given different numbers of training images across
different metrics. Both use DCB as the state representation.
The results are consistent with the results presented in the
main paper and suggest that IRL is more data-efficient when
compared to the CNN – IRL achieved comparable or better
results than the CNN using less training data.

References
[1] Xun Huang, Chengyao Shen, Xavier Boix, and Qi Zhao. Sal-

icon: Reducing the semantic gap in saliency prediction by
adapting deep neural networks. In Proceedings of the IEEE

International Conference on Computer Vision, pages 262–
270, 2015. 4

[2] Sergey Ioffe and Christian Szegedy. Batch normalization:
Accelerating deep network training by reducing internal co-
variate shift. arXiv preprint arXiv:1502.03167, 2015. 3

[3] Alexander Kirillov, Ross Girshick, Kaiming He, and Piotr
Dollár. Panoptic feature pyramid networks. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 6399–6408, 2019. 4

[4] Alexander Kirillov, Kaiming He, Ross Girshick, Carsten
Rother, and Piotr Dollár. Panoptic segmentation. In Pro-
ceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 9404–9413, 2019. 3

[5] Matthias Kummerer, Thomas SA Wallis, Leon A Gatys, and
Matthias Bethge. Understanding low-and high-level contri-



butions to fixation prediction. In Proceedings of the IEEE
International Conference on Computer Vision, pages 4789–
4798, 2017. 5

[6] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,
Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence
Zitnick. Microsoft coco: Common objects in context. In
European conference on computer vision, pages 740–755.
Springer, 2014. 1

[7] Jeffrey S Perry and Wilson S Geisler. Gaze-contingent real-
time simulation of arbitrary visual fields. In Human vision
and electronic imaging VII, volume 4662, pages 57–70. In-
ternational Society for Optics and Photonics, 2002. 4

[8] John Schulman, Philipp Moritz, Sergey Levine, Michael Jor-
dan, and Pieter Abbeel. High-dimensional continuous con-
trol using generalized advantage estimation. arXiv preprint
arXiv:1506.02438, 2015. 3

[9] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Rad-
ford, and Oleg Klimov. Proximal policy optimization algo-
rithms. arXiv preprint arXiv:1707.06347, 2017. 3

[10] Aaron Tucker, Adam Gleave, and Stuart Russell. Inverse
reinforcement learning for video games. arXiv preprint
arXiv:1810.10593, 2018. 5

[11] Gregory Zelinsky, Zhibo Yang, Lihan Huang, Yupei Chen,
Seoyoung Ahn, Zijun Wei, Hossein Adeli, Dimitris Samaras,
and Minh Hoai. Benchmarking gaze prediction for categori-
cal visual search. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition Workshops, pages
0–0, 2019. 4


