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Abstract

The objective of this work is to segment high-resolution
images without overloading GPU memory usage or losing
the fine details in the output segmentation map. The mem-
ory constraint means that we must either downsample the
big image or divide the image into local patches for sepa-
rate processing. However, the former approach would lose
the fine details, while the latter can be ambiguous due to
the lack of a global picture. In this work, we present Mag-
Net, a multi-scale framework that resolves local ambigu-
ity by looking at the image at multiple magnification levels.
MagNet has multiple processing stages, where each stage
corresponds to a magnification level, and the output of one
stage is fed into the next stage for coarse-to-fine information
propagation. Each stage analyzes the image at a higher
resolution than the previous stage, recovering the previ-
ously lost details due to the lossy downsampling step, and
the segmentation output is progressively refined through the
processing stages. Experiments on three high-resolution
datasets of urban views, aerial scenes, and medical images
show that MagNet consistently outperforms the state-of-the-
art methods by a significant margin. Code is available at
https://github.com/VinAIResearch/MagNet.

1. Introduction
The current state-of-the-art (SOTA) semantic image seg-

mentation techniques [1, 4, 16, 19, 21, 23, 26] are based on
deep learning, where a convolutional neural network (CNN)
takes an input image and outputs a segmentation map. Most
of the existing techniques, however, assume that the entire
segmentation process can be performed with a single feed-
forward pass of the input image and the entire process can
be fitted into GPU memory. Unfortunately, most existing
techniques cannot handle high-resolution input images due
to memory and other computational constraints. One ap-
proach to handle a large input image is to downsample it,
but this results in a low-resolution segmentation map, which
is not adequate for applications that require high-resolution

(a) Input image (b) Ground truth

(c) Downsampling (d) Patch processing

(e) GLNet (f) DenseCRF

(g) PointRend (h) MagNet (Proposed)

Figure 1: Comparing several semantic segmentation and re-
finement approaches on a high-resolution input image. Down-
sampling loses fine details, while Patch Processing wrongly classi-
fies local patches due to the lack of the global context. The collab-
orative global-local network GLNet fails due to the large discrep-
ancy between the global and local branches. Post-processing and
refinement methods such as DenseCRF and PointRend can only
correct small mistakes due to local inconsistency. MagNet outper-
forms other methods, thanks to a novel multi-scale segmentation
and refinement framework. Best viewed in color.

output with fine details [12, 24], e.g., for tracking the pro-
gression of malignant lesion [8]. Another approach to han-
dle a large input image is to divide the image into small
patches and process each patch independently. This ap-
proach, however, does not take into account the global in-
formation [22] that is needed to resolve ambiguity in local
patches. The limitations of these two approaches are illus-
trated in Fig. 1(c) & (d).

One way to address the limitations of the two aforemen-

https://github.com/VinAIResearch/MagNet


tioned approaches is to combine them, i.e., to fuse global
and local segmentation processes. On the one hand, the
global view of the entire image can be used to resolve the
ambiguity in the appearance of local patches. On the other
hand, by analyzing local patches, we can refine the seg-
mentation boundaries and recover the lost details due to the
downsampling procedure of the global segmentation pro-
cess. This approach has been successfully demonstrated
recently by the Global-Local Network (GLNet) [5]. How-
ever, given an input image with ultra-high resolution, there
is a huge gap between the scale of the whole image and
the scale of the local patches. This will lead to contrasting
output segmentation maps, and it will be difficult to com-
bine and reconcile differences with a single feed-forward
processing stage (see Fig. 1e); the difficulty of this combi-
nation task is analogous to constructing a single-span bridge
across a wide river.

To bridge the gap between the two extreme ends of the
scale space, we propose to consider multiple scales in be-
tween. We introduce a novel multi-scale framework where
the output segmentation map will be progressively refined
as the image is analyzed from the coarsest to the finest scale.
The core of our framework is a refinement module that can
use one segmentation map to refine another. This refine-
ment module is used at every stage of our multi-scale pro-
cessing pipeline to refine the output segmentation map at
its most uncertain locations. Our framework can integrate
global contextual cues to produce more accurate segmenta-
tion, and it can output high-resolution detailed segmentation
maps under a memory constraint. Fig. 1 shows the result of
MagNet and compares it with other segmentation methods,
including the recently proposed PointRend [14] method that
seeks to refine only at the most uncertain pixels.

2. Related Work
Multi-scale, multi-stage, context aggregation. The com-
bination of multiple scale levels helps the network aggre-
gate different fields of view and provides more context to
each pixel [3, 11]. ICNet [38] used a cascaded architecture
for feature maps of different downsampled inputs, while
RefineNet [18] fused upsampled outputs of the branches
that handled different low-resolution inputs. Feature Pyra-
mid Network (FPN) [13] upsampled feature maps in dif-
ferent scales and aggregated them with the output of low
layers. The dilated convolution and Atrous Spatial Pyramid
Pooling (ASPP) module in DeepLab [4] enlarged the re-
ceptive field, created a connection between far-apart pixels.
The same effect was achieved by PSPNet [37], which com-
bined different scaling feature maps to enlarge the receptive
fields. High-resolution Net (HRNet) [30] proposed another
scale fusion schema where a new branch with a larger recep-
tive field was added after each stage. Attention technique
was also used in many recent approaches [2, 34, 35] to add

more global information to every single point.
Another approach to handle high-resolution images is to

use multi-stage networks, where images are segmented af-
ter several stages or sub-networks. Xia et al. [32] proposed
Hierarchical Auto-Zoom Net, a strategy to scale the field of
view when sliding the view through a big image. For ultra-
high resolution images, Takahama et al. [27] solved the im-
balance between background and foreground by predicting
whether the whole patch contained foreground pixels or not
before segmenting it.

Propagating global information to local patches is a
promising approach to deal with high-resolution images.
ParseNet [20] pooled global context to local field of view
to have more information. BiSeNet [33] included one more
branch for global pooling and the global context would be
added to the feature map at the last stage. Although those
methods were efficient, they consumed a huge amount of
GPU memory for ultra-high resolution images. Tokunaga
et al. [28] proposed a method for super-high-resolution im-
ages, using independent multi-scale networks and an adap-
tive weight generator. The outputs of network members
were combined with corresponding trained weights to pro-
duce the final output, but there was no knowledge sharing
between network branches. Unlike [28], [5] contained two
sub-networks with shared information, where the global
branch took the downsampled images to extract global con-
text and the local branch took patches and corresponding
global features to improve the details of high-resolution im-
ages. However, due to the ad-hoc combination of the global
and local branches, it was difficult to extend to more than
two scales. Moreover, in our experience, training the local
network was difficult due to the domination of the strong
global branch.

Segmentation refinement. There were several approaches
to improve the segmentation outputs with post-processing.
One approach was to use classical methods such as Con-
ditional Random Fields (CRFs) [15] or Guided Filter
(GF) [10] on the segmentation mask produced by deep
learning networks. However, these methods were slow and
the improvement was incremental. The inference speed
could be improved with a deep learning version of Guided
Filter (DGF) [31]. Another approach for post-processing
was to use deep networks. Iterative Instance Segmenta-
tion (ISS) [17] refined the output by repeatedly passing the
input image and the segmentation map through a refine-
ment module several times. This method was based on self-
reflection, the input image to each refinement stage was the
same. Like ISS, CascadedPSP [6] used the same refinement
scheme but the resolution of the input at each refinement
stage was different. However, the wrong prediction at any
middle stage could significantly affect the performance of
later steps. Some methods aimed to refine parts of the out-
put only, such as pixels at the boundaries [36, 39] or pixels



Method Dense GF DGF ISS GLNet Cascade PointRend SegFix DeepStrip OursCRF [15] [10] [31] [17] [5] PSP [6] [14] [36] [39]

Deep learning 3 3 3 3 3 3 3 3
Using high-resolution
input

3 3 3 3 3 3 3 3

Multi-scale processing 3 3 3 3
Can recognize new
objects

3 3 3 3 3 3 3 3

Partly refinement 3 3 3 3

Table 1: Summary of key features of various semantic segmentation refinement approaches.

at uncertain locations (PointRend [14]). However, boundary
refinement methods [36, 39] failed to recover tiny objects,
while PointRend [14] only used the local context for refine-
ment. Furthermore, because the input of the PointRend was
the high-level features of a deep network, it must be trained
specifically for each segmentation backbone. In this paper,
we propose a modular framework for having any number of
scale levels. It is simple but effective for refining a coarse
segmentation output, being able to keep the overall structure
of the coarse segmentation output while adding more details
after each stage without suffering the domination problems.
Table 1 compares the key features of different methods.

3. MagNet
We now describe MagNet, a multi-scale segmentation

framework for ultra-high resolution images. It is a multi-
stage network architecture, where each stage of the network
corresponds to a particular scale. An input image will be
inspected at multiple scales, from the coarsest to the finest.

The core of our framework is a segmentation module and
a refinement module, which are used at every processing
stage. At each stage, the inputs to the refinement module
are two segmentation maps: (1) the cumulative result from
the previous stages, and (2) the result obtained by running
the segmentation module at and only at the current scale.
The objective of the refinement module is to use the latter
segmentation map to refine the former one, at selective loca-
tions determined based on the uncertainty of two estimated
segmentation maps.

In our framework, the segmentation module can be any
segmentation backbone, as long as it can output a segmen-
tation map with uncertainty estimates. The refinement mod-
ule is agnostic to the segmentation backbone; it can be
trained with one backbone and used with another. In the fol-
lowing, we will describe the multi-stage processing pipeline
and the refinement module in details.

3.1. Multi-stage processing pipeline

The architecture and processing pipeline of MagNet is
depicted in Fig. 2. There is one segmentation module and
one refinement module, which are used repeatedly in m pro-
cessing stages, where m is a hyper-parameter for the num-

ber of scales that we want to analyze. We use s to denote
the processing stage, where s = 1 corresponds to the coars-
est scale and s = m corresponds to the finest scale. Let
X ∈ RH×W×3 be an input image, where H,W are the
height and width of the image. We consider the case when
H and W are too big for image X to be processed without
downsampling, and let h and w be the largest (or desirable)
sizes that can be handled by the segmentation module. We
use hs and ws to denote the height and width for the scale
level s. We determine the scale levels so that they span
the entire scale space: H = h1 > · · · > hm = h and
W = w1 > · · · > wm = w.

For a particular scale level s, we divide the input im-
age X into patches of size hs×ws and perform seman-
tic segmentation on these patches. The locations of these
patches are defined by a set of rectangular windows, and
let Ps denote the set of these windows: Ps = {p|p =
(x, y, ws, hs)}, where each window is specified by the top-
left corner, width, and height. As the scale level s increases,
the width and height of the rectangular windows decrease,
but the cardinality of Ps increases. For a particular window
p, we will use Xp to denote the image patch extracted at
the window p.

Our network will take an image X ∈ RH×W×3 and
produce a sequence of segmentation maps Y 1, · · · , Y m ∈
RH×W×C , where C is the number of semantic categories
in consideration. At stage s, we first determine the set of
rectangular windows Ps for patch division and refine the
segmentation map of each patch. Specifically, for each win-
dow p ∈ Ps, do:

1. Extract the image patch Xs
p and previous segmentation

output Y s−1
p defined by the window p. The height and

width of these tensors are hs and ws.

2. Downsample Xs
p and Y s−1

p so that the new height and
width are h and w, which are the size that can be fitted
into GPU memory and be processed by the segmenta-
tion and refinement modules. Let X̄s

p and Ȳ s−1
p denote

the downsampled tensors.

3. With X̄s
p as the input, use the segmentation module to

obtain the scale-specific segmentation map Ōs
p.
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Figure 2: Overview of our proposed MagNet. The segmentation network produces the scale-specific prediction while the
refinement module selectively refines the coarse prediction from previous stages based on that local prediction.
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Figure 3: The overview of the refinement module. The
cumulative segmentation Y is partly replaced with the
scale-specific segmentation map O based on the score Q.

4. With Ȳ s−1
p and Ōs

p as the input, use the refinement
module to refine Ȳ s−1

p to obtain Ȳ s
p (See Sec. 3.2).

5. Upsample Ȳ s
p to get Y s

p of size hs×ws×C.

These processing steps are illustrated in Fig. 2.

3.2. Refinement module

The refinement module is a core component of our
framework, which is used to refine the individual patches
of a segmentation map at every processing stage of our
pipeline. The input to this module is two segmentation
maps of size h×w×C: (1) the scale-cumulative segmen-
tation map Y , from all previous scales, and (2) the scale-
specific segmentation map O, from the current scale. The
output of the module is the updated scale-cumulative seg-
mentation map.

Fig. 3 depicts the refinement process, which contains the
following steps. First, using a small network with Y and

O as the input, we obtain an initial combined segmenta-
tion map R. We then calculate the prediction uncertainty
maps for both Y and R. Specifically, for each pixel of Y ,
the prediction confidence at this location is defined as the
absolute difference between the highest probability value
and the second-highest value (among the C probability val-
ues for C classes). The uncertainty score is then computed
based on the confidence score such that the two scores must
add up to one. Similarly, we can compute the prediction un-
certainty map for R. Let Y u and Ru denote the prediction
uncertainty maps for Y and R respectively.

Next, we will describe how to use two uncertainty maps
to select k locations of Y for refinement. While only
one uncertainty prediction is used in the previous work
PointRend [14], we extend this approach to have a better
selection strategy. These are the locations where Y is un-
certain about its prediction, while R is certain about its pre-
diction. The score map for ranking the pixels is calculated
as Q = F(Y u � (1 − Ru)), where � denotes point-wise
multiplication and F denotes median blurring to smooth
the score map. Empirical comparison between the effect
of each element in the formula can be found in Sec. 4.2.3.

3.3. MagNet-Fast

There is trade-off between the accuracy and the run-time
efficiency of our framework. One way to reduce the running
time is to decrease the number of scales to process. Another
approach is to perform segmentation and refinement on a
subset of image patches at each scale level. MagNet-Fast
combines these two approaches when it runs on a smaller
number of scales and only selects the patches with the high-
est prediction uncertainty Y u for refinement. In MagNet-
Fast, the total number of image patches that need to be fed
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Figure 4: The two residual blocks are trained to refine
the segmentation at each scale. This module outputs the
same size h×w as the input.

into the segmentation module might be even smaller than
the number of image patches used in the patch processing
approach. Moreover, MagNet-Fast can leverage both global
context and detailed information for segmentation, leading
to superior results as will be seen in our experiments.

4. Experiments
We evaluated the performance of MagNet on three high

resolution datasets: Cityscapes [7], DeepGlobe [9], and
Gleason [29]. Some information about these datasets is
listed in Table 2. The number of pixels of each image is
from 2 to 25 million. In this section, we present experiments
comparing MagNet with other state-of-the-art frameworks
in semantic segmentation and also describe some ablation
studies on Cityscapes.

Dataset Content Resolution No.classes

Cityscapes [7] urban scene 2048×1024 19
DeepGlobe [9] aerial scene 2448×2448 6
Gleason [29] histopathology 5000×5000 4

Table 2: Details of high-resolution datasets used to eval-
uate our framework. All images have from 2 to 25 million
pixels with a lot of details.

4.1. Implementation details
Architecture of the refinement module. Fig. 4 depicts the
architecture of the refinement module used in all experi-
ments. The main components are the two residual blocks.
With the input of size h×w×2C, the refinement module
produces the output of size h×w×C.

Training. For each dataset, we trained a state-of-the-art
segmentation model on the downsampled images and a re-
finement module to refine the coarse output on sliced im-
ages. While training the refinement module, we randomly
extracted image patches and also applied the following data

Refinement steps mIoU(%) Time(s)

256 63.23 0.03
256→512 65.73 0.19
256 → 1024 65.23 0.61
256 → 2048 65.21 2.24
256→512 → 2048 67.13 2.38
256 → 1024→2048 66.95 2.79
256→512→1024→2048 67.57 2.93

Table 3: Performance of MagNet on Cityscapes with and
without intermediate scale levels. It is essential to have
the intermediate scales.

augmentation: rotation, and horizontal and vertical flip-
ping. We used SGD optimizer with momentum 0.9, de-
cayed weight 5×10−4, and initial learning rate 10−3. We
trained the refinement module for 50 epochs, and the learn-
ing rate was decreased tenfold at epoch 20, 30, 40, and 45.
We used cross-entropy as the loss function for training seg-
mentation and refinement modules. We implemented Mag-
Net using PyTorch [25] starting from the public implemen-
tation of HRNet-OCR [35]. We use a batch size of 16 for
training on a DGX-1 workstation with Tesla V100 GPUs.

Testing. During inference, at each scale, we extracted non-
overlapping patches for processing. The evaluation metric
is mean Intersection over Union (mIoU). For memory and
speed comparison, we ran benchmarking experiments on a
machine with an Intel i7 CPU and an RTX2080Ti GPU.

4.2. Experiments on the Cityscapes dataset

Cityscapes is a dataset of high-resolution urban scenes,
containing images of size 2048×1024 pixels. The task is to
segment objects in videos captured by auto cameras. There
are two kinds of data, with coarse and fine labels. In our
experiments, we used the fine-labeled dataset, with 2,975
training images and 500 testing images.

We considered four possible scale levels (m=4), cor-
responding to patch sizes of 2048×1024, 1024×512,
512×256, and 256×128. The size of the input to the seg-
mentation module was always 256×128 to satisfy the mem-
ory constraint, so any larger patch would be downsampled.

4.2.1 Benefits of multiple scale levels

Table 3 shows the results of MagNet for a different num-
ber of scales. While the direct refinement from the lowest
to highest scale improves about 2% mIoU, from 63.23%
to 65.23%, adding the two intermediate scales between
the smallest and largest scales improve the performance by
4.34% mIoU. Qualitative improvements through each pro-
cessing stage can be observed in Fig. 5. After each stage, the
errors decrease and the segmentation masks become finer.



Model mIoU(%) Mem.(MB) Time(s)

Patching 52.19 1575 1.77
Downsampling 63.23 1575 0.02
DenseCRF [15] 62.95 (↓0.28) 1575 26.02
DGF [31] 63.33 (↑0.10) 1727 (↑152) 0.32
PointRend [14] 64.39 (↑1.16) 2033 (↑458) 0.14
SegFix [36] 65.83 (↑2.60) 2961 (↑1386) 0.38
MagNet-Fast 66.91 (↑3.68) 2007 (↑432) 0.32
MagNet 67.57 (↑4.34) 2007 (↑432) 2.93

Table 4: Performance of MagNet and other segmenta-
tion refinement methods on the Cityscapes dataset. The
backbone HRNetV2-W18+OCR [35] was used as the seg-
mentation module for all refinement methods.

4.2.2 Comparing segmentation approaches

Table 4 and Table 5 compare the performance of MagNet
with several state-of-the-art semantic segmentation refine-
ment methods. All methods were trained and applied to the
output of the pretrained HRNet+OCR [35] model, which is
among the leading methods on this dataset. Although there
are various HRNet models [30], we used HRNetV2-W18

256 x 128 512 x 256 1024 x 512 2048 x 1024

Figure 5: The visualization of segmentation output
through each processing stage on Cityscapes dataset.
The first one is the image. Others in the first row are the
selective points to be refined (red color). The second row is
the segmentation output. The third row is the errors com-
paring with the ground-truth. Best viewed in color.

Model fence pole traffic
sign

person motor-
cycle

Patching 33.32 42.87 59.39 61.23 22.12
Downsample 45.38 35.58 54.97 64.64 36.16
DenseCRF [15] 45.30 32.27 54.69 64.32 36.20
DGF [31] 45.42 35.63 55.27 64.85 36.20
PointRend [14] 45.01 42.71 60.18 67.10 39.17
SegFix [36] 46.17 38.77 59.23 67.86 37.12

MagNet-Fast 48.57 46.38 64.84 69.65 41.98
MagNet 50.59 49.39 64.15 72.16 45.19

Improvement 4.42 6.52 4.66 4.30 6.02

Table 5: IoU for some specific categories on Cityscapes.
The best and previous best method is highlighted in red and
blue color respectively, and the difference between them is
shown in the last row.

given its manageable complexity that was required for our
experiments, especially in terms of memory constraint.

MagNet-Fast is an efficient version of MagNet, in which
only the most uncertain patches are refined at each scale.
In this experiment, we selected the number of patches so
that MagNet-Fast had a similar processing speed as Seg-
Fix [36] and DGF [31]. This model ran on only three scales
256→512→2048 and the three highest uncertain patches
for each scale. In total, MagNet-Fast needed to run infer-
ence on 1+3+3 = 7 patches, comparing to 1+4+16+64 =
85 patches of MagNet, and 64 patches of the patch process-
ing approach.

In this experiment, except for DenseCRF [15], we fine-
tuned other frameworks to achieve the best result with the
segmentation backbone. For SegFix [36], with the offset
prediction published by the authors, the best result was
achieved with the offset width of 10. Both DGF [31] and
PointRend [14] were trained with the output of the segmen-
tation backbone. Besides, DGF ran on patches to be fairly
compared with our method in speed and memory.

As can be observed, DenseCRF [15] is the only
method that cannot improve the coarse segmentation.
PointRend [14] is the fastest method, but the improvement
is small. The inference times of MagNet-Fast, SegFix [36],
and DGF [31] are similar, but MagNet-Fast outperforms the
others significantly. MagNet was slower, but it had the high-
est mIoU.

The cumulative IoU distributions of these methods in
our experiment are shown on Fig. 6a. There is a big gap
between MagNet and the other methods, especially when
looking at the zoom-in window.

Fig. 6b shows the results of several methods on two
Cityscapes images. Both MagNet and MagNet-Fast yield
the best refinement. SegFix [36] cannot recover small ob-
jects, such as sign poles, that are wrongly merged with a
bigger region, while PointRend [14] performs poorly due to



(a) The IoU cumulative distribution

Groundtruth Downsampling PointRend SegFix MagNet-Fast MagNet

78.35% 75.27% 80.16% 81.57% 82.92%

80.57% 83.67% 82.81% 83.44% 84.96%

(b) Visualization of refinement methods

Figure 6: Our methods outperform other refinement frameworks on the Cityscapes dataset. (a) The cumulative distribution of mIoU
of each image on the dataset (lower is better). The MagNet and MagNet-Fast achieve the best result among others. (b) Some segmentation
results of refinement frameworks and our MagNet. The mIoU numbers are below the images. More tiny objects are recognized and
boundaries are refined better with MagNet and MagNet-Fast. Best viewed in a digital device with magnification.

Y u (1−Ru) F mIoU (%)

3 63.22
3 3 63.25

3 66.36
3 3 66.46

3 3 67.37
3 3 3 67.57

Table 6: Performance of MagNet on Cityscapes with different
ranking scores. The initial segmentation has mIoU of 63.23%.
With k=216, the framework achieves the best performance when
using both Y u and (1−Ru) with smoothing operation.

the lack of global context.

4.2.3 Ablation study: point selection

Number of refined points

m
Io

U
 (%

)

60

62

64

66

68

70

0 2048 8192 16384 32768 65536 100000 120000

PointRend MagNet (ours)

Figure 7: Correlation between the number of selective
points of each scale and mean IoU on the Cityscapes
dataset. When the quantity of points increases, the per-
formance of MagNet continuously grows while the mIoU
of PointRend decreases.

Table 6 shows our ablation study on the importance of
using the prediction uncertainty maps Y u, Ru, and the me-
dian filtering function F in selecting points for refinement.

The best performance was achieved when both uncertainty
maps were used. Also, smoothing with median filtering im-
proved the result in every case.

We also studied how the number of refinement points
correlates with accuracy. The results of MagNet and
PointRend [14] are shown in Fig. 7. As can be seen, the per-
formance of MagNet improved when the number of points
increased. The performance stopped increasing after 216

points, and it dropped to 66.86% if all points were selected
for refinement. Meanwhile, the performance of PointRend
decreased significantly when the number of selected points
increased beyond 2048; it even dipped below the initial
value where no refinement was applied.

4.2.4 Ablation study: segmentation backbones
We also tested the MagNet framework with two different
segmentation backbone networks, and the results are shown
in Table 7. In both cases, MagNet improved the segmen-
tation results of the original networks significantly, from
2% to 5%. In this experiment, we used four scale levels:
256→512→1024→2048 and the number of refinement lo-

Model mIoU(%)

Backbone: DeepLabV3+ [4]
Patch processing 59.64
Downsampling 52.01
MagNet 61.99

Backbone: HRNetV2-W48 + OCR [35]
Patch processing 54.30
Downsampling 63.92
MagNet 68.90

Table 7: Results of using MagNet with two backbone net-
works. MagNet can be used with different segmentation back-
bones, and improve their segmentation results. See Table 4 for the
results for using MagNet with HRNetV2-W18 backbone.



Model mIoU(%) Mem.(MB) Time(s)

Downsampling
U-net[26] 50.11 1813
FCN-8s[21] 52.86 10569
SegNet[1] 60.93 2645
DeepLabv3+[4] 63.50 1541
FPN[13] 67.86 1247 0.01

Patch processing
U-net[26] 46.53 1813
FCN-8s[21] 62.43 10569
SegNet[1] 68.40 2645
DeepLabv3+[4] 69.69 1541
FPN[13] 70.98 1247 0.31

DenseCRF[15] 70.36 (↓0.62) 1247 39.68
DGF[31] 70.38 (↓0.6) 1435 (↑188) 0.25
GLNet[5] 71.60 (↑0.62) 1865 (↑618) 0.37
PointRend[14] 71.78 (↑0.8) 1593 (↑346) 0.16
MagNet-Fast 71.85 (↑0.87) 1559 (↑312) 0.29
MagNet 72.96 (↑1.98) 1559 (↑312) 1.19

Table 8: Segmentation results on the DeepGlobe dataset.
We used the same segmentation backbone (FPN) for all re-
finement methods in the last part.

cations for each patch was k = 216.

4.3. DeepGlobe

DeepGlobe is a dataset of high-resolution satellite im-
ages. The dataset contains 803 images, annotated with
seven landscape classes, including the unknown class. Fol-
lowing the evaluation protocol of [5], the unknown class is
ignored in mIoU calculation, so there are only six classes to
consider. The size of the images is 2448×2448 pixels. We
used the same train/validation/test split as reported in [5],
with 455, 207, and 142 images for training, validation, and
testing, respectively.

The Feature Pyramid Network (FPN) [13] with Resnet-
50 backbone was used as the segmentation network as in
the previous work GLNet [5]. We also used the same input
size 508×508 as GLNet. We used three refinement stages
with three scales 612→1224→2448 and selected 216 points
for refinement at each scale. The results are shown in Ta-
ble 8. For MagNet-Fast, at each of the three scale levels,
we selected the top three patches with the highest level of
prediction uncertainty for refinement. PointRend [14] was
also trained with the same segmentation backbone and it
achieved higher accuracy than GLNet. Both MagNet and
MagNet-Fast outperformed other methods.

4.4. Gleason

Gleason [29] is a medical dataset with histopathologi-
cal images of prostate cancer. The task is to segment and

Model mIoU(%) Mem.(MB) Time(s)

Experts 65.48 - -
Patching 46.56 1903 2.42
Downsampling 68.90 1903 0.02
DenseCRF[15] 69.46 (↑0.56) 1903 141.79
DGF[31] 68.91 (↑0.01) 2223 (↑320) 0.29
PointRend[14] 68.97 (↑0.07) 2655 (↑752) 0.21
MagNet-Fast 69.75 (↑0.85) 2621 (↑718) 0.33
MagNet 70.60 (↑1.7) 2621 (↑718) 2.74

Table 9: Performance of MagNet and other frameworks
on Gleason dataset with PSPNet [37] as the backbone.

grade lesions on ultra-high-resolution images. There are
four classes in the dataset that need to be segmented: be-
nign, Grade 3, Grade 4, and Grade 5. The dataset contains
244 images with a size of 5000×5000 pixels with segmen-
tation labels provided by six clinical experts. The combined
final label is based on majority voting. We randomly split
the dataset into 195 training and 49 testing images.

PSPNet [37], the highest-ranked method on the leader-
board for Gleason, was used as the segmentation network
with the backbone Resnet-101. We used the input size
of 512×512, and four refinement stages with four scales:
625→1250→2500→5000. MagNet-Fast was also run on
four scales, but only on three patches with the highest level
of prediction uncertainty at each scale. There are 216 re-
finement points for each scale. The results of MagNet and
MagNet-Fast, together with the result of the winning so-
lution PSPNet and the mIoU agreement between medical
experts, are shown in Table 9. MagNet was run with the
PSPNet segmentation backbone, and it improved the per-
formance of PSPNet by 1.7%.

5. Conclusions
We have proposed MagNet, a multi-scale segmentation

framework for high-resolution images. MagNet can gen-
erate high-resolution segmentation output without explod-
ing the GPU memory usage by dividing input images into
patches. To avoid the problem of being too global or local,
patches of multiple scales are considered, from the coars-
est to the finest levels. MagNet has multiple segmentation
stages, where the output of one stage will be used as the
input for the next stage, and the segmentation output will
be progressively refined. We have demonstrated the bene-
fits of MagNet on three challenging high-resolution image
datasets, where MagNet outperforms the previous state-of-
the-art methods by a margin of 1% to 2% in terms of mean
Intersection over Union (mIoU).
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