
Int J Comput Vis (2010) 88: 69–84
DOI 10.1007/s11263-009-0299-9

Metric Learning for Image Alignment

Minh Hoai Nguyen · Fernando de la Torre

Received: 17 February 2009 / Accepted: 15 September 2009 / Published online: 23 September 2009
© Springer Science+Business Media, LLC 2009

Abstract Image alignment has been a long standing prob-
lem in computer vision. Parameterized Appearance Mod-
els (PAMs) such as the Lucas-Kanade method, Eigentrack-
ing, and Active Appearance Models are commonly used to
align images with respect to a template or to a previously
learned model. While PAMs have numerous advantages rel-
ative to alternate approaches, they have at least two draw-
backs. First, they are especially prone to local minima in the
registration process. Second, often few, if any, of the local
minima of the cost function correspond to acceptable so-
lutions. To overcome these problems, this paper proposes
a method to learn a metric for PAMs that explicitly opti-
mizes that local minima occur at and only at the places cor-
responding to the correct fitting parameters. To the best of
our knowledge, this is the first paper to address the problem
of learning a metric to explicitly model local properties of
the PAMs’ error surface. Synthetic and real examples show
improvement in alignment performance in comparison with
traditional approaches. In addition, we show how the pro-
posed criteria for a good metric can be used to select good
features to track.

Keywords Image alignment · Metric learning · Template
matching · Active appearance models

M.H. Nguyen (�) · F. de la Torre
Robotics Institute, Carnegie Mellon University, 5000 Forbes Ave,
Pittsburgh, PA 15213, USA
e-mail: minhhoai@cmu.edu

F. de la Torre
e-mail: ftorre@cs.cmu.edu

1 Introduction

Image alignment is a fundamental building block of many
computer vision based systems ranging from robotics ap-
plications to medical diagnosis. Because of its importance,
image alignment has long been an important research topic
in computer vision. In particular, Parameterized Appearance
Models (PAMs) such as the Lucas-Kanade method (Lu-
cas and Kanade 1981), Eigentracking (Black and Jepson
1998), Active Appearance Models (Cootes et al. 2001;
de la Torre et al. 2000, 2007; Matthews and Baker 2004;
Gong et al. 2000), and Morphable Models (Blanz and Vetter
1999; Jones and Poggio 1998) are among the most popu-
lar methods for aligning a new image w.r.t. another image
or a previously learned model. Typically, appearance and/or
shape variation of a class of objects are modeled by perform-
ing Principal Component Analysis (PCA) on training sam-
ples. In the Lucas-Kanade tracker, the model is typically the
first or the previous image. Once the model has been built,
finding the correspondence between the model and an image
containing the object of interest is achieved by minimizing a
cost function w.r.t. some geometric transformation parame-
ters; this is referred to as the fitting, registration, or align-
ment process.

Although widely used, PAMs suffer from two major
problems. First, they are especially prone to local minima.
Second, often few, if any, of the local minima of the cost
function correspond to acceptable solutions. Figures 1a, d, f
illustrate these problems in the case of Active Appearance
Models (AAMs). Figure 1d plots the error surface con-
structed by translating the testing image (Fig. 1c) around
the ground truth landmarks (Fig. 1c) and computing the val-
ues of the cost function. The cost function is based on a
PCA model constructed from labeled training data (Fig. 1a).
Figure 1f shows the contour plot of this error surface. As

mailto:minhhoai@cmu.edu
mailto:ftorre@cs.cmu.edu

70 Int J Comput Vis (2010) 88: 69–84

Fig. 1 (Color online) Learning a metric for image alignment. (d, f):
Surface and contour plot of the PCA model. It has many local minima;
(e, g): Our method learns a better error surface to fit PAMs. It has a
global minimum in the expected location and no local minima in a
given neighborhood

can be observed, any gradient-based optimization method is
likely to get stuck in local minima and will not converge to
the global minimum. Moreover, the global minimum of this
cost function is not at the desired position, the black dot of
Fig. 1d, which corresponds to the correct landmarks’ loca-
tions. In the case of AAMs, these problems occur mainly be-
cause the PCA model is constructed without considering the
neighborhoods of the correct motion parameters (parameters
that correspond to ground truth landmarks of training data).
The neighborhoods determine the local minima properties
of the error surface, and they should be taken into account
while constructing the models.

On the other hand, in recent years distance metric learn-
ing techniques (see Yang 2006 for a review) have demon-
strated both empirically and theoretically that a learned met-
ric can significantly improve the performance in classifica-
tion, clustering, and retrieval tasks. The aim of this paper is
to define and learn a metric for image alignment. We propose
to learn a distance metric (i.e., parameters of a cost function)
that has a local minimum at the “expected” location and no
other local minima in a defined neighborhood. Figure 1e, g
plot the error surface and the contours of the learned cost
function. This cost function has a local minimum at the ex-

pected place (black dot of Fig. 1e) and no other local minima
near by. Moreover, we will show how the proposed criteria
for an optimal metric can be used to select good features or
pixels to track.

The rest of the paper is organized as follows. The next
section reviews the previous work on image alignment espe-
cially PAMs. Section 3 discusses two desired properties of
an optimal metric for image alignment and proposes a data
driven approach for learning such a metric. Experiments on
synthetic and Multi-PIE database (Gross et al. 2007) are pro-
vided in Sect. 4. Section 5 shows how the proposed criteria
also can be used to select good features to track. Section 6
summarizes our findings and discusses several directions
for future work. Appendix A states and proves a theorem
that lays theoretical foundations for the learning formulation
proposed in Sect. 3. Strictly speaking, our method learns a
pseudometric rather than a metric. The difference between
pseudometrics and metrics is subtle, and it is discussed in
Appendix B.

2 Previous Work

Over the last decade, image alignment algorithms have be-
come increasingly important in computer vision and graph-
ics. In particular, PAMs have proven useful for image align-
ment, detection, tracking, and face synthesis (Lucas and
Kanade 1981; Blanz and Vetter 1999; Black and Jepson
1998; de la Torre et al. 2000; Cootes et al. 2001; Matthews
and Baker 2004; Nayar and Poggio 1996; Jones and Poggio
1998; Gong et al. 2000; Vetter 1997; de la Torre and Nguyen
2008). This section reviews PAMs and gradient-based meth-
ods for efficient alignment of high dimensional deformation
models.

2.1 PAMs

PAMs (Lucas and Kanade 1981; Black and Jepson 1998;
de la Torre et al. 2000; Cootes et al. 2001; Nayar and Pog-
gio 1996; Jones and Poggio 1998; Blanz and Vetter 1999;
Vetter 1997; de la Torre and Nguyen 2008) build object ap-
pearance and shape representation from the principal com-
ponents of training data. Let di ∈ �m×1 (see Footnote 1 for
an explanation of the notation1) be the ith sample of a train-

1Bold uppercase letters denote matrices (e.g., D), bold lowercase let-
ters denote column vectors (e.g., d). dj represents the j th column of
the matrix D. dij denotes the scalar in the row ith and column j th of
the matrix D. Non-bold letters represent scalar variables. 1k ∈ �k×1 is
a column vector of ones. 0k ∈ �k×1 is a column vector of zeros. Ik ∈
�k×k is the identity matrix. tr(D) = ∑

i dii is the trace of square matrix

D. ‖d‖2 = √
dT d designates Euclidean norm of d. ‖D‖F = √

tr(DT D)

is the Frobenious norm of D. diag(·) is the operator that extracts the
diagonal of a square matrix or constructs a diagonal matrix from a vec-
tor.

Int J Comput Vis (2010) 88: 69–84 71

ing set D ∈ �m×n and U ∈ �m×k the first k principal compo-
nents (Jolliffe 1986). Once the appearance model has been
constructed (i.e., U is known), alignment is achieved by find-
ing the motion parameter p that best aligns the image w.r.t.
the subspace U, i.e.,

min
c,p

‖d(f(x,p)) − Uc‖2
2, (1)

where c is the vector for the appearance coefficients that also
are optimized. x = [x1, y1, . . . , xl, yl]T is the vector con-
taining the coordinates of the pixels to track. f(x,p) is the
function for geometric transformation; the value of f(x,p)

is a vector denoted by [u1, v1, . . . , ul, vl]T . d is the image
frame in consideration, and d(f(x,p)) is the appearance vec-
tor of which the ith entry is the intensity of image d at pixel
(ui, vi). For affine and non-rigid transformations, (ui, vi) re-
lates to (xi, yi) by:

[
ui

vi

]

=
[

a1 a2

a4 a5

][
xs
i

ys
i

]

+
[
a3

a6

]

. (2)

Here [xs
1, y

s
1, . . . , x

s
l , y

s
l]T = x + Uscs , where Us is the non-

rigid shape model learned by performing PCA on a set
of registered shapes (Cootes and Taylor 2001). a, cs are
affine and non-rigid motion parameters respectively and
p = [a; cs], a combination of both affine and non-rigid mo-
tion parameters.

In the case of the (Lucas and Kanade 1981) tracker, c is
fixed to be one and U is the subspace that contains a sin-
gle vector, the reference template is the appearance of the
tracked object in the initial/previous frame.

2.2 Optimization for PAMs

Given an image d, PAM alignment algorithms optimize (1).
Due to the high dimensionality of the motion space, a
standard approach to efficiently search over the parameter
space is to use gradient-based methods (Bergen et al. 1992;
Black and Jepson 1998; Baker and Matthews 2004; Cootes
and Taylor 2001; Matthews and Baker 2004; de la Torre and
Black 2003). To compute the gradient of the cost function
given in (1), it is common to use Taylor series expansion to
approximate:

d(f(x,p + δp)) ≈ d(f(x,p)) + Jd(p)δp, (3)

where Jd(p) = ∂d(f(x,p))
∂p is the Jacobian of the image d

w.r.t. to the motion parameter p (Lucas and Kanade 1981).
There also exist other approximations that take into ac-
count more general noise models (Matei and Meer 2006;
Kanatani 1996). Once linearized, a standard approach is to
use the Gauss-Newton method for optimization (Bergen et
al. 1992; Black and Jepson 1998). Other approaches learn
an approximation of the Jacobian matrix with linear (Cootes

and Taylor 2001) or non-linear (Saragih and Goecke 2007;
Liu 2007) regression.

Over the last few years, several strategies to avoid lo-
cal minima in the fitting process have been proposed. For
example, Black and Jepson (1998) and Cootes and Taylor
(2001) used multi-resolution schemes, Xiao et al. (2004)
proposed to constrain the 2D shape with a 3D model, de
la Torre et al. (2007) learned a multi-band representation
robust to local minima, de la Torre and Black (2003) and
Baker and Matthews (2004) learned a better PCA model
invariant to rigid and non-rigid transformations. Recently,
de la Torre and Nguyen (2008) proposed a kernel exten-
sion of AAMs, and showed some improved generalization
in the fitting process. Although these methods show signifi-
cant performance improvement, they do not directly address
the problem of learning a metric for image alignment to ex-
plicitly minimize the number of local minima. In this paper,
we deliberately learn a cost function which has local minima
at and only at the desired places.

Recently and independently, there have been a couple of
papers that pursue a goal similar to ours. Wimmer et al.
(2006) proposed to improve Active Shape Models by learn-
ing separate one dimensional convex cost functions for indi-
vidual landmark points. Wu et al. (2008) proposed a method
to learn a discriminative appearance model for alignment us-
ing rank constraints. Our work differs from these methods
in several aspects. We directly learn a metric for PAMs us-
ing convex quadratic programming. Our method jointly op-
timizes over rigid and non-rigid motion parameters. Further-
more, the proposed criteria for an optimal metric also can be
used to select good features to track in feature-based track-
ing. Preliminary versions of this work have been presented
in Nguyen and de la Torre (2008a, 2008b).

3 Learning Parameters of the Cost Function

Gradient-based algorithms, such as the ones discussed in the
previous section, might not converge to the correct location
(i.e., correct motion parameters) for several reasons. First,
gradient-based methods are susceptible to being stuck at lo-
cal minima. Second, even when the optimizer converges to a
global minimum, the global minimum might not correspond
to the correct motion parameters. These two problems occur
primarily because PCA has limited generalization capabili-
ties to model appearance variation. This section proposes a
method to learn cost functions that do not exhibit these two
problems in training data.

3.1 A Generic Cost Function for Alignment

This section proposes a generic quadratic error function to
which many PAMs can be cast. The quadratic error function

72 Int J Comput Vis (2010) 88: 69–84

has the form:

E(d,p) = d(f(x,p))T Ad(f(x,p)) + 2bT d(f(x,p)). (4)

Here A ∈ �m×m and b ∈ �m×1 are the fixed parameters
of the function, and A is symmetric. This function is the
general form of many cost functions used in the literature
that include Active Appearance Models (Cootes et al. 2001),
Eigentracking (Black and Jepson 1998), and template track-
ing (Lucas and Kanade 1981; Matthews et al. 2004). For
instance, consider the cost function given in (1). If p is
fixed, the optimal c that minimizes (1) can be obtained using
c = UT d(f(x,p)). Substituting this back into (1) and per-
forming some basic algebra, (1) is equivalent to:

min
p

d(f(x,p))T (Im − UUT)d(f(x,p)). (5)

Thus (1) is a special case of (4), with A = Im − UUT and
b = 0m. Here, Im denotes the m × m identity matrix.

For template alignment, the cost function is typically the
Sum of Squared Differences (SSD):

‖d(f(x,p)) − dref ‖2
2, (6)

where dref is the reference template. This cost function is
equivalent to:

d(f(x,p))T d(f(x,p)) − 2dT
ref d(f(x,p)). (7)

Thus the cost function used in template tracking is also a
special case of (4) with A = Im and b = −dref .

3.2 Desired Properties of Optimal Cost Functions

In this section we show how to learn the parameters of the
cost function (A and b) to have minima at and only at the
‘right’ places.

Let {di}n1 be a set of training images containing the ob-
ject of interest (e.g., faces), and assume the landmarks for
the object shapes are available (e.g., manually labeled facial
landmarks as in Fig. 5a). Let si be the vector containing the
landmark coordinates of image di . Given {si}n1, we perform
Procrustes analysis (Cootes and Taylor 2001) and build the
shape model as follows. First, the mean shape s̄ = 1

n

∑
i si is

calculated. Second, we compute ai the affine parameter that
best transforms s̄ to si , and let a−1

i be the inverse affine trans-
formation of ai . Third, ŝi is obtained by applying the inverse
affine transformation a−1

i on si (warping towards the mean
shape). Next, we perform PCA on {ŝi − s̄}ni=1 to construct
Us , a basis for non-rigid shape variation. We then compute
cs
i , the coefficients of ŝi − s̄ w.r.t. the basis Us . Finally, let

pi = [ai; cs
i]; pi is the parameter for the image di w.r.t. to

our shape model. Notably, the shape model and {pi}n1 are

Fig. 2 (Color online) Neighborhoods around the ground truth motion
parameter pi (red dot). N −

i : region inside the orange circle; it is sat-
isfactory for alignment algorithms to converge to this region. N +

i : re-
gion outside the blue circle; alignment algorithm will not be initialized
in this region. Ni : shaded region, region to enforce constraints on gra-
dient directions

derived independently of the appearance model. The appear-
ance model (i.e., the cost function E(d,p)) is what needs to
be learned.

For E(di ,p) to have a local minimum at the right place,
pi must be a local minimum of E(di ,p). Theoretically, this
requires ∂E(di ,p)

∂p |p=pi
to vanish, i.e.,

∂E(di ,p)

∂p

∣
∣
∣
∣
p=pi

= 0 ∀i. (8)

To learn a cost function that has no local minima, it is
necessary to consider pi ’s neighborhoods. Let Ni = {p :
lb ≤ ‖p − pi‖2 ≤ ub}, N −

i = {p : ‖p − pi‖2 < lb}, N +
i =

{p : ‖p−pi‖2 > ub}. Here lb is chosen such that N −
i is a set

of neighbor parameters that are very close to pi ; it is satis-
factory for a fitting algorithm to converge to a point in N −

i .
ub is chosen so that the fitting algorithm is guaranteed to
be initialized at a point in Ni or N −

i . In most applications,
such ub exists. For example, for tracking problems, ub can
be set to the maximum movement of the object being tracked
between two consecutive frames. Figure 2 depicts the rela-
tionship between N −

i , Ni , and N +
i .

For a gradient descent algorithm to converge to pi or a
point close enough to pi , it is necessary that E(di , .) have no
local minima in Ni . This implies that ∂E(di ,p)

∂p does not van-
ish for p ∈ Ni . Notably, it is not necessary to enforce similar
constraints for p ∈ N −

i ∪ N +
i because of the way lb and ub

are chosen. Another desirable property is that each iteration
of gradient descent advances closer to the correct position.
Because gradient descent walks against the gradient direc-
tion at every iteration, we would like the opposite direction
of the gradient at point p ∈ Ni to be similar to the optimal
walking direction pi − p. This quantity can be measured as
the projection of the walking direction onto the optimal di-
rection. Figure 3 illustrates the rationale of this requirement,

Int J Comput Vis (2010) 88: 69–84 73

Fig. 3 (Color online) pi : desired convergence location. Blue arrows:
gradient vectors, red arrows: walking directions of gradient descent
algorithm, orange arrows: optimal directions to the desired location.
Performing gradient descent at p advances closer to pi while perform-
ing gradient descent at p′ moves away from pi

which leads to:
〈

−
(

∂E(di ,p)

∂p

)T

,
pi − p

‖pi − p‖2

〉

> 0 ∀p ∈ Ni . (9)

Equations (8) and (9) specify the constraints for the ideal
cost function. This cost function can be obtained if its para-
meters can be chosen to satisfy these constraints. However,
these inequalities might be too stringent to provide any fea-
sible set of parameters; therefore, we focus on minimizing
the constraint violation.

Equation (8) is equivalent to:

∥
∥
∥
∥
∥

∂E(di ,p)

∂p

∣
∣
∣
∣
p=pi

∥
∥
∥
∥
∥

2

2

= 0 ∀i, (10)

which can be relaxed by requiring the left hand side of (10)
to be small instead of strictly zero. The constraint violation
can be penalized by minimizing:

min
A,b

1

2

∑

i

∥
∥
∥
∥
∥

∂E(di ,p)

∂p

∣
∣
∣
∣
p=pi

∥
∥
∥
∥
∥

2

2

. (11)

The set of constraints (9) can be handled similarly to the
case of support vector machines (Vapnik 1998). First, in-
stead of requiring the left hand side of (9) to be strictly posi-
tive, we will require it to be greater than or equal to a positive
user-defined margin, μ:
〈

−
(

∂E(di ,p)

∂p

)T

,
pi − p

‖pi − p‖2

〉

≥ μ ∀p ∈ Ni . (12)

The idea of requiring the constraints to be well satisfied by
a margin was introduced previously, see Taskar et al. (2003)
for an example. Unfortunately, the family of parameters for
the cost function often are not rich enough to satisfy all con-
straints. In such cases, we need to introduce slack variables,
ξi ’s, to allow for some constraints to be violated.

Combining the relaxation of both sets of constraints (8)
and (9), we obtain the following optimization problem:

min
A,b,ξ

1

2

∑

i

∥
∥
∥
∥
∥

∂E(di ,p)

∂p

∣
∣
∣
∣
p=pi

∥
∥
∥
∥
∥

2

2

+ C
∑

i

ξi , (13)

s.t.

〈

−
(

∂E(di ,p)

∂p

)T

,
pi − p

‖pi − p‖2

〉

≥ μ − ξi
∀i,p∈Ni

,

ξi ≥ 0 ∀i.

C is the parameter controlling the trade-off between two
types of constraint violation: (8) versus (9). It is the trade-off
between having fewer local minima and having local min-
ima at the right places.

The gradient of the function E(d,p) plays a fundamen-
tal role in the above optimization problem. To compute the
gradient ∂E(d,p)

∂p , it is common to use the first order Taylor
series expansion to approximate:

d(f(x,p + δp)) ≈ d(f(x,p)) + Jd(p)δp, (14)

where Jd(p) = ∂d(f(x,p))
∂p is the spatial intensity gradient of

the image d w.r.t. to the motion parameter p (Lucas and
Kanade 1981). This yields:

(
∂E(d,p)

∂p

)T

≈ 2(Jd(p))T (Ad(f(x,p)) + b). (15)

Substituting (15) into (13), we obtain a quadratic program
with linear constraints over A and b.

3.3 Practical Issues and Alternative Fitting Methods

In practice, there is an issue regarding the optimization
of (13): the small components of ∂E(d,p)

∂p tend to be ne-
glected when optimizing (13). This occurs due to the mag-
nitude difference between some columns of Jd(p). For ex-
ample, in (2), the magnitudes of the Jacobian of d(f(x,p))

w.r.t. a1, a2, a4, a5 can be much larger than the magnitudes
of the Jacobian of d(f(x,p)) w.r.t. a3, a6.

To address this concern, we consider an alternative opti-
mization strategy where the update rule at iteration k is:

pk+1 = pk + �d(pk), (16)

with

�d(pk) = −1

2
Hd(pk)−1

(
∂E(d,p)

∂p

∣
∣
∣
∣
p=pk

)T

,

Hd(pk) = Jd(pk)T Jd(pk).

The update rule of the above algorithm is a variant of New-
ton iteration. Intuitively, Hd(pk) is similar to the Hessian of

74 Int J Comput Vis (2010) 88: 69–84

E(d,p) at pk , and it acts as a normalization matrix for the
gradient. This algorithm is especially well suited to optimize
a cost function in which A is symmetric positive semidefi-
nite with all eigenvalues less than or equal to one. Under
these assumptions, the above optimization scheme is guar-
anteed to converge to a local minimum. This is proved in
Appendix A.

Similar to the case of gradient descent, requiring the in-
cremental updates to vanish at and only at the places corre-
sponding to acceptable solutions yields the following opti-
mization problem:

min
A,b,ξ

1

2

∑

i

∥
∥
∥�di (pi)

∥
∥
∥

2

2
+ C

∑

i

ξi , (17)

s.t.

〈

�di (p),
pi − p

‖pi − p‖2

〉

≥ μ − ξi ∀i,∀p ∈ Ni ,

ξi ≥ 0 ∀i.

For the cost function to be a metric and for the theo-
retical guarantee of the above optimization scheme, A is
constrained to be a symmetric positive semidefinite matrix
where eigenvalues are less than or equal to one. Let Hm de-
note the set of all m × m symmetric matrices of which all
eigenvalues are non-negative and less than or equal to one.
The learning formulation becomes:

min
A,b,ξ

1

2

∑

i

∥
∥
∥�di (pi)

∥
∥
∥

2

2
+ C

∑

i

ξi , (18)

s.t.

〈

�di (p),
pi − p

‖pi − p‖2

〉

≥ μ − ξi ∀i,∀p ∈ Ni ,

ξi ≥ 0 ∀i & A ∈ Hm.

Since �di (pi) is linear in terms of A and b, this is a
quadratic program with linear constraints, provided the re-
quirement A ∈ Hm can be expressed by a set of linear con-
straints.

One can derive a similar learning formulation for A and
b where Newton’s method is the optimizer of choice for (4).
The update rule for iteration k of Newton’s method is:

pk+1 = pk + �d
nt (p

k), (19)

�d
nt (p

k) = −1

2
Hd

nt (p
k)−1

(
∂E(d,p)

∂p

∣
∣
∣
∣
p=pk

)T

with Hd
nt (p

k) = Jd(pk)T AJd(pk).

Similar to the case of gradient descent and the optimiza-
tion scheme in (16), reasoning about the incremental update
of Newton’s method leads to the following learning formu-
lation for A and b:

min
A,b,ξ

1

2

∑

i

∥
∥
∥�

di
nt (pi)

∥
∥
∥

2

2
+ C

∑

i

ξi , (20)

s.t.

〈

�
di
nt (p),

pi − p
‖pi − p‖2

〉

≥ μ − ξi ∀i,∀p ∈ Ni ,

ξi ≥ 0 ∀i.

Equation (20) is very similar to (17); the only difference
is that (17) uses the incremental update �di (p) while (20)
uses �

di
nt (p). Compare �di (p) and �

di
nt (p), the former is

linear in terms of A and b while the latter is not. �
di
nt (p)

is not linear in terms of A and b because it involves the in-
version of Hdi

nt (p) = Jdi (p)T AJdi (p) which depends on A.
Meanwhile, the normalization matrix of �di (p), Hdi (p) =
Jdi (p)T Jdi (p), does not depend on A.

Because �
di
nt (p) is not linear in terms of A and b, (20) is

not a quadratic program. As a result, learning A and b would
be harder if the learning formulation was derived from the
incremental update of Newton’s method.

It is necessary to distinguish between two different opti-
mization problems. One problem is to optimize the learning
formulations (see (13), (18), or (20)) to learn A and b, the
parameters of the cost function. Another problem is to op-
timize the learned cost function E(d,p) w.r.t. to the motion
parameter p for image alignment. The latter problem, once
the cost function has been learned, can be optimized using
any gradient-based algorithms including gradient descent,
the optimization scheme in (16), and Newton’s method. The
connection between a learning formulation and an optimiza-
tion scheme is considered from a different perspective. The
learning formulation is derived by reasoning about the walk-
ing direction of an optimization scheme. Different optimiza-
tion schemes lead to different learning formulations (c.f.,
(13), (17), and (20)). In theory, one also can reason about
the Newton direction to derive a similar learning formula-
tion for the cost function. However, as shown above, the
analytic formulae for Newton iteration includes the inver-
sion of Jdi (p)T AJdi (p). This will introduce non-linear con-
straints (in terms of A) into the learning formulation if it is
derived using Newton’s method. This would make the learn-
ing formulation a much harder problem to optimize. In short,
although Newton’s method can be used for alignment (i.e.,
minimizing E(d,p)), it is not preferable to be used for deriv-
ing the learning formulation. This is why we introduce (16),
a novel optimization scheme that addresses the issues of gra-
dient descent and Newton’s method.

4 Special Cases and Experiments

Section 3.3 proposes a method for learning a generic A
and b. However, in many cases of interest, A and b can
be further parameterized. The benefits of further parame-
terization are fourfold. First, the number of parameters to
learn can be reduced. Second, the relationship between A
and b can be established. Third, the constraint that A ∈ Hm

Int J Comput Vis (2010) 88: 69–84 75

can be replaced by a set of linear constraints. Fourth, the
metric property of the obtained cost function can be guaran-
teed. This section provides the formulation for two special
cases, namely weighted template alignment and weighted-
basis AAM alignment. Experimental results on synthetic
and real data are included.

4.1 Weighted Template Alignment

As shown in Sect. 3.1, template alignment is a special case
of (4) in which A = Im and b = −dref . In template align-
ment, pixels of the template are weighed equally; however,
there is no reason to believe that all pixels should contribute
equally to construct optimal fitting surfaces. Here, we pro-
pose learning the weights of template pixels to avoid local
minima in template matching.

Consider the weighted SSD:

(d(f(x,p)) − dref)
T diag(w)(d(f(x,p)) − dref), (21)

where w is the weight vector for the template’s pixels. This
cost function is equivalent to (4) with A = diag(w) and b =
−diag(w)dref . The constraint A ∈ Hm can be imposed by
requiring 0 ≤ wi ≤ 1. Furthermore, if the template dref is
part of the images di ’s, then ‖�di (pi)‖2

2 = 0 ∀i. In this case,
(18) becomes a linear program with linear constraints on w.

4.1.1 Experiments on Synthetic Data

To demonstrate this idea, we create a synthetic template of
an isotropic Gaussian (Fig. 4b). Suppose that the task is
to locate the template inside an image containing the tem-
plate (Fig. 4c), starting at an arbitrary location. Figure 4d
plots the error surface of the naive cost function SSD. The
value of this error surface at a particular pixel (x, y) is cal-
culated by computing the SSD between the template and the
circular patch centered at (x, y). Similarly, the error surface
of the learned cost function (weighted SSD) is calculated
and displayed in Fig. 4e. The learned template weights are
shown in Fig. 4f; brighter pixels mean higher weights. As
can be seen, the naive cost function has a fence of local max-
ima surrounding the template location. This prevents align-
ment algorithms from converging to the desired location.
The learned cost function is quasi-convex, and therefore, is
more suitable for this particular template.

The template’s weights given in Fig. 4f are learned by
optimizing (18) with μ = 0.01 and C = 1. The linear con-
straints are reduced to a set of 5000 constraints obtained by
random sampling. How to deal with large or even infinitely
many constraints is discussed in more detail in Sect. 4.2.

4.1.2 Experiments on the Multi-PIE Database

The second experiment is on the Multi-PIE database (Gross
et al. 2007). This database contains the face images of 337

Fig. 4 (Color online) Learning to weight template’s pixels. (a) An
isotropic Gaussian. (b) A synthetic template of which the 3D represen-
tation is given in (a). (c) An image containing the template. (d) SSD
error surface. (e) Weighted SSD error surface, and learned weights are
given in (f)

Fig. 5 (Color online) (a) Example of hand labeled landmarks associ-
ated with each face (red dots), (b) example of shape distortion (yellow
pluses), (c) location of pixels for appearance modeling for the exper-
iment in Sect. 4.1.2, (d) example of patches for appearance modeling
for the experiment in Sect. 4.2

subjects taken under different illuminations, expressions,
and poses. Each face is manually labeled with 68 landmarks,
as shown in Fig. 5a. Images are down-sampled to 120 × 160
pixels

For this experiment, we only use directly-illuminated
frontal neutral faces. Each subject in the Multi-PIE database
might have more than one image. To ensure the testing data
is completely independent of the training data, we restrict
our attention to at most one image per subject. Our dataset
contains 217 images, 10 are selected for training, 65 are used

76 Int J Comput Vis (2010) 88: 69–84

Fig. 6 (a) The template (mean image) used in weighted template
experiment. (b) The learned weights, brighter pixels mean higher
weights. Interestingly, the eye and mouth regions do not receive high
weights

for validation (parameter tuning), and the rest are reserved
for testing.

The shape model is built by aligning the training im-
ages using Procrustes analysis, as explained in Sect. 3.2.
In this experiment we only consider affine transformation
(six parameters). For the object appearance, we extract in-
tensity values of pixels inside the region formed by the land-
marks (Fig. 5c).

The template is the mean image of all aligned training
images (Fig. 6a). Thus the task is to do template alignment
between an arbitrary image with the mean image. The tem-
plate’s weights are learned by optimizing (18) with μ = 0.01
and C = 1. To avoid Ni being of infinite size, we restrict
our attention to a set of 150 random samples from Ni . The
random samples are drawn by introducing random Gaussian
perturbation to the correct shape parameter pi . Figure 6b
displays the learned weights; brighter pixels mean higher
weights. Notably, the pixels in the eye and mouth regions
do not receive high weights. This is consistent with the in-
tuition that a cost function using high weights in areas with
high variability are more susceptible to local minima.

Testing data are generated by randomly perturbing the
components of pi , the correct shape parameters of test im-
age di . Perturbation amounts are generated from a zero
mean Gaussian distribution with standard deviation PerMag×
[0.05 0.05 1 0.05 0.05 1]T . PerMag controls the over-
all difficulty of the testing data. The relative perturbation
amounts of shape coefficients are determined to simulate
possible motion in tracking. Figure 5b shows an example of
shape perturbation, the ground truth landmarks are marked
in red (circles), while the perturbed shape is shown in yel-
low (pluses).

Table 1 shows the experimental results with three dif-
ficulty levels of testing data (controlled by PerMag). The
performance of the learned cost function, weighted SSD,
is compared with SSD, the cost function giving uniform
weights for all the template’s pixels. The learned cost func-
tion outperforms SSD in all levels of perturbation.

Table 1 Template alignment experiments: results of different methods
for three different difficulty levels of testing data (PerMag). Initial is
the initial amount of perturbation before running any alignment algo-
rithm. SSD is the method which gives uniform weights for the pixels.
Weighted SSD is the cost function learned by our method. The table
shows the means and standard errors of misalignment (average over 68
landmarks and over testing data). The unit for measurement is pixel

PerMag 0.75 1.25 1.75

Initial 0.99 ± 0.02 1.37 ± 0.04 1.93 ± 0.06

SSD 1.13 ± 0.11 1.22 ± 0.15 1.38 ± 0.23

Weighted SSD 0.98 ± 0.05 1.05 ± 0.06 1.20 ± 0.07

4.2 Weighted-Basis for AAM Alignment

As shown in Sect. 3.1, AAM alignment is a special case
of (4) in which A = Im − UUT = Im − ∑k

1 uiuT
i and b = 0.

U is the set of k first eigenvectors from the total of K PCA
basis of the training data subspace. k (≤ K) is usually cho-
sen experimentally. In this section we propose to use all K

eigenvectors, but weigh them differently. Specifically, we
learn A which has the form: A = Im − ∑K

1 λiuiuT
i . To en-

sure that A ∈ Hm, we require 0 ≤ λi ≤ 1. To ensure the re-
sulted cost function is a metric, we also enforce b = 0.

From the Multi-PIE database, we only make use of
the directly-illuminated frontal face images under five ex-
pressions: smile, disgust, squint, surprise, and scream. Our
dataset contains 1100 images, 400 are selected for training,
200 are used for validation (parameter tuning), and the rest
are reserved for testing.

The shape model is built as described in Sect. 3.2. The
final shape model requires 10 coefficients (6 affine + 4 non-
rigid) to describe a shape. For the object appearance, we ex-
tract intensity values of pixels inside the patches located at
the landmarks (Fig. 5d).

The training data is further divided into two subsets, one
contains 300 images and the other contains 100 images. U
is obtained by performing PCA on the subset of 300 im-
ages. The second subset is used to set up the optimization
problem (18). For better generalization, (18) is constructed
without using images in the first training subset. To avoid
Ni being of infinite size, we restrict our attention to a set
of 1000 random samples from Ni . The random samples are
drawn by introducing random Gaussian perturbation to the
correct shape parameter pi .

Following the approach by Tsochantaridis et al. (2005)
for minimizing a quadratic function with an exponentially
large number of linear constraints, we maintain a smaller
subset of active constraints S and optimize (18) iteratively.
We repeat the following steps for 50 iterations: (i) empty S ;
(ii) for each training image di , find 25 most violated con-
straints from Ni and include them in S ; (iii) run quadratic
programming with the reduced set of constraints.

Int J Comput Vis (2010) 88: 69–84 77

Table 2 AAM alignment experiments: results of different methods for
four different difficulty levels of testing data (PerMag). Initial is the
initial amount of perturbation before running any alignment algorithm.
PCA e% is the cost function constructed using PCA preserving e% of
energy. The table shows the means and standard errors of misalign-
ment (average over 68 landmarks and over testing data). The unit for
measurement is pixel

PerMag 0.75 1.00 1.25 1.5 1.75

Initial 0.78 ± .01 1.06 ± .02 1.31 ± .02 1.61 ± .02 1.82 ± .03

PCA 90% 0.40 ± .01 0.45 ± .01 0.48 ± .02 0.61 ± .02 0.66 ± .03

PCA 80% 0.42 ± .01 0.44 ± .01 0.48 ± .024 0.59 ± .02 0.66 ± .03

PCA 70% 0.45 ± .01 0.48 ± .01 0.51 ± .02 0.57 ± .02 0.63 ± .03

Ours 0.40 ± .01 0.42 ± .01 0.45 ± .01 0.52 ± .02 0.58 ± .03

Similar to the case of weighted template alignment, test-
ing data are generated by randomly perturbing the com-
ponents of pi , the correct shape parameters of test image
di . Perturbation amounts are generated from a zero mean
Gaussian distribution with standard deviation PerMag ×
[0.05 0.05 1 0.05 0.05 1 2 2 2 2]T .

Table 2 describes the experimental results with four diffi-
culty levels of testing data (controlled by PerMag). The per-
formance of the learned cost function is compared with three
other cost functions constructed using PCA with popular en-
ergy settings (70%, 80%, and 90%). As can be observed,
when the amount of perturbation is small, PCA models with
higher energy levels perform better. However, as the amount
of perturbation increases, PCA models with lower energy
levels perform better. This suggests that cost functions us-
ing fewer basis vectors have less local minima while cost
functions using more basis vectors are more likely to have
local minima at the ‘right’ places. Thus it is unclear what
the energy for the PCA model should be. On the other hand,
the learned cost function performs significantly better than
the PCA models for most difficulty levels. To some extent,
our method learns a Pareto optimal tradeoff between hav-
ing less local minima and having local minima at the right
places. In this experiment we used μ = 0.01 and C = 0.5.
The parameters were tuned using the validation set.

4.3 More Implementation Details and Discussion

This section describes several implementation details in-
cluding parameter tuning. Learning and alignment speeds
also are reported and discussed.

Section 3.2 defines N −
i and N +

i as spherical neighbor-
hoods around pi to simplify the presentation. However, in
our implementation, N −

i and N +
i are ellipsoid neighbor-

hoods instead of being spherical. Mathematically, N −
i , N +

i ,
and Ni are defined as follows:

N −
i = {p : (p − pi)

T diag(ω)(p − pi) < lb}, (22)

N +
i = {p : (p − pi)

T diag(ω)(p − pi) > ub}, (23)

Ni = {p : lb ≤ (p − pi)
T diag(ω)(p − pi) ≤ ub}. (24)

This modification is necessary because the shape model is
more sensitive to some parameters than it is to others. In
our experiments, a reasonable setting is determined by ex-
amining the training data. In particular, we set ωi = 0.05 for
the parameters corresponding to rotation, scale, and shear
(a1, a2, a4, a5 in (2)), ωi = 1 for the translational parame-
ters (a3, a6 in (2)), and ωi = 2 for non-rigid parameters.

The parameter lb is needed in the definition of Ni for a
practical purpose. It is to prevent two desired criteria from
contradicting each other. The first criterion expects the gra-
dient at the ground truth position pi to vanish, while the
other criterion requires the gradients at other locations not to
vanish. In practice, to prevent these two types of constraints
from contradicting each other, the latter set of constraints
should not be enforced at locations that are too close to the
ground truth pi . In other words, the second set of constraints
should not be enforced on N −

i . The parameter lb can be
determined empirically by experimenting with the training
data. In our experiments, this value is not too sensitive and
can be set to any small positive value. This value is 0.2 in all
of our experiments.

Other tunable parameters of our method are C and μ.
These parameters can be picked using validation data or by
cross validation. In our experiments, we found that the per-
formance of our method is not too sensitive to the choice
of μ. Usually, μ simply can be set to a small positive num-
ber (0.01 in our experiments).

The training phase of our algorithm takes several hours.
For example, on a 2.4 GHz Pentium Core 2 Duo machine
with 4 GB of RAM, it took almost two hours to learn a
cost function for the experiment in Sect. 4.2. This amount of
training time is high because producing efficient code was
not the main focus of the paper. Our main programing lan-
guage was MATLAB. For optimization, we used CVX, a
package for specifying and solving convex programs (Grant
and Boyd 2008a, 2008b). This is a generic convex program
solver which does not have special support for constraint ad-
dition and for iterative procedures.

Regarding the alignment speed for AAMs (Sect. 4.2), fit-
ting the AAM with the learned cost function tends to be
slower than PCA-based cost functions. This is because the
learned cost function involves many more principal com-
ponents (ui ’s). In the experiment in Sect. 4.2, the average
alignment time for an image when using our learned cost
function is 5.3 seconds. The average alignment time when
using PCA 90%, PCA 80%, and PCA 70% are 3.6, 2.5, and
2.0 seconds respectively. Though the learned cost function
does not take too much longer than PCA-based cost func-
tions do, one interesting possible direction for future work

78 Int J Comput Vis (2010) 88: 69–84

would be to investigate a compromise between computa-
tional complexity and performance. This possibly can be
done by adding a L1 regularization term on λ to encourage
the sparsity of λ, the weight vector for the principal compo-
nents.

5 Good Features to Track

Previous sections have addressed the problem of learning
a metric for alignment given a fixed template. In this sec-
tion we address the reverse question: which templates can be
aligned well using a given fixed metric? We will show how
the criteria for an optimal metric can be used to select good
templates/features to track. In particular, we will use SSD
as the cost function and find the templates based on which
the criteria of an optimal metric are satisfied. This leads to
a novel method for selecting good features to track. Experi-
mental comparison with Shi and Tomasi (1994) shows that
our method extracts more reliable features to track.

5.1 Selection Criterion for Feature Points

Feature-based tracking (Tomasi and Kanade 1991) is a key
component of many vision systems. Some systems identify
a set of feature points once and track them through an entire
video sequence. Some redraw a new set of feature points at
every frame. Some others replace lost features by new ones.
In any situation, the ability to select feature points that can
be tracked reliably between consecutive frames is critical to
the success of the tracker.

Typically, a feature point can be tracked by finding the
displacement between consecutive frames. Because of im-
age noise, the displacement of the feature point is taken to
be the displacement of a small window around the feature
point. Therefore, feature point tracking from one frame to
the next is essentially template alignment. Here, the tem-
plate is the window around the feature point in the current
frame, and the successive frame is the image that needs to
be aligned with the template.

Consider a particular feature point at a given frame, let x
be the set of pixels that corresponds to the window around
the feature point. Let d and ds denote the current frame and
the successive frame respectively. In this case, the reference
template is dref = d(x). Suppose the correct displacement
is p̂. As in Sect. 3.1, the displacement p̂ of the feature point
is estimated by optimizing:

minimize
p

‖ds(f(x,p)) − d(x)‖2
2. (25)

Here, f is the function for geometric warping. For feature-
based tracking, it is generally good enough to just consider
translational or affine motions. In both cases, there exists a

geometric transformation function f that is additive in para-
meter p (e.g., see Learned-Miller 2006 for derivation), i.e.,

f(f(x,p1),p2) = f(x,p1 + p2). (26)

For the sake of clear presentation and a computational effi-
ciency reason that will become clearer later on, let us as-
sume (26) and consider the inverse additive image align-
ment (Hager and Belhumeur 1998; Baker and Matthews
2001). The idea is to switch the role of the image and
the template. Let z = f(x,p), then x = f(f(x,p),−p) =
f(z,−p), (25) is equivalent to:

minimize
p

‖ds(z) − d(f(z,−p))‖2
2. (27)

Our cost function now is E(d,p) = ‖ds(z)− d(f(z,−p))‖2
2.

Let us now revisit the two desired criteria (8) and (9) for an
optimal cost function E(d,p):

∂E(d,p)

∂p

∣
∣
∣
∣
p=p̂

= 0, (28)

〈

−
(

∂E(d,p)

∂p

)T

,
p̂ − p

‖p̂ − p‖2

〉

> 0 (29)

∀p : lb ≤ ‖p − p̂‖2 ≤ ub.

Here lb, ub are the lower bound and upper bound of the mo-
tion which are defined in Sect. 3.2. As in (14) and (15),
using Taylor series approximation, we have:

(
∂E(d,p)

∂p

)T

≈ 2

(
∂d(f(z,−p))

∂p

)T

(d(f(z,−p)) − ds(z))

≈ 2

(
∂d(f(z,−p))

∂p

)T

(d(x) − ds(z)), (30)

where

∂d(f(z,−p))

∂p
= −∂d(f(z,−p + ε))

∂ε

∣
∣
∣
∣
ε=0

(31)

= −∂d(f(f(z,−p), ε))

∂ε

∣
∣
∣
∣
ε=0

= −∂d(f(x, ε))

∂ε

∣
∣
∣
∣
ε=0

. (32)

The quantity ∂d(f(x,ε))
∂ε

|ε=0 does not depend on p. Let us de-
note it by Jd(x). On the other side, using the brightness con-
servation assumption, we have ds(f(x, p̂)) = d(x). Applying
the transformation f with the amount p − p̂ on both sides of
the above equation, we get:

ds(f(f(x, p̂),p − p̂)) = d(f(x,p − p̂)) (33)

Int J Comput Vis (2010) 88: 69–84 79

⇒ ds(f(x,p)) = d(f(x,p − p̂)) (34)

⇒ ds(z) = d(f(x,p − p̂)). (35)

From (30), (32) & (35) we get:

(
∂E(d,p)

∂p

)T

≈ 2
(

Jd(x)
)T (

d(f(x,p − p̂)) − d(x)
)
. (36)

Equation (36) leads to ∂E(d,p)
∂p |p=p̂ ≈ 0; therefore, the con-

straint (28) is always satisfied. Let q = p − p̂, the con-
straint (29) becomes:
〈(

Jd(x)
)T

(d(f(x,q)) − d(x)),
q

‖q‖2

〉

> 0 (37)

∀q : lb ≤ ‖q‖2 ≤ ub.

In short, (37) is the criterion for the template defined by x to
combine well with the SSD cost function. As a result, (37)
establishes a criterion for good features to track.

In many situations, it is desirable to extract a certain num-
ber of feature points. The number of required feature points
might be more or less than the number of feature points
that satisfy (37). Thus, it is necessary to provide a ranking
for feature points. Let us consider a ranking score which is
based on how much the constraint (37) is satisfied or vio-
lated, i.e.,

min
lb≤‖q‖2≤ub

〈(
Jd(x)

)T

(d(f(x,q)) − d(x)),
q

‖q‖2

〉

. (38)

In the next section we will describe experimental results
of using (38) as the selection criterion for good features to
track. A nice property of (38) is that Jd(x) does not depend
on q; this makes the method computationally efficient. If ef-
ficiency is not a concern, there is no need to consider the
inverse additive image alignment. Using forward additive
image alignment instead, one can derive a similar criterion
to (38). In this case, the assumption (26) is not necessary.

5.2 Experiments

This section describes an experiment to compare several se-
lection methods for feature tracking. We compare tracking
results of feature points selecting the criterion using (38)
and using the standard criterion proposed by Shi and Tomasi
(1994).

5.2.1 Software, Data, and Tuning

We use a public implementation2 of Lucas-Kanade-Tomasi
tracker. This software also includes an implementation of

2http://www.ces.clemson.edu/~stb/klt/.

Fig. 7 Two frames from the data sequence. (a) The first frame; (b) the
10th frame. This figure shows the amount of motion between frames

Shi & Tomasi’s method for feature point selection. The soft-
ware comes with a sequence of ten video frames (Fig. 7)
and demo code that tracks feature points detected using Shi
& Tomasi’s criteria. After tracking, it outputs the number
of feature points successfully tracked as an evaluation crite-
rion.

In our experiments, we use the sequence of video frames
that come with the software. We write our own code for se-
lecting feature points but use the provided Lucas-Kanade-
Tomasi tracker for evaluation. We accept all the default pa-
rameters of the software. These include the size of the square
templates for feature points, the number of feature points re-
tained, the minimum distance between feature points, how
the images are smoothed, and how the image gradients are
computed. Our method requires little tuning which involves
selecting the bounds (lb, ub) for the perturb parameter q
(see (38)). We set lb = 1 and ub to the size of the template.

Two frames from the image sequence bundled with the
software are given in Fig. 7. The resolution is 240 × 320.
The size of the square templates is 7 × 7 pixels.

5.2.2 Experiments and Results

The aforementioned software tracks feature points by recov-
ering translational displacements. Because of this reason,
and for consistency with the assumption of Shi and Tomasi
(1994), the geometric warp f is taken as the translation func-
tion.

Figure 8 displays two sets of selected features points. The
cyan circles are 100 points selected using Shi & Tomasi’s
method. The red stars are 100 points selected using our
method. The procedure of both methods for selecting fea-
ture points is as follows. First, the goodness of each pixel is
measured using an appropriate criterion ((38) in the case of
our method). After all the pixels have been considered, they
are sorted in descending order according to goodness. Then,
one by one, the top pixel of the list is selected, ensuring that
each new feature point is at least 10 pixels away from all the
other features.

To quantitatively compare two methods, we performed
two types of experiments. In the first experiment, for each
frame in the image sequence, we detect 100 feature points

http://www.ces.clemson.edu/~stb/klt/

80 Int J Comput Vis (2010) 88: 69–84

Fig. 8 (Color online) Selected feature points based on two different
criteria. Cyan circles: 100 points selected using Shi & Tomasi crite-
rion. Red stars: 100 points selected using our criterion. Selected feature
points of each method are at least 10 pixels apart

Table 3 Results of alignment between all frames with the first frame,
starting with a set of 100 feature points, either detected using Shi &
Tomasi’s method or our method. This table reports the numbers of
points that are successfully aligned. As the frame number increases,
the amount of motion between the frame and the first frame increases;
as a result, the alignment problem gets harder. The set of feature points
extracted by our method is more reliable than that of Shi & Tomasi’s
method for all levels of difficulty

frame # 2 3 4 5 6 7 8 9 10

Shi&Tomasi 92 85 81 73 62 56 44 32 25

Ours 95 91 83 77 65 60 54 42 38

and count the number of points that are successfully tracked
in the successive frame. The means and standard deviations
of this statistic for Shi & Tomasi’s method and ours are:
93.22 ± 1.56 and 96.44 ± 2.07 respectively.

In the second experiment, we compare two sets of se-
lected feature points with increasing amounts of motion. We
align every frame in the image sequence with the first frame
(not between consecutive frames). The sets of 100 feature
points are detected from the first frame. Alignment between
the first frame and all other frames are performed, and the
numbers of successfully tracked points are recorded. The re-
sults are reported in Table 3. As can be observed, the set of
feature points extracted by our method is more reliable than
that of Shi & Tomasi’s method for all amounts of motion.

6 Conclusion

Gradient-based methods for image alignment such as Lucas-
Kanade, Eigentracking, and AAMs are a key component of
many computer vision systems. A major problem of current
gradient-based image alignment algorithms is the sensitivity
to local minima. Local minima in PAMs mainly occur be-
cause an appearance model (e.g. template or PCA subspace)

is constructed without considering the neighborhoods of the
correct motion parameters, the parameters corresponding to
ground truth annotation of training data. These neighbor-
hoods determine the local minima properties of the error
surface and should be taken into account while constructing
the model. In this paper, we have proposed a data driven ap-
proach to learn a metric for image alignment that reduces the
effect of local minima. Metric learning was posed as a con-
vex program optimizing the parameters of a quadratic cost
function. This cost function is very general; it subsumes the
cost functions of many image alignment algorithms includ-
ing template matching and AAMs. Given training samples,
the metric was learned by requiring: (i) there is a local mini-
mum in the expected location, and (ii) there are no local min-
ima in a specified neighborhood. However, it was typically
not possible to satisfy both criteria; therefore, our method
learned a Pareto optimal tradeoff between having fewer lo-
cal minima and having local minima at the desired places.
The advantages of the proposed method to template align-
ment and AAM fitting have been demonstrated with several
synthetic and real experiments. To the best of our knowl-
edge, this is the first paper that explicitly learns a metric with
no local minima for PAMs. In addition, we showed how the
proposed criteria to learn a metric can be used to select good
features to track in feature-based tracking.

The proposed criteria for an ideal error surface can be
used to learn a cost function that is more general than the
quadratic one used in this paper. The quadratic cost func-
tion was chosen because it has two major benefits: (i) the
cost functions used in many important alignment algorithms
can be cast in this form, and (ii) the metric learning formu-
lation is convex. Convexity of the learning formulation is
achieved thanks to a novel optimization scheme. In this pa-
per, we stated and proved the validity of this scheme as well
as its advantages over alternate optimization algorithms.

Although encouraging results have been achieved, there
are several issues that remain unsolved and can be consid-
ered in future work. A bottleneck of our algorithm is the
need to incorporate many constraints (theoretically infinite)
to satisfy the criterion that there are no local minima in a
specified neighborhood. Because it is computationally ex-
pensive to include many constraints in optimization, there is
a need for further research that addresses the question: what
are the most critical points for generating constraints and
how can they be sampled?

In this paper we have shown performance improvement
in the cases of template alignment and AAMs. In general,
however, it is unclear for which type of alignment prob-
lems a learned metric, using training data, would guarantee
improvement in registering unseen images. Unfortunately,
there is no mathematically grounded theory to answer this
question. In future work we plan to research and to develop
a general theory for learning image alignment.

Int J Comput Vis (2010) 88: 69–84 81

Acknowledgements This material is based upon work supported by
the U.S. Naval Research Laboratory under Contract No. N00173-07-
C-2040 and National Institute of Health Grant R01 MH 051435. Any
opinions, findings and conclusions or recommendations expressed in
this material are those of the authors and do not necessarily reflect the
views of the U.S. Naval Research Laboratory. The authors would like
to thank General Motors Corporation for their continued support of this
research.

Appendix A

This section states and proves a theorem used to justify the
optimization algorithm given in (16).

Theorem 1 Consider an m-dimensional function f (x) of
p-dimensional variable x, and suppose we have to minimize
the function: E(x) = f (x)T Af (x) + 2bT f (x), where A ∈
Hm. Consider an iterative optimization method which has
the following update rule:

xnew = xold + δx

with δx = −H−1JT (Af (x) + b) (39)

and J = ∂f

∂x

∣
∣
∣
∣
xold

, H = JT J.

The above optimization method, when started sufficiently
close to a regular local minimum, will converge to that local
minimum. Here, a point x0 is said to be regular if H is not
singular and the Taylor series of f (·) converges for every
point in the neighborhood of x0.

Proving Theorem 1 requires two lemmas. We now state
and prove those two lemmas.

Lemma 1 A ∈ Hm if and only if Im − A ∈ Hm.

Proof This lemma can be proven easily, based on:

0 ≤ uT Au
uT u

≤ 1 ⇔ 0 ≤ uT (Im − A)u
uT u

≤ 1 ∀u. (40)

Lemma 2 A ∈ Hm if and only if there exists a positive inte-
ger k, scalars αi ’s, and matrices Bi ’s such that:

(i) BT
i Bi is invertible ∀i = 1, k,

(ii) αi ≥ 0 ∀i = 1, k, and
∑k

i=1 αi ≤ 1,

(iii) A = ∑k
i=1 αiBi (BT

i Bi)
−1BT

i .

Note: the number of rows of Bi ’s must always be m but
the number of their columns can differ.

Proof for sufficiency conditions Suppose there exist k, αi ’s,
and Bi ’s that satisfy all three conditions above. Because A is
a linear combination of symmetric matrices, A is also sym-
metric. We only need to prove that A is positive semidefinite

of which all eigenvalues are less than or equal to 1. Consider
vT Av for an arbitrarily vector v ∈ �m:

vT Av =
k∑

i=1

αivT Bi (BT
i Bi)

−1BT
i v

=
k∑

i=1

αivT Bi (BT
i Bi)

−1BT
i Bi (BT

i Bi)
−1BT

i v

=
k∑

i=1

αi‖Bi (BT
i Bi)

−1BT
i v‖2

2. (41)

We know that Bi (BT
i Bi)

−1BT
i is a projection matrix and

Bi (BT
i Bi)

−1BT
i v is the projection of v in the subspace Bi .

Thus we have ‖Bi (BT
i Bi)

−1BT
i v‖2

2 ≤ ‖v‖2
2 ∀i. Therefore:

vT Av ≤
(

k∑

i=1

αi

)

‖v‖2
2 ≤ ‖v‖2

2. (42)

Furthermore, because ‖Bi (BT
i Bi)

−1BT
i v‖2

2 ≥ 0 and αi ≥
0 ∀i, we have vT Av ≥ 0. Combining this with the inequality
in (42), we have:

0 ≤ vT Av ≤ vT v. (43)

Since these inequalities hold for arbitrary vector v ∈ �m, A
must be an element of Hm.

Proof for necessary conditions Suppose A ∈ Hm. Consider
the singular value decomposition of A,A = U�UT . Here,
the columns of U are orthonormal vectors. � is a diagonal
matrix, � = diag([λ1, . . . , λm]) with 0 ≤ λi ≤ 1 ∀i. Without
loss of generality, suppose λ1 ≥ λ2 ≥ · · · ≥ λm. We have:

A = U�UT =
m∑

i=1

λiuiuT
i

=
m−1∑

i=1

(λi − λi+1)

(
i∑

j=1

uj uT
j

)

+ λm

(
m∑

j=1

uj uT
j

)

. (44)

Let αi = λi − λi+1 for i = 1, . . . ,m − 1, and αm = λm.
Let Bi = [u1 . . .ui] for i = 1,m. Since {ui}m1 is a set of or-
thonormal vectors, BT

i Bi = Ii an identity matrix. Therefore,

Bi (BT
i Bi)

−1BT
i = BiBT

i = ∑i
j=1 uj uT

j . Hence:

A =
m∑

i=1

αiBi (BT
i Bi)

−1BT
i . (45)

Finally, we have αi ≥ 0 ∀i and
∑m

i=1 αi = λ1 ≤ 1. This
completes our proof for Lemma 1. �

Proof of Theorem 1 From Lemmas 1 and 2 we know
that ∃αi ≥ 0,∃Bi : Im − A = ∑k

i=1 αiBi (BT
i Bi)

−1BT
i and

82 Int J Comput Vis (2010) 88: 69–84
∑k

1 αi ≤ 1. To prove Theorem 1, let us first consider the
optimization of the following function:

E2(x, {ci}) =
k∑

i=1

αi‖f (x) − Bici‖2
2 (46)

+ α0‖f (x)‖2
2 + 2bT f (x)

with α0 = 1 − ∑k
i=1 αi . One way to optimize this function

is using coordinate descent, alternating between:

(i) minimizing E2 w.r.t. x while fixing {ci},
(ii) minimizing E2 w.r.t. {ci} while fixing x.

To minimize E2 w.r.t. x while fixing {ci}, we can use New-
ton’s method:

xnew = xold −
(

∂2E2

∂x2

)−1 (
∂E2

∂x

)T

. (47)

Using the first order Taylor approximation, we have

f (x + δx) ≈ f (x) + Jδx with J = ∂f

∂x
. (48)

Thus

E2(x + δx, {ci})
≈ E2(x, {ci}) + δxT JT Jδx

+ 2δxT JT

(

f (x) −
k∑

i=1

αiBici + b

)

. (49)

Hence

∂E2

∂x
≈ 2

(

f (x) −
k∑

i=1

αiBici + b

)T

J (50)

∂2E2

∂x2
≈ 2JT J. (51)

Therefore, we have the Newton update rule:

xnew = xold − (JT J)−1JT

(

f (x) −
k∑

i=1

αiBici + b

)

. (52)

When x is fixed, {c∗
i (x)} that globally minimize E2 are:

c∗
i (x) = (BT

i Bi)
−1BT

i f (x). (53)

Combining (52) and (53), we have the update rule for mini-
mizing E2:

xnew = xold − (JT J)−1JT [Af (x) + b]. (54)

This update rule is exactly the same as the update rule given
in (39). As a result, (39) will always lead us to a local mini-
mum of E2.

We now prove that a local minimum of E2 obtained
by (39) will be a local minimum of E. Suppose (x0, {c∗

i (x0)})
is a local minimum of E2, we have ∃ε1 > 0 such that:

E2(x0, {c∗
i (x0)}) ≤ E2(x0 + δx, {c∗

i (x0) + δci)}) (55)

for all δx, δci : ‖δx‖2
2 + ∑

i ‖δci‖2
2 < ε1.

Because c∗
i (x) is a continuous function in terms of x,

we can always find ε2 > 0 small enough such that ∀δx if
‖δx‖2

2 < ε2 then ‖δx‖2
2 + ∑

i ‖c∗
i (x0 + δx) − c∗

i (x0)‖2
2 < ε1.

Thus ∃ε2 such that

E2(x0, {c∗
i (x0)}) ≤ E2(x0 + δx, {c∗

i (x0 + δx)}) (56)

for all δx : ‖δx‖2
2 < ε2.

On the other hand, one can easily verify that:

E2(x, {c∗
i (x)}) = E(x) ∀x. (57)

From (56) and (57), we have ∃ε2 > 0 such that

E(x0) ≤ E(x0 + δx) ∀δx : ‖δx‖2
2 < ε2. (58)

Hence, x0 must be a local minimum of E.
To summarize, we have shown that (39) will converge to

a local minimum of E2. Furthermore, a local minimum of
E2 found by (39) is also a local minimum of E. Thus the
update rule given in (39) is guaranteed to converge to a local
minimum of E. This concludes our proof for Theorem 1. �

Appendix B

A metric is a function measuring distance between elements
of a set. But, what exactly is the distance that image align-
ment cost functions measure? This section explains the met-
ric properties of the learned cost functions. Strictly speak-
ing, these functions define a pseudometric rather than a met-
ric. The difference is very subtle. This section discusses this
difference and formally shows how a pseudometric can be
derived from the learned cost functions. First, we state the
definitions of metric and pseudometric.

Definition of metric (Rudin 1976) A metric on a set X is a
function (also called distance function or distance) D : X ×
X → � that satisfies:

(i) D(x,y) ≥ 0 (non-negativity)
(ii) D(x,y) = 0 if and only if x = y

(iii) D(x,y) = D(y,x) (symmetry)
(iv) D(x,y) ≤ D(x, z) + D(z,y) (subadditivity)

Definition of pseudometric (Rudin 1976) A pseudometric
on a set X is a function D : X × X → � that satisfies:

(i) D(x,y) ≥ 0 (non-negativity)

Int J Comput Vis (2010) 88: 69–84 83

(ii) D(x,x) = 0
(iii) D(x,y) = D(y,x) (symmetry)
(iv) D(x,y) ≤ D(x, z) + D(z,y) (subadditivity)

A pseudometric only differs from a metric in the second
requirement: a pseudometric does not require D(x,y) to be
strictly positive when x �= y.

Consider the weighted SSD cost function in Sect. 4.1:

(d(f(x,p)) − dref)
T diag(w)(d(f(x,p)) − dref), (59)

with

0 ≤ wi ≤ 1 ∀i. (60)

The above cost function clearly induces a pseudometric on
�l where l is the dimension of d(f(x,p)) and dref . Indeed,
it can be easily verified that the function D : �l × �l → �
defined below is a pseudometric:

D(x,y) =
√

(x − y)T diag(w)(x − y). (61)

The weighted basis AAM cost function in Sect. 4.2 also
induces a pseudometric. To see this, consider the function
D : (�l ∪ {U}) × (�l ∪ {U}) → � defined as follows:

D(x,y) =

⎧
⎪⎪⎨

⎪⎪⎩

0 if x = U,y = U,

yT Ay if x = U,y �= U,

xT Ax if x �= U,y = U,

|xT Ax − yT Ay| if x �= U,y �= U.

(62)

Here, U = [u1 · · ·uK] are the eigenvectors of the training
data subspace and A = Im − ∑K

i=1 λiuiuT
i with 0 ≤ λi ≤ 1.

From the above definition, together with the positive
semi-definiteness of A, one can easily verify that:

D(x,y) = |D(x,U) − D(y,U)| ∀x,y. (63)

Based on this observation, it is obvious that D is nonneg-
ative, symmetric, and subadditive. Furthermore, D(x,x) =
|D(x,U) − D(x,U)| = 0. Thus D satisfies all the require-
ments of a pseudometric. This pseudometric defines a dis-
tance measurement between elements of �l ∪ {U}. In prac-
tice, the only type of distance measurement that matters for
AAM image alignment is the distance between an element
of �l and the training data subspace U. This distance is ex-
actly the value of the cost function learned in Sect. 4.2.

References

Baker, S., & Matthews, I. (2001). Equivalence and efficiency of im-
age alignment algorithms. In Proceedings of IEEE conference on
computer vision and pattern recognition.

Baker, S., & Matthews, I. (2004). Lucas-Kanade 20 years on: A unify-
ing framework. International Journal of Computer Vision, 56(3),
221–255.

Bergen, J. R., Anandan, P., Hanna, K. J., & Hingorani, R. (1992). Hier-
archical model-based motion estimation. In European conference
on computer vision (pp. 237–252).

Black, M. J., & Jepson, A. D. (1998). Eigentracking: Robust matching
and tracking of objects using view-based representation. Interna-
tional Journal of Computer Vision, 26(1), 63–84.

Blanz, V., & Vetter, T. (1999). A morphable model for the synthesis of
3D faces. In ACM SIGGRAPH.

Cootes, T., Edwards, G., & Taylor, C. (2001). Active appearance mod-
els. Pattern Analysis and Machine Intelligence, 23(6).

Cootes, T. F., & Taylor, C. (2001). Statistical models of appearance for
computer vision (Tech. rep.). University of Manchester.

de la Torre, F., & Black, M. J. (2003). Robust parameterized component
analysis: theory and applications to 2D facial appearance models.
Computer Vision and Image Understanding, 91, 53–71.

de la Torre, F., & Nguyen, M. H. (2008). Parameterized kernel prin-
cipal component analysis: Theory and applications to supervised
and unsupervised image alignment. In Proceedings of IEEE con-
ference on computer vision and pattern recognition.

de la Torre, F., Vitrià, J., Radeva, P., & Melenchón, J. (2000). Eigen-
filtering for flexible eigentracking. In International conference on
pattern recognition (pp. 1118–1121).

de la Torre, F., Collet, A., Cohn, J., & Kanade, T. (2007). Filtered com-
ponent analysis to increase robustness to local minima in appear-
ance models. In IEEE conference on computer vision and pattern
recognition.

Gong, S., Mckenna, S., & Psarrou, A. (2000). Dynamic vision: from
images to face recognition. Imperial College Press.

Grant, M., & Boyd, S. (2008a). CVX: Matlab software for disciplined
convex programming (web page & software). http://stanford.edu/
~boyd/cvx.

Grant, M., & Boyd, S. (2008b). Graph implementations for nonsmooth
convex programs. In V. Blondel, S. Boyd, & H. Kimura (Eds.),
Lecture notes in control and information sciences: Recent ad-
vances in learning and control (a tribute to M. Vidyasagar) (pp.
95–110). Berlin: Springer.

Gross, R., Matthews, I., Cohn, J., Kanade, T., & Baker, S. (2007). The
CMU multi-pose, illumination, and expression (Multi-PIE) face
database (Tech. rep. tR-07-08). Carnegie Mellon University.

Hager, G., & Belhumeur, P. (1998). Efficient region tracking with para-
metric models of geometry and illumination. Pattern Analysis and
Machine Intelligence, 20, 1025–1039.

Jolliffe, I. (1986). Principal component analysis. New York: Springer.
Jones, M. J., & Poggio, T. (1998). Multidimensional morphable mod-

els. In International conference on computer vision (pp. 683–
688).

Kanatani, K. (1996). Statistical optimization for geometric computa-
tions: theory and practice. New York: Elsevier Science.

Learned-Miller, E. G. (2006). Data driven image models through con-
tinuous joint alignment. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 28(2), 236–250.

Liu, X. (2007). Generic face alignment using boosted appearance
model. In IEEE conference on computer vision and pattern recog-
nition.

Lucas, B., & Kanade, T. (1981). An iterative image registration tech-
nique with an application to stereo vision. In Proceedings of imag-
ing understanding workshop.

Matei, B. C., & Meer, P. (2006). Estimation of nonlinear errors-in-
variables models for computer vision applications. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 28(10),
1537–1552.

Matthews, I., & Baker, S. (2004). Active appearance models revisited.
International Journal of Computer Vision, 60(2), 135–164.

Matthews, I., Ishikawa, T., & Baker, S. (2004). The template update
problem. IEEE Transactions on Pattern Analysis and Machine In-
telligence, 26, 810–815.

http://stanford.edu/~boyd/cvx
http://stanford.edu/~boyd/cvx

84 Int J Comput Vis (2010) 88: 69–84

Nayar, S. K., & Poggio, T. (1996). Early visual learning. Oxford: Ox-
ford University Press.

Nguyen, M. H., & de la Torre, F. (2008a). Learning image alignment
without local minima for face detection and tracking. In 8th IEEE
international conference on automatic face and gesture recogni-
tion.

Nguyen, M. H., & de la Torre, F. (2008b). Local minima free parame-
terized appearance models. In Proceedings of IEEE conference on
computer vision and pattern recognition.

Rudin, W. (1976). Principles of mathematical analysis (3rd ed.). New
York: McGraw-Hill.

Saragih, J., & Goecke, R. (2007). A nonlinear discriminative approach
to AAM fitting. In International conference on computer vision.

Shi, J., & Tomasi, C. (1994). Good features to track. In IEEE confer-
ence on computer vision and pattern recognition.

Taskar, B., Guestrin, C., & Koller, D. (2003). Max-margin Markov net-
works. In Advances in neural information processing systems.

Tomasi, C., & Kanade, T. (1991). Detection and tracking of point fea-
tures (Tech. Rep. CMU-CS-91-132). Carnegie Mellon University.

Tsochantaridis, I., Joachims, T., Hofmann, T., & Altun, Y. (2005).
Large margin methods for structured and interdependent output
variables. Journal of Machine Learning Research, 6, 1453–1484.

Vapnik, V. (1998). Statistical learning theory. New York: Wiley.
Vetter, T. (1997). Learning novel views to a single face image. In Inter-

national conference on automatic face and gesture recognition.
Wimmer, M., Stulp, F., Tschechne, S. J., & Radig, B. (2006). Learning

robust objective functions for model fitting in image understand-
ing applications. In Proceedings of British machine vision confer-
ence.

Wu, H., Liu, X., & Doretto, G. (2008). Face alignment via boosted
ranking model. In Proceedings of IEEE conference on computer
vision and pattern recognition.

Xiao, J., Baker, S., Matthews, I., & Kanade, T. (2004). Real-time com-
bined 2D+3D active appearance models. In Conference on com-
puter vision and pattern recognition (Vol. II, pp. 535–542).

Yang, L. (2006). Distance metric learning: A comprehensive survey.
http://www.cse.msu.edu/~yangliu1/frame_survey_v2.pdf.

http://www.cse.msu.edu/~yangliu1/frame_survey_v2.pdf

	Metric Learning for Image Alignment
	Abstract
	Introduction
	Previous Work
	PAMs
	Optimization for PAMs

	Learning Parameters of the Cost Function
	A Generic Cost Function for Alignment
	Desired Properties of Optimal Cost Functions
	Practical Issues and Alternative Fitting Methods

	Special Cases and Experiments
	Weighted Template Alignment
	Experiments on Synthetic Data
	Experiments on the Multi-PIE Database

	Weighted-Basis for AAM Alignment
	More Implementation Details and Discussion

	Good Features to Track
	Selection Criterion for Feature Points
	Experiments
	Software, Data, and Tuning
	Experiments and Results

	Conclusion
	Acknowledgements
	Appendix A
	Appendix B
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

