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Abstract

This paper introduces a method to encode the blur op-
erators of an arbitrary dataset of sharp-blur image pairs
into a blur kernel space. Assuming the encoded kernel
space is close enough to in-the-wild blur operators, we pro-
pose an alternating optimization algorithm for blind im-
age deblurring. It approximates an unseen blur opera-
tor by a kernel in the encoded space and searches for the
corresponding sharp image. Unlike recent deep-learning-
based methods, our system can handle unseen blur ker-
nel, while avoiding using complicated handcrafted priors
on the blur operator often found in classical methods. Due
to the method’s design, the encoded kernel space is fully
differentiable, thus can be easily adopted in deep neu-
ral network models. Moreover, our method can be used
for blur synthesis by transferring existing blur operators
from a given dataset into a new domain. Finally, we pro-
vide experimental results to confirm the effectiveness of
the proposed method. The code is available at https:
//github.com/VinAIResearch/blur-kernel-
space-exploring.

1. Introduction
Motion blur occurs due to camera shake or rapid move-

ment of objects in a scene. Image deblurring is the task
of removing the blur artifacts to improve the quality of the
captured image. Image deblurring is an important task with
many applications, especially during the current age of mo-
bile devices and handheld cameras. Image deblurring, how-
ever, is still an unsolved problem, despite much research
effort over the past decades.

Mathematically, the task of image deblurring is to re-
cover the sharp image x given a blurry image y. One can
assume the below mathematical model that relates x and y:

y = F̂(x, k) + η ≈ F̂(x, k), (1)

where F̂(·, k) is the blur operator with the blur kernel k,
and η is noise. In the simplest form, F̂(·, k) is assumed to
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Figure 1. The space of blur kernels is the missing element for
successful blur removal and synthesis. Previous image debluring
methods either overlooked the importance of this kernel space or
made inadequate assumption about it. In this paper, we propose to
learn this blur kernel space from a dataset of sharp-blurry image
pairs (orange arrows) and leverage this encoded space for image
deblurring (blue arrows).

be a convolution function with k being a convolution kernel
and η being white Gaussian noise. Given a blurry image
y, the deblurring task is to recover the sharp image x and
optionally the blur operator F̂(·, k).

A popular approach to recover the sharp image is to use
the Maximum A Posterior (MAP) estimate. That is to find
x and k to maximize the posterior propbability P(x, k|y)
assuming F̂ is known. This is equivalent to optimizing:

x, k = argmax
x,k

P(y|x, k)P(x)P(k). (2)

However, this is an ill-posed problem and there are in-
finitely many pairs of (k, x) that lead to the same probabil-
ity P(y|x, k), so the key aspect of the above MAP approach
is to define proper models for the prior distributions P(x)
and P(k). In fact, many deblurring methods focus on either
designing handcrafted priors for x and k [2, 12, 20, 27] or
learning the deep image prior [29, 37]. However, all of these
works assume the blur operator is a convolutional operator,
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and this assumption does not hold in practice. These MAP-
based methods cannot handle complex in-the-wild blur op-
erators and usually produce undesirable artifacts when test-
ing on real-world blurry images.

An alternative approach is to directly learn a function
that maps from a blurry image to the corresponding non-
blurry image. This function can be a deep convolutional
network and the parameters of the network can be learned
using paired training data of blurry and non-blurry im-
ages [14, 15, 25, 36]. Unlike the MAP-based approach,
this approach learns the inverse function of the blur oper-
ator directly without explicitly reasoning about the blur op-
erator and the distribution of the blur kernel. Given the lack
of an explicit representation for the space of the blur ker-
nels, this approach does not generalize well beyond the set
of individual blur kernels seen during training. This ap-
proach [14, 15, 25, 36] produces poor results when testing
on blur operators that are not present in the training set. In
our experiments, these deep-learning models degenerate to
an identity map when testing on an out-of-domain blur oper-
ator; the recovered image is nearly identical to the input im-
age. This is a known issue, and it is referred to as “the triv-
ial solution” by traditional deblurring methods. The MAP-
based methods tackle this problem by putting prior distri-
butions on the sharp image and the blur kernel. However,
those priors cannot be readily applied to the existing deep-
learning models due to the lack of an explicit representation
for the blur kernels.

In this paper, we propose to address the limitations of
both aforementioned approaches as follows. First, we de-
vise a deep-learning formulation with an explicit represen-
tation for the blur kernel and the blur operator. Second, we
use a data-driven approach to learn the family of blur op-
erators and the latent manifold of the blur kernels, instead
of assuming that the blur operator is a convolutional oper-
ator as used in existing MAP-based methods. Specifically,
we simultaneously learn a blur operator family F and a blur
kernel extractor G such that:

y = F(x, k) and k = G(x, y). (3)

Note in this paper, F is referred to as the blur operator fam-
ily. For a specific blur kernel k, F(·, k) is a specific blur
operator from the family of blur operators. We call k the
blur kernel of the blur operator F(·, k). When the func-
tional form of F is fixed, we will refer to a blur operator
F(·, k) by its blur kernel k if there is no confusion.

Once the blur operator family F has been learned, we
can use it to deblur an input image y by finding x and k to
satisfy the above equations using alternating optimization.
Moreover, we can incorporate additional constraints on the
solution space of x to generate more realistic results. For
example, we can use a deep generative model to learn the
manifold of natural images and constraint the solution space

to this manifold. The conceptual idea is illustrated in Fig. 1.
Our method can also be used for blur synthesis. This can

be done by transferring the blur kernel of a sharp-blurry im-
age pair to another image. Blur synthesis is useful in many
ways. For example, we can transfer the real-world motion
blur of an existing dataset [8] to another domain where it
might be difficult to collect paired data. Blur synthesis can
also be used for training data augmentation, improving the
robustness of a downstream task such as face recognition or
eye gaze estimation.

In short, the contributions of our paper are: (1) we pro-
pose a novel method to encode the blur kernel space for
a dataset of blur-sharp image pairs, which can be used to
deblur images that contain unseen blur operators; (2) we
propose a novel blur synthesis method and demonstrate its
utilities; and (3) we obtain state-of-the-art deblurring results
on several datasets.

2. Related Work
2.1. Image deblurring

Image deblurring algorithms can be divided into two
main categories: MAP-based and learning-based methods.

MAP-based blind image deblurring. In MAP-based
methods, finding good priors for the sharp images and
blur kernels (P(x) and P(k) in Eq. (2)) are two main fo-
cuses. For the sharp images, gradient-based prior is usu-
ally adopted since the gradient of natural images is highly
sparse. In particular, Chan and Wong [2] proposed a total-
variation (TV) penalty that encouraged the sparsity of the
image gradient. Krishnan and Fergus [12] suggested that
the image gradient followed Hyper-laplacian distribution.
However, Levin et al. [17] showed that these gradient-based
priors could favor blurry images over sharp ones and lead to
the trivial solution, i.e., x = y and k is the identity opera-
tor. Krishnan et al. [13] used `1/`2 regularization that gave
sharp image the lowest penalty. Pan et al. [27] showed that
the dark channel of a sharp image was usually sparser than
the dark channel of the corresponding blurry image. Over-
all, these priors only model low-level statistics of images,
which are neither adequate nor domain-invariant.

Recently, Ulyanov et al. [37] introduced Deep Image
Prior (DIP) for image restoration tasks. A network G was
learned so that each image I was represented by a fixed vec-
tor z such that I = Gθ(z). Ren et al. [29] proposed SelfDe-
blur method using two DIPs for x and k. Instead of using al-
ternating optimization like other MAP-based methods, they
jointly sought x and k using a gradient-based optimizer.

All aforementioned methods assumed the blur kernel
was linear and uniform, i.e., it can be represented as a
convolution kernel. However, this assumption is not true
for real-world blur. Non-linear camera response func-
tions can cause non-linear blur kernels while non-uniform



blur kernels appear when only a small part of the image
moves. There were some attempts for non-uniform deblur-
ring [3, 24, 32, 39], but they still assumed the blur was lo-
cally uniform, and they were not very practical given the
high computational cost.
Learning-based deblurring. Many deep deblurring mod-
els have been proposed over the past few years. Nah et al.
[25] proposed a multi-scale network for end-to-end image
deblurring. It deblurred an image in three scale levels; the
result from the lower level was used as an input of its upper
level. Similarly, Tao et al. [36] employed a scale-recurrent
structure for image deblurring. GAN [5] was first used for
image deblurring in [14], whereas a high-quality image was
generated conditioned on the blurry input image. Kupyn
et al. [15] introduced DeblurGANv2, which used Feature
Dynamic Networks [19] to extract image features and two
discriminators for global and patch levels. DeblurGANv2
achieved impressive run-time while maintaining reasonable
results on common benchmarks. There were also works on
multi-frame deblurring [35, 38, 43] and domain-specific de-
blurring [7, 18, 29, 33, 34, 40, 41].

Unfortunately, deep-learning models do not perform
well for cross-domain tasks. For example, models trained
on the REDS dataset [26] perform poorly on GOPRO [25],
despite the visual similarity between the two datasets. As a
result, deep deblurring models have not been used in real-
world applications. This kernel overfitting phenomenon has
not been explained in prior works.

2.2. GAN-inversion image restoration

Image manifolds generated by GANs [5] were used to
approximate the solution space for image restoration prob-
lem in recent works [23, 28]. They sought an image in the
manifold such that its degradation version was the closest to
the provided low-quality image. The benefits of this method
are twofold. First, this method guarantees a sharp and real-
istic outcome. Meanwhile, image restoration is ill-posed
with multiple solutions, and the common image restoration
methods often yield a blurry result towards the average of
all possible solutions [23]. Second, in the case of blind de-
blurring, this method bypasses the kernel overfitting issue
in deep image restoration models.

Existing works in this direction, however, just cover sim-
ple known degradations such as bicubic downsampling. To
handle the challenging in-the-wild motion-blur degradation,
we first need to model the family of blur operators.

2.3. Blur synthesis

To train deep deblurring models, large-scale and high-
quality datasets are needed. But it is hard to capture pairs
of corresponding sharp and blurry images in real life, so
blur synthesis has been widely used. Assuming uniform
blur (i.e., a convolutional blur kernel), a common approach

is to synthesize the trajectory of the blur kernel and apply
this synthetic kernel on the sharp image set. Chakrabarti [1]
generated blur trajectories by randomly sampling six points
on a grid and connected those points by a spline. Schuler
et al. [31] sampled blur trajectories by a Gaussian process.
These methods could only synthesize uniform blur and they
did not take the scene structure into account. Therefore,
synthesized blurry images are unrealistic.

More sophisticated blur synthesis algorithms rely on the
blur generation process in the camera model. In partic-
ular, an image in color space can be modeled as: I =

g
(

1
T

∫ T
0
S(t)dt

)
, where S(t) is the sensor signal at time

t, T is the exposure time, and g the camera response func-
tion. Nah et al. [25] approximated g by the gamma function
g(x) = x

1
γ . They converted a frame I to its corresponding

signal sensor g−1(I), averaged consucutive frames in that
signal domain, then converted it back to the color space.
The REDS dataset [26] was synthesized similarly but with
an increased video temporal resolution and a more sophis-
ticated camera response function.

To reduce the gap between synthetic and real-world blur,
Jaesung Rim and Cho [8] proposed a real-world blur dataset
that was captured by two identical cameras with differ-
ent shutter speeds. However, the data collection process
was complicated, requiring elaborate setup with customized
hardware.

3. Methodology
In this section, we first describe a method to learn the

blur operator family F that explains the blurs between
paired data of sharp-blurry images. We will then explain
how the blur operator family can be used for removing or
synthesizing blur.

3.1. Learning the blur operator family

Given a training set of n data pairs {(xi, yi)}ni=1, our
goal is to learn a blur operator family that models the blur
between the sharp image xi and the corresponding blurry
image yi for all i’s. Each pair is associated with a latent
blur kernel ki; and the blurry image yi is obtained by ap-
plying the blur operator family on the sharp image xi with
the blur kernel ki as parameters, i.e., yi = F(xi, ki). Tradi-
tional MAP-based methods often assume F(·, ki) to be the
convolutional operator and ki a convolutional kernel, but
this assumption does not hold for real blurs in the wild.

Learning F is challenging because {ki} are latent vari-
ables. Fortunately, each ki is specific to a sharp-blurry im-
age pair, so we can assume ki can be recovered by a kernel
extractor function G, i.e., ki = G(xi, yi). We can learn
both the blur operator family F and the kernel extractor G
by minizing the differences between the synthesized blurry
image F(xi,G(xi, yi)) and the actual blurry image yi. In
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Figure 2. Roles of the blur operator family F and the blur ker-
nel extractor G and their architectures. G can be used to extract
the blur kernel k, while F can be used to generate a blurry image
given the blur kernel k. F is an encoder-decoder network with
skip connection, while G is a residual network.

this paper, we implement them by two neural networks,
an encoder-decoder with skip connection [30] for F and a
residual network [6] for G. Both F and G are fully differen-
tiable, and they can be jointly optimized by minimizing the
following loss function:

n∑
i=1

ρ(yi,F(xi,G(xi, yi))), (4)

where ρ(·) is the Charbonnier loss [16] measuring the dis-
tance between the “fake” blurry image F(xi,G(xi, yi)) and
the corresponding real blurry image yi.

This procedure is illustrated in Fig. 2. First, we sam-
ple (x, y) from a dataset of image pairs. Second, we fit the
concatenation of these images into G to generate the corre-
sponding encoded blur kernel vector k. Third, with x and
k as the input, we use F to create the synthesized blurry
image. F encodes x into a bottle-neck embedding vector,
concatenates that embedding vector with k, and decodes it
to get the synthesized blurry image. Details of the architec-
ture choices and hyper-parameters tuning are given in the
supplementary materials.

3.2. Blind image deblurring

Once the blur operator family F has been learned, we
can use it for image deblurring. Given a blurry image y, our
task is to recover the sharp image x. We pose it as the opti-
mization problem, where we seek to recover both the sharp
image x and the blur kernel k to minimize ρ(y,F(x, k)). To
optimize ρ(y,F(x, k)), we propose an iterative optimiza-
tion procedure that alternates between the following two
steps: (A) fix the blur kernel k and optimize the latent sharp
image x, and (B) fix x and optimize for k.

Algorithm 1 Blind image deblurring
Input: blurry image y
Output: sharp image x

1: Sample zx ∼ N (0, I)
2: Randomly initialize θx of Gxθx
3: while θx has not converged do
4: Sample zk ∼ N (0, I)
5: Randomly initialize θk of Gkθk
6: while θk has not converged do
7: gk ← ∂L(θx, θk)/∂θk
8: θk ← θk + α ∗ADAM(θk, gk)
9: end while

10: gx ← ∂L(θx, θk)/∂θx
11: θx ← θx + α ∗ADAM(θx, gx)
12: end while
13: x = Gθx(zx)

To stablize the optimization process and to obtain better
deblurring results, we propose to add a couple of regular-
ization terms into the objective function and reparameterize
both x and k with Deep Image Prior (DIP) [37] as follows.
First, we propose to add a regularization term on the L2

norm of the kernel k to stablize the optimization process
and avoid the trivial solution. Second, we propose to use the
Hyper-Laplacian prior [12] on the image gradients of x to
encourage the sparsity of the gradients, reducing noise and
creating more natural looking image x. This corresponds
to adding the regularization term: (g2u(x) + g2v(x))

α/2 into
the objective function, where gu and gv are the horizontal
and vertical derivative operators respectively. Adding the
regularization terms leads to the updated objective:

ρ(y,F(x, k)) + λ||k||2 + γ(g2u(x) + g2v(x))
α/2, (5)

where λ, γ, α are tunable hyper-parameters.
Finally, inspired by the success of Deep Image Prior [37]

for zero-shot image restoration [4, 21, 29, 37], we propose
to reparameterize both x and k by neural networks. In par-
ticular, instead of optimizing x directly, we take x as the
stochastic output of a neural network Gxθx and we optimize
the parameters θx of the network instead. Specifically, we
define x = Gxθx(zx), where zx is standard normal random
vector, i.e., zx ∼ N (0, I). Similarly, we reparameterize
k = Gkθk(zk). The final objective function for deblurring is:

L(θx, θk) = ρ(y,F(x, k)) + λ||k||2 + γ(g2u(x) + g2v(x))
α/2

where x = Gxθx(zx), zx ∼ N (0, I), (6)

k = Gkθk(zk), zk ∼ N (0, I). (7)

This objective function can be optimized using Algorithm 1.



3.3. Approximated manifold of natural images

In Sec. 3.2, we propose a general solution for image de-
blurring, where little assumption is made about the space
of the sharp image x. We use DIP to reparameterize x as
the output of a neural network with schotastic input, and we
optimize the parameter of the network instead. However, in
many situations, the domain of the sharp image x is simpler,
e.g., being a face or a car. In this situation, we can have bet-
ter reparameterization for x, taking into account the learned
manifold for the specific domain of x.

In this paper, we also consider the image manifold pro-
posed by Menon et al. [23]. We reparameterize x by
Gstyle(z) in which Gstyle is the pretrained StyleGAN [11],
z is optimized along the sphere

√
dSd−1 using spherical

projected gradient descent [23].

3.4. Blur synthesis using blur transferring

There exist datasets of paired images with “close-to-
real” blurs, such as REDS [26], GOPRO [25], or real-world
blur [8]. But the collection of these datasets required elab-
orate setups, expensive hardware (e.g., high-speed camera),
and enormous effort. Unfortunately, similar datasets do not
exist for many application domains (e.g., faces and scene
text), and it is difficult or even impossible to replicate these
laboratory setups to collect data for in-the-wild environ-
ments (e.g., street scenes).

To this end, a benefit of our approach is the ability to
transfer the motion blurs from an existing dataset to a new
set of images. In particular, given a dataset with pairs of
sharp-blurry images, we can first train F and G as described
in Sec. 3.1. To transfer the motion blur between the image
pair (x, y) to a new image x̂, we can simply compute: ŷ :=
F(x̂,G(x, y)).

4. Experiments
We perform extensive experiments to verify the effec-

tiveness of our blur kernel encoding method. We also pro-
vide results for image deblurring and blur synthesis. All
the experiments are conducted on a single NVidia V100
GPU. Image deblurring experiments are cross-domain. In
particular, all data-driven methods are trained on the REDS
dataset [26] and tested on the GOPRO dataset [25].

REDS dataset [26] comprises 300 high-quality videos with
various scenes. The videos are captured at 120fps. The
corresponding blurry videos are synthesized by upsampling
the frame rate and averaging the neighboring frames. We
use this dataset to train our kernel extractor as well as deep
deblurring models.

GOPRO dataset [25] consists 3142 sharp-blur pair of
frames. Those frames are captured at 240fps. The synthesis
process is similar to REDS dataset, except for the choice of

the camera response function. We use this dataset to test the
deblurring methods.

Levin dataset [17] is generated using eight convolution ker-
nels with different sizes. Here we use its kernels to synthe-
size uniform blur on other datasets.

FFHQ dataset [11] is a human face dataset. This dataset
consists of 70,000 high-quality 1024×1024 images with
various genders, ethics, background, and accessories. This
dataset was used to train the StyleGAN model.

CelebA-HQ dataset [10] is a human face dataset that con-
sists of 30,000 images at 1024×1024 resolution. Its images
were selected from the CelebA dataset [22], but the qual-
ity was improved using some preprocessing steps such as
JPEG removal and 4× super-resolution.

4.1. Blur kernel extractor

This section verifies if our blur kernel extractor can ac-
curately extract and transfer blur from a sharp-blurry image
pair to another image. We use the known explicit kernels
from the Levin dataset to synthesize blurry images in train-
ing and testing for experiments with ground-truth labels. As
for experiments on datasets without explicit blur kernels,
such as REDs and GOPRO, we check the stability of the
deblurring networks trained on internal blur-swapped data.

4.1.1 Testing blur kernel encoding on Levin dataset

Suppose we have a ground-truth blur operator family F̂ . We
train F and G using a sharp-blur pair dataset generated by
F̂ . Then we can measure the performance of the blur kernel
extractor by calculating the distance between F(x,G(x, y))
and F̂(x, h) for arbitrary pair (x, h) and y = F̂(x, h).

In this experiment, we let F̂(·, h) be a convolutional op-
erator whose kernel is one of the eight used in the Levin
dataset [17]. To generate training data, we randomly se-
lect 5000 sharp images from the REDS dataset [26] and
generate 5000 corresponding blurry images using the men-
tioned kernels. Then we use these 5000 pairs to learn F
and G. To create testing data, we randomly sample two
other disjointed image sets S and T for the source and tar-
get sharp images in blur transfer. Each set consists of 500
sharp images from GOPRO dataset [25]. Then for each test-
ing kernel k, we generate the blur images in the source set
yk = F̂(x, k) = k ∗ x, apply blur from (x, yk) to each
x̂ ∈ T via the trained F and G, and compute the average
PSNR score.∑

x∈S,x̂∈T PSNR(F(x̂,G(x, yk)), F̂(x̂, k))
|S| × |T |

. (8)

We report the test results in Table 1. Our method
achieves very high PSNR scores, demonstrating its ability
to extract and transfer the blur kernels.



Blur SelfDeblur [29] DeblurGANv2 [15] SRN-Deblur [36] Ours Sharp

0.489 0.630 0.442 0.448 0.348

0.630 0.857 0.663 0.633 0.601

0.717 0.780 0.707 0.694 0.664
Figure 3. Results of deblurring methods trained on REDS and tested on GOPRO, and their LPIPS score [42] (lower is better).

Blur SelfDeblur [29] [15] REDS [15] imgaug [36] REDS [36] imgaug Ours

Figure 4. Qualitative results of deblurring methods. Here DeblurGANv2 REDS is the model trained with face dataset using REDS kernel,
while DeblurGANv2 imgaug is the model trained with face dataset using imgaug. The blurry image in the first and second rows are
synthesized using blur transferring technique in Sec. 7 and imgaug [9] respectively. The last two rows are in-the-wild blurry images that
we randomly collect on the Internet.

4.1.2 Training on synthetic datasets

For a sharp-blur dataset without explicit blur kernels, we
can randomly swap the blur operator between its pairs using
our method. To be more specific, for each sharp-blur pair

(x, y) and a random sharp image x̂ from this dataset, we
generate the blurry image ŷ using the blur kernel extracted
from (x, y). Then we use this synthetic dataset to train a
deep deblurring model and compare its performance to the
one trained on the original dataset. In this experiment, we



choose SRN-Deblur [36], a typical deep image deblurring
method. The testing datasets are REDS and GOPRO.

The performance of deblurring networks, measured by
the average PSNR score on test sets, is reported in Table 2.
PSNR scores when training on blur-swapped datasets are
comparable to the ones obtained when training on the orig-
inal dataset.

4.2. General blind image deblurring

4.2.1 Qualitative results

We now evaluate our blind image deblurring method, de-
scribed in Sec. 3.2, and compare it to other methods in
a cross domain setting. We use the state-of-the-art deep-
learning-based methods, including DeblurGANv2 [15],
SRN-Deblur [36], and a recent kernel-based algorithm
called SelfDeblur [29]. We train all the methods using
REDS dataset [26] and test them on GOPRO dataset [25].

Some visualization results and their corresponding
LPIPS scores [42] are shown in Fig. 3. The methods based
on deep neural networks [15, 36] produce results that are
very similar to the input. On the other hand, the predicted
images of SelfDeblur [29] are noisy with many artifacts.
Our method consistently generates sharp and visually pleas-
ing results.

4.2.2 Retrieving unseen kernel

Our algorithm is based on the assumption that an unseen
blur operator can be well approximated using the encoded
blur kernel space. Here we conduct an experiment to ver-
ify this assumption. We use F and G that are trained on
one dataset, either REDS or GOPRO, to retrieve unseen blur
operator of each sharp-blur image pair in the testing subset
of the same or different dataset using step (B) in Sec. 3.2.
To evaluate the accuracy of that extracted blur, we compute
PSNR score between the reconstructed and original blurry
images. The average PSNR score for each configuration is
reported in Table 3. As can be seen, the quality of kernels
extracted in cross-domain setting is similar to the ones in
same-domain configuration. It shows that our method is ef-
fective in handling unseen blur.

Fig. 5 visualizes some results when training on REDS
and testing on GOPRO. Our reconstructed blurry images
are close to the original ones, indicating the high quality of
the extracted kernels.

kernel 1 kernel 2 kernel 3 kernel 4

PSNR (db) 49.48 51.93 52.06 53.74
kernel 5 kernel 6 kernel 7 kernel 8

PSNR (db) 49.91 49.49 51.43 50.38

Table 1. Results of our blur kernel extraction on Levin dataset

Dataset

Training data REDS GOPRO

Original 30.70 30.20
Blur-swapped 29.43 28.49

Table 2. Results of SRN-Deblur trained [36] on the original and
blur-swapped datasets.

sharp original blur retrieved blur

Figure 5. Retrieving unseen kernel. The first column shows the
sharp images from the GOPRO dataset, the second column shows
their corresponding blurry images. In the last row, we approximate
the blur operators using the kernels from REDS dataset and apply
it to the sharp images.

Test set

Tranining set REDS4 GOPRO

REDS 34.35 30.67
GOPRO 31.38 35.13

Table 3. Results of our method in retrieving unseen blur kernel
with same and cross-domain configs.

4.3. Using an approximated natural image manifold

4.3.1 Qualitative results

As discussed in Sec. 3.3, we can incorporate a GAN-based
image manifold as the sharp image prior to attain realis-
tic deblurring results. Following [23], we conduct face de-
blurring experiments using the StyleGAN model pretrained
on the FFHQ dataset to approximate the natural facial im-
age manifold. We use both synthesized and in-the-wild
blurry images for testing. As for synthetic data, we use im-
ages from CelebHQ dataset [10]. The blur synthesis tech-
niques include motion-blur augmentation from the imgaug
(the second row in Fig. 4) tool [9] and the blur transferred
from the GOPRO dataset (the first row in Fig. 4). As for in-
the-wild images, we search for blurry faces from the Inter-
net (the last two rows in Fig. 4). Each deep model is trained
using FFHQ dataset [11] with blur operators are synthesized
by imgaug or blur kernels transferred from GOPRO dataset
[25]. As for our method, we use the blur extractor trained



on REDS dataset in Sec. 4.2.2. All the test blurs, therefore,
are unseen to our method.

We compare our deblurring results and different base-
line methods in Fig. 4. As can be seen, the deep deblur-
ring models [15, 36] fail to produce sharp outcomes, par-
ticularly on unseen blur. The state-of-the-art MAP-based
algorithm [29] generates unrealistic and noisy images. In
contrast, our method can successfully approximate realistic
sharp face outputs in all test cases.

4.3.2 Loss convergence

One may think that the good deblurring results in the pre-
vious experiment are purely due to restricting the sharp im-
age solution space to a GAN manifold. Yes, but the blur
kernel prior is equally important; without a good blur ker-
nel prior, the method would fail to converge to desirable
results. To prove it, we analyze the optimization processes
on a specific deblurring example with different blur kernel
manifolds: (1) the traditional convolution kernels with DIP
used in SelfDeblur [29], (2) the bicubic downsampling ker-
nel used in PULSE [23], and (3) our encoded kernel. The
results are shown in Fig. 6. The first two methods failed
to converge since the real blur operator is neither linear nor
uniform. In contrast, the method using our kernel method
quickly converges to a realistic face.

Original blur

ours blurPULSE blur

PULSE 
prediction

uniform blur

Uniform 
prediction

Ours 
prediction

Figure 6. Loss convergence of the method in Sec. 3.3 when using
different kernel priors.

4.4. Blur synthesis

Our blur transfer method is effective in synthesizing new
blurry images. In Fig. 7, we transfer the blur operator from
the source sharp-blur pair (x, y) (the two middle columns)
to the target sharp image x̂ (the first column) to synthesize
its corresponding blurry image ŷ. We see that the content

x̂ x y ŷ

Figure 7. Transfering blur kernel from the source pair x, y to the
target sharp x̂ to generate the target blurry image ŷ.

of x̂ is fully preserved in ŷ, and the blur in ŷ looks simi-
lar to the blur in y. Our method can also work with any
type of images, such as grayscale images (the first row) or
animation images (the second row).

One application of this blur synthesis is data augmenta-
tion. We experiment with the use of this augmentation tech-
nique to improve image deblurring. In particular, we use
FFHQ dataset [11] to synthesize three sharp-blur datasets
with different types of blur kernels: (1) common motion-
blur kernels generated by imgaug tool [9], (2) our encoded
REDS kernels, and (3) our encoded GOPRO kernels. The
first dataset is the traditional deblurring dataset. The sec-
ond dataset can be considered as data augmentation, and the
last dataset is used for unseen blur testing. We train SRN-
Deblur models [36] in two scenarios: using only the first
dataset or using the combination of the first two datasets.
Testing results are reported in Table 4. The network trained
on the combined data is more stable and performs better in
the unseen blur scenario.

Test kernels

Tranining kernels imgaug REDS GOPRO

imgaug 28.64 24.22 22.96
comb. 28.30 28.37 23.92

Table 4. Effect of blur augmentation in improving SRN-Deblur
[36] model, tested on the synthetic FFHQ datasets.

5. Conclusion

In this paper, we have proposed a method to encode the
blur kernel space of an arbitrary dataset of sharp-blur image
pairs and leverage this encoded space to solve some spe-
cific tasks such as image deblurring and blur synthesis. For
image deblurring, we have shown that our method can han-
dle unseen blur operators. For blur synthesis, our method
can transfer blurs from a given dataset of sharp-blur image
pairs into any domain of interest, including domains of fa-
cial, grayscale, and animated images.
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