
Thread-Safe: Towards Recognizing Human

Actions Across Shot Boundaries

Minh Hoai1,2 and Andrew Zisserman1

1Visual Geometry Group, Department of Engineering Science,
University of Oxford, Oxford, OX1 3PJ, UK.

2Department of Computer Science,
Stony Brook University, Stony Brook, NY 11794, USA.

Abstract. We study the task of recognizing human actions in video
whilst paying attention to the shot and thread editing structure. Most
existing action recognition algorithms ignore this structure, but it is gen-
erally present in edited TV and film material.

To this end, we make the following contributions: first, we introduce
a new dataset of human actions to study the occurrence/reoccurrence
of patterns of human actions in edited TV material; second, we propose
composing a video into threads of related shots, removing some of the
discontinuities due to shot boundaries; and third, we show the benefits
of utilizing video threads in recognizing human actions. The experiments
demonstrate that human action retrieval accuracy can be improved using
threads.

1 Introduction

Humans are the primary focus of many TV shows, and consequently recogniz-
ing their actions is important for automated semantic analysis of TV material.
This importance is well recognized, and several datasets (e.g.,[1–4]) and many
approaches have been proposed (e.g., [1, 2, 4–7]). Existing approaches, however,
ignore the structure and discontinuities in edited material. For examples, many
algorithms track object patches or compute motion cues across shot boundaries,
which are irrelevant to the actual content of an action.

In this paper, we propose to embrace the editing structure when recognizing
human actions. We reverse the editing and decompose a video into threads [8].
Each thread is an ordered sequence of shots, filming the same scene by the same
camera. Recall that a scene is typically filmed by multiple cameras at multiple
angles, and a video is composed by cutting and joining video clips from multiple
cameras. These video clips are referred to as shots and the transitions between
them are shot boundaries.

Fig. 1 shows a typical video sequence and illustrates the importance of con-
sidering threads when recognizing human actions. This video sequence depicts a
scene of an affectionate kiss. It consists of several shots, which can be connected
to form several interleaving threads. Apart from removing abrupt discontinu-
ities due to shot boundaries, threads can be used to separate parts of the video
sequence that are irrelevant to the action of interest.
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Fig. 1. A typical scene with shots and threads. This video sequence of an affec-
tionate kiss consists of several interleaving threads. Thread 1 sets the context for the
kiss, while Threads 2 and 3 portray the kiss at different angles. Thread 4 shows a dog
being amused by the affection between two people. This thread shows a part of the
scene, but it is completely irrelevant to the kissing action.

Video threads and shot grouping have been considered before, but primarily
for scene segmentation. Zhai & Shah [9] proposed an MCMC algorithm for clus-
tering shots into scenes. Yeung et al. [10] constructed shot connectivity graph
and used hierarchical clustering for scene segmentation. Kender & Yeo [11] de-
tected scene boundaries by measuring coherence between shots and taking the
local minima. Chasanis et al. [12] used sequence alignment and shot threading
for scene detection. Cour et al. [8] proposed a weakly supervised algorithm that
uses screenplays and close captions to parse a movie into a hierarchy of scenes,
threads, and shots. Lehane et al. [13, 14] considered repeating shots with still
cameras and used Finite State Machines to detect dialogues. Pickup & Zisser-
man [15] used threads to spot visual continuity errors in movies. Tapaswi et
al. [16] utilized threads for visualizing character interactions. All of these works,
however, do not study human actions and the benefits of video threading in
recognition.

Unfortunately, no existing datasets for human actions, including [2–4, 17–19],
can be used to study the editing structure and the benefits of using threads for
recognition, as they lack annotation and contextual surround (video sequences
before and after the actions). Therefore, we introduce here a new dataset of
human actions. Our dataset contains more than 4000 video samples, divided
into shots with annotated occurrences of human actions. The data is extracted
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from a large collection of TV series with different types of genres. This dataset
is the first of its kind, and this is a contribution of our paper.

2 Dataset

We introduce a large dataset of video threads with annotated occurrences of
human actions. The dataset consists of video samples for 13 popular actions, ex-
tracted from 15 different TV series. The video samples are divided into shots, and
Amazon Mechanical Turk (MTurk) is used to verify the occurrence of human ac-
tions in the shots. This dataset can be used to study the occurrence/reoccurrence
patterns of human actions in edited TV material and the benefits of using
video threads to recognize human actions. These tasks can not be performed
with existing human action datasets [2–4, 17–19]. The dataset is available at
http://www.robots.ox.ac.uk/~vgg/data/threadsafe.

2.1 Data collection with script mining

The data is extracted from a large collection of edited TV material. This collec-
tion consists of 15 different TV series, each with two entire seasons. The TV series
are: Frasier, Married With Children, Millennium, Friends, Andromeda, Gilmore
Girls, Smallville, Farscape, Seinfeld, Scrubs, Lost, The Big Bang Theory, Star
Trek TNG, Desperate Housewives, and Roswell. These TV series cover a wide
range of genres, from family and friends to crime investigation and science fic-
tion. There are 658 different episodes. The duration of each episode ranges from
20 to 60 minutes.

To obtain rough locations of human actions, we use video-aligned scripts [20].
Scripts are text documents that contain dialogs and scene descriptions. Scripts
are generally available for popular TV shows. All TV series considered in our
dataset have scripts, which are publicly available on the Internet. Scripts, how-
ever, do not provide time synchronization with the video. Following [20], we
resolve this issue by synchronizing script dialogs with subtitles. Subtitles are
already synchronized with videos through timestamps, and they can be easily
downloaded from the Internet or copied from DVDs. Using dynamic time warp-
ing, we match script text with subtitles and transfer the time information from
subtitles to scripts.

From the scene descriptions in video-aligned scripts, we collect video samples
for 13 actions: answer phone, drive car, eat, fight, get out car, shake hand, hug,
kiss, run, sit down, sit up, stand up, and high five. These actions frequently occur
in TV shows. They are the superset of the actions considered in Hollywood2 [2]
and TVHI [4] datasets, two benchmarks for human action recognition.

To collect video samples from scene descriptions, we build a text search en-
gine. For a particular action, we first identify a set of relevant keywords and
phrases. For example, the keywords and phrases for Shakehand are: “shake-
hand”, “handshake”, “shake * * hand”, and “hand * * shake”. Here, the “*” is a
wild card, and it can be matched to any word. The search engine also supports
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Fig. 2. Video intervals for annotation. We ask MTurk workers to annotate the
extended video sequence of an action clip. The video sequence is divided into non-
overlapping intervals based on shot boundaries and the start and end markings of the
action clip. The shot boundaries depicted here are just for illustrative purpose; their
actual locations vary.

word stemming, so “shake” is equivalent to “shakes” and “shaking”. With wild-
card and stemming support, searching for “shake * * hand” will return all the
following sentences if they are in the scene descriptions: 1) they shake hands;
2) he shakes her hand; and 3) Leonard, shaking Penny’s hand, smiled excitedly.
We refer the video samples obtained using this way as ActionClips (ACs).

2.2 Annotation verification and refinement

We use MTurk to verify and refine the annotation for the ACs that were au-
tomatically obtained using aligned scripts. We also collect annotation for the
video sequences that immediately precede or follow the action clips. For each
AC, we first extend it by 10 seconds at both ends of the clip, as illustrated in
Fig. 2. This extended sequence will be referred to as a Ten second Extended
Action Clip (TEAC). We divide the TEAC into non-overlapping intervals based
on: 1) shot boundaries; 2) the start and the end of the AC; and 3) the shifted
start time (2 seconds earlier) and the shifted end time (2 seconds later) of the
AC. This division procedure is illustrated in Fig. 2. Each obtained interval is a
video shot or a part of a video shot. Hereafter, we will refer to these intervals
simply as shots for brevity. We ask three MTurk workers to identify the shots
that visually contain the action of interest.

2.3 Dataset statistics and consistency of annotation

Tab. 1 displays dataset statistics and the consistency of annotation. The second
and third columns show the number of clips and the number of shots for each
of the 13 actions. Altogether, there are around 5000 video samples with 64000
shots. Each shot is labeled by three MTurk workers, and the last three columns
of Tab. 1 shows the percentage of shots where all three MTurk workers agree.
The overall percentage of agreement is 86.3%, and 9.1% of the shots is unan-
imously marked as containing the action of interest. The percentage of shots
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Table 1. Dataset statistics and annotation consistency. Each shot is annotated
by three MTurk workers. The last three columns show the percentage of shots that
receive the same annotation from all MTurk workers. The percentage of unanimous
decision is 86.3%.

%shots with agreed annotation

Action #clips #shots No Yes No/Yes

AnswerPhone 237 2768 62.8% 25.6% 88.4%
DriveCar 171 2419 82.8% 4.5% 87.3%
Eat 307 3539 64.1% 11.0% 75.1%
Fight 383 6268 68.4% 9.7% 78.1%
GetOutCar 159 2246 87.5% 4.5% 92.0%
Shakehand 181 2090 78.0% 7.8% 85.8%
Hug 431 4831 70.6% 17.4% 88.0%
Kiss 774 8550 75.4% 12.0% 87.4%
Run 1441 20758 80.4% 6.6% 87.0%
SitDown 459 4921 83.0% 6.2% 89.2%
SitUp 133 1608 84.5% 3.0% 87.5%
StandUp 274 3421 87.9% 4.3% 92.2%
Highfive 53 571 87.6% 5.4% 93.0%

Total 5003 63990 77.2% 9.1% 86.3%

containing the action of interest varies from action to action. This is because
human actions are different and they are portrayed differently in edited TV ma-
terial. For example, a video sample for AnswerPhone tends to alternate between
two threads of two people talking on the phone for an extended period of time.
This is why the percentage of AnswerPhone shots in an AnswerPhone sample
is relatively high (25.6%). Meanwhile, the action SitUp or StandUp are usually
shown briefly. This explains the low percentages of SitUp and StandUp shots.

2.4 Temporal extent of actions

Where does an action occur? To answer this question, we report the percentage of
times ACs and their surrounding video sequences contain the action of interest.
Refer to Fig. 3 and consider an ActionClip (AC). Let PreAC and PostAC be the
video sequences obtained by extending the action clip to the previous or next
shot boundaries. PreAC2 and PostAC2 are the extension before PreAC and after
PostAC, respectively. The occurrence percentage of the actions in these video
parts are reported in Tab. 2. Here, a video sequence is believed to contain an
action of interest if it contains a shot that is marked to contain the action by at
least two MTurk workers.

As can be seen in Tab. 2, the action samples obtained using video-aligned
scripts are useful, but noisy. On the one hand, the occurrence percentage for
an action inside ACs is high, 52.3%. On the other hand, this action-occurrence
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Fig. 3. Video sequences surrounding an action clip. Given an ActionClip (AC),
PreAC and PostAC are obtained by extending the AC to the closest shot boundaries.
PreAC2 and PostAC2 are continual extensions of PreAC and PostAC.

percentage is far from 100%. Furthermore, consider the occurrence percentage
for all combined temporal locations (last column of Tab. 2). The mean value is
71.3%, which is essentially the percentage of times a verbally-described action
is visually seen. This reflects the nature of scene descriptions in video scripts:
many of them are based on inference instead of visualization. For example, an
out-of-frame handshake between two people can still be inferred based on other
cues such as audio or the greeting scenario.

The AC is the best location to extract an action sample because its action-
occurrence percentage is significantly higher than those of other temporal lo-
cations. However, AC does not usually contain the entire action as the action
percentage for PreAC and PostAC are also significant. Thus, perhaps the AC
should be extended to capture the action in its entirety. We propose to consider
Extended Action Clip (EAC), obtained by extending the AC to the previous
and next shot boundaries, but clipping the extension at 2s. This 2s clipping is to
avoid a situation where the previous or next shot boundaries are far away. Tab. 3
shows the action-occurrence percentage for EAC and its preceding and follow-
ing video sequences. Notably, the action-occurrence percentage for PostEAC is
significantly higher than PreEAC. This suggests that the beginning of an action
is more precisely aligned with a scene description than the end of the action.

3 Video Threads

A video sequence is decomposed into interleaving threads. Each thread is an
ordered sequence of video shots filmed from the same camera for the same scene.
This section describes a shot boundary detection algorithm and the algorithm
for joining shots into threads.

3.1 Shot Boundary Detection

Shot boundary detection is a very well studied area [21–23]. Our algorithm is
based on several principles suggested in [21, 22] such as temporal discontinuity
and adaptive threshold, but it uses more recent visual features namely HOG [24]
and SIFT [25]. Based on HOG, the algorithm produces a set of candidate shot
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Table 2. Occurrence percentage for human actions at different temporal

locations. AC is the video sample automatically obtained by video-aligned script.
PreAC, PreAC2, PostAC, and PostAC2 are video sequences before or after AC, as
depicted in Fig. 3.

PreAC2 PreAC AC PostAC PostAC2 Anywhere

AnswerPhone 13.9% 17.3% 73.8% 67.5% 54.9% 89.9%
DriveCar 5.8% 4.1% 43.9% 13.5% 16.4% 53.8%
Eat 13.0% 13.0% 55.0% 42.3% 42.0% 81.4%
Fight 16.2% 11.2% 34.5% 10.2% 20.4% 44.4%
GetOutCar 3.1% 7.5% 54.7% 21.4% 9.4% 69.2%
Shakehand 6.1% 18.2% 49.2% 23.2% 11.0% 70.2%
Hug 11.4% 22.0% 68.4% 40.6% 27.6% 87.9%
Kiss 9.3% 21.7% 70.9% 21.2% 13.4% 86.6%
Run 13.3% 12.5% 44.2% 18.5% 20.2% 61.0%
SitDown 3.9% 11.3% 51.4% 23.7% 10.9% 81.0%
SitUp 5.3% 6.8% 41.4% 13.5% 6.8% 58.6%
StandUp 9.5% 15.0% 50.7% 13.5% 11.3% 75.5%
Highfive 9.4% 24.5% 41.5% 5.7% 7.5% 67.9%

Mean 9.2% 14.3% 52.3% 24.2% 19.4% 71.3%

boundaries by thresholding the difference between pairs of consecutive frames.
Subsequently, SIFT matching is used to remove false candidates. Evaluated on
the TVHI dataset [4], this shot boundary detection algorithm has no false pos-
itive and 1 false negative. The details of HOG proposal and SIFT verification
are given below.

Shot boundary proposal using HOG. For each video frame of a video se-
quence, our algorithm first normalizes the frame to 128×96 pixels and computes
the HOG feature vector with cell size of 8. Let hi be the HOG feature vector
for frame i, and let di be the HOG-difference between frame i and its previous
frame: di = ||hi −hi−1||1. Centering at i, consider the values of HOG-difference
in a temporal window around i (i.e., {di−5, · · · , di+5}), and let mi and si be
the mean and standard deviation respectively. We first discard all frames i such
that di < threshold, where threshold is set to be the 98.5 percentile of all HOG-
difference values. We further remove all frames where the HOG difference is not
significantly higher than the mean value of the HOG differences in the supporting
window. Specifically, we remove frame i from the list of shot boundary candi-
dates if di < mi + 1.5si. This procedure can be performed in real time because:
i) HOG feature extraction is fast, and ii) the mean and standard deviation for a
sliding window can be computed using convolution.

False positive removal with SIFT matching. The set of candidate bound-
aries returned by the above procedure can still contain false positives due to fast
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Table 3. Action-occurrence percentage for extended action clip. EAC: ob-
tained by extending the AC to the previous and next shot boundaries, but clipping the
extension at 2s. PreEAC: the video sequence right before EAC. PostEAC: the video
sequence right after EAC.

PreEAC EAC PostEAC

AnswerPhone 15.6% 82.7% 71.3%
DriveCar 6.4% 45.0% 19.9%
Eat 16.9% 64.5% 59.0%
Fight 17.2% 36.3% 21.1%
GetOutCar 5.0% 60.4% 17.6%
Shakehand 8.3% 61.3% 17.1%
Hug 16.2% 77.3% 40.4%
Kiss 13.2% 78.6% 20.4%
Run 15.1% 50.7% 24.4%
SitDown 6.8% 67.3% 18.5%
SitUp 6.8% 49.6% 12.8%
StandUp 10.6% 65.0% 15.0%
Highfive 11.3% 64.2% 7.5%

Mean 11.5% 61.8% 26.5%

motion. We address this problem using SIFT matching [25]. Two video frames
are considered to be in the same shot if there are at least 40 geometrically valid
matches (the horizontal and vertical distance between two matched descriptors
must be smaller than a quarter of the frame width and height respectively).
SIFT matching is much slower than HOG computation. Fortunately, we only
need to perform SIFT matching for a small set of shot boundary candidates.

3.2 Joining video shots into threads

Given an ordered sequence of video shots s1, · · · , sk, we link shots into threads as
follows. First, we construct an undirected connectivity graph where each node
represents a shot. Two nodes i and j are connected if 0 < i − j < 10 and
the first frame of shot i can be matched with the last frame of shot j (using
SIFT matching [25]). We then find all connected components of the graph. Each
connected component defines a video thread of shots. The complexity for building
the graph and for finding the connected components is O(k), i.e., linear in the
number of shots.

Tab. 4 shows some summary statistics of threads and shots in TEACs. Some
actions such as Fight and Run contain more threads than other actions. Com-
pared Columns (A) and (B), it can be seen that not all threads contain an action
of interest. In fact, the proportion of threads that contain an action can be small
(e.g., GetOutCar and SitDown). This suggests the importance of considering
threads for recognizing human actions. Compared Columns (C) and (D), on av-
erage, a thread that does not contain an action has fewer shots than a thread
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Table 4. Mean numbers of threads and shots in TEACs. Column A: mean
number of threads. B: mean number of threads containing the action of interest. C:
mean number of shots in threads without the action. D: mean number of shots in
threads with the action. E: percentage of shots that contain the action in the threads
that contain the action.

Mean #threads Mean #shots

A B C D E

AnswerPhone 5.24 2.07 1.34 1.65 89.9%
DriveCar 8.09 1.78 1.32 1.32 93.8%
Eat 5.02 1.73 1.38 1.56 88.6%
Fight 11.91 4.87 1.31 1.45 91.9%
GetOutCar 7.39 1.21 1.36 1.43 85.0%
Shakehand 4.90 1.24 1.41 1.80 73.4%
Hug 5.08 1.75 1.28 1.71 80.6%
Kiss 4.78 1.54 1.36 1.72 78.8%
Run 8.67 2.13 1.28 1.38 88.4%
SitDown 4.74 1.12 1.34 1.53 80.8%
SitUp 5.64 1.17 1.34 1.66 76.4%
StandUp 5.70 1.22 1.37 1.71 76.0%
Highfive 4.56 1.25 1.30 1.89 66.4%

Mean 6.29 1.77 1.34 1.60 82.3%

that does. For threads that contain an action, the percentages of shots containing
the action are high, varying from 66.4% to 93.8% (last column of Tab. 4).

4 Experiments and Analysis

4.1 Experimental Setup

Training and Testing data. We split video samples into the test and training
subsets such that the two subsets do not share samples from the same TV series.
We split the TV series into two separate subsets, aiming to have scene and
genre diversity in both training and testing sets. In particular, the following TV
series are used for training: Frasier, Married With Children, Millennium, Friends,
Andromeda, Gilmore Girls, Smallville, and Farscape. In testing, to ensure the
correctness of test data, a video sequence (or thread) is considered positive only
if all three MTurk workers believe it contains the action. In training, to increase
the amount of training data, a video sequence (or thread) is considered as a
positive training sample if it is annotated to contain the action by at least two
MTurk workers.

Trajectory features. The feature representation is based on improved Dense-
Trajectory Descriptors (DTDs) [6]. DTD extracts dense trajectories and encodes
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gradient and motion cues along trajectories. Each trajectory leads to four feature
vectors: Trajectory, HOG, HOF, and MBH, which have dimensions of 30, 96, 108,
and 192 respectively. We refer the reader to [6] for more details.

The procedure for extracting DTDs is the same as [6] with two subtle modifi-
cations: (i) videos are normalized to have the height of 360 pixels, and (ii) frames
are extracted at 25 fps. These modifications are added to standardize the feature
extraction procedure across videos and datasets. They do not significantly alter
the performance of the action recognition system [26]f.

Fisher vector encoding. To encode features, we use Fisher vectors [27]. A
Fisher vector encodes both first and second order statistics between the feature
descriptors and a Gaussian Mixture Model (GMM). In [6], Fisher vector shows
an improved performance over bag of features for action classification. Following
[27, 6], we first reduce the dimension of DTDs by a factor of two using Principal
Component Analysis (PCA). We set the number of Gaussians to k = 256 and
randomly sample a subset of 1,000,000 features from the training sets of TVHI
and Hollywood2 to learn the GMM. There is one GMM for each feature type.
A video sequence is represented by a 2dk dimensional Fisher vector for each
descriptor type, where d is the descriptor dimension after performing PCA. As in
[27, 6], we apply power (α = 0.5) and L2 normalization to the Fisher vectors. We
combine all descriptor types by concatenating their normalized Fisher vectors,
leading to a single feature vector of 109, 056 dimensions.

Least-Squares SVM. For classification, we propose to use Least-Squares Sup-
port Vector Machines (LSSVM) [28]. LSSVM, also known as kernel Ridge regres-
sion [29], has been shown to perform equally well as SVM in many classification
benchmarks [30]. LSSVM has a closed-form solution, which is a computational
advantage over SVM. Furthermore, once the solution of LSSVM has been com-
puted, the solution for a reduced training set obtaining by removing any training
data point can found efficiently. This enables reusing training data for further
calibration (e.g., used in [31, 32, 26]). This section reviews LSSVM and the leave-
one-sample-out formula.

Given a set of n data points {xi|xi ∈ ℜd}ni=1 and associated labels {yi|yi ∈
{1,−1}}ni=1, LSSVM optimizes the following:

minimize
w,b

λ||w||2 +

n
∑

i=1

(wTxi + b − yi)
2. (1)

For high dimensional data (d ≫ n), it is more efficient to obtain the solution
for (w, b) via the representer theorem, which states that w can be expressed as
a linear combination of training data, i.e., w =

∑n

i=1 αixi. Let K be the kernel
matrix, kij = xT

i xj . The optimal coefficients {αi} and the bias term b can be
found using closed-form formula: [αT , b]T = My. Where M and other auxiliary
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variables are defined as:

R =

[

λK 0n

0T
n 0

]

,Z =

[

K

1T
n

]

,C = R+ ZZT ,M = C−1Z,H = ZTM. (2)

If xi is removed from the training data, the optimal coefficients can be computed:

[

α(i)

b(i)

]

=

[

α

b

]

+

(

[αT b]zi − yi

1− hii

)

mi. (3)

Here, zi is the ith column vector of Z and hii is the ith element in the diagonal
of H. Note that R,Z,C,M, and H are independent of the label vector y. Thus,
training LSSVMs for multiple classes is efficient as these matrices need to be
computed once. A more gentle derivation of the above formula is given in [33].

4.2 The benefits of knowing relevant video threads

Not every thread of a video sequence is relevant for recognizing human actions,
as we discussed earlier. This subsection shows the empirical benefits of knowing
relevant threads.

Consider the task of classifying whether a video sequence contains an action
of interest. We create training data for this experiment by combining EACs of
all actions. For a particular action, the positive samples are EACs that are anno-
tated to contain the action, and the negative samples are EACs for other actions.
Recall that an EAC is believed to contain the action if it has a shot containing
the action (agreed by at least two MTurk workers). Similarly, we create a test
set by extracting EACs from testing TV series (which are disjoint from training
TV series). However, for testing, we only use EACs that are unanimously agreed
to contain the actions by all MTurk workers. This is to ensure the correctness
of test data.

We consider several methods, with and without video threading. In all cases
the task is to classify whether an EAC contains the action of interest in the test
data. However, we change the representation of the EAC in both training and
testing over the different methods as follows. If video threading is not used, a
feature vector (using Fisher vector encoding of dense trajectories) is computed
for the entire video sequence, ignoring the discontinuities due to shot boundaries.
If video threading is used, an EAC is divided into several threads and a feature
vector (using Fisher vector encoding) is computed for each thread independently.
The feature vectors of all threads are then aggregated to be the feature vector
for the EAC. The task considered in this subsection should not be confused with
individual thread classification, which is investigated in the next subsection.

We measure performance using Average Precision (AP), which is an accepted
standard for action recognition [2, 4, 34–38]. Tab. 5 compares the performance of
using and not using threads. Clip is a popular approach [34, 37, 6], which treats
an EAC as the whole and extract feature trajectories across shot boundaries.
AllThreads is the method that decomposes an EAC into threads and computes
feature trajectories for each thread separately. Here, we join the shots of a thread
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Table 5. The benefits of discarding irrelevant threads in training and test-

ing. This shows APs of several methods for classifying video clips. Clip: a video clip
is treated as the whole, with dense trajectories computed across shot boundaries.
AllThreads: a video clip is decomposed into threads and dense trajectories and a Fisher
Vectors are computed for each thread separately; each clip is then represented by the
mean of Fisher Vectors. AllThreads+Clip: combining AllThreads and Clip (by con-
catenating feature vectors). RelevantThreads: similar to AllThreads, but assuming we
know which threads contain the actions so irrelevant threads can be discarded. These
results indicate the importance of finding relevant threads.

Ignore threads Use threads

Action Clip AllThreads AllThreads+Clip RelevantThreads

AnswerPhone 22.1 21.6 23.2 31.5
DriveCar 44.5 51.7 49.6 70.8
Eat 38.1 35.0 38.9 37.3
Fight 35.8 29.5 35.0 55.6
GetOutCar 21.9 26.0 24.5 41.5
Shakehand 20.9 18.9 21.2 30.6
Hug 41.2 39.3 40.6 44.2
Kiss 69.6 68.8 69.8 76.6
Run 87.7 88.3 88.8 94.9
SitDown 71.5 69.7 71.3 80.2
SitUp 16.1 14.5 13.7 12.1
StandUp 19.1 17.8 20.1 26.6
Highfive 13.2 11.9 12.2 9.3

mean 38.6 37.9 39.1 47.0

together and compute dense trajectories normally, as explained in Subsection 4.1.
For an EAC with multiple threads, we average the feature vectors of all threads
and perform L2-normalization. Notably, AllThreads is slightly worse than Clip.
This suggests that the shot boundaries may provide some indicative cues to-
ward recognizing human actions in edited material, even though they are not
parts of an action. AllThreads+Clip is the method that combine both threads
and the whole EAC, by concatenating feature vectors computed for both. Rel-
evantThreads is the method that only aggregates feature vectors for threads
that contain the actions. This leads to huge AP improvement, suggesting the
importance of identifying relevant threads.

4.3 Video thread classification

The previous subsection shows the benefits of knowing relevant threads. In this
subsection, we consider the task of recognizing those threads, as opposed to
classifying the whole action clip.

We create the training data for this experiment by combining positive threads
of EACs of all actions. For a particular action, the positive samples are threads



Thread-Safe: Recognizing Actions Across Shot Boundaries 13

Table 6. Recognizing relevant threads of human actions. This table shows the
APs for action recognition where the testing samples are video threads. Clip: training
samples are EACs without using threads. PT: training samples are threads; positive
samples are positive threads extracted inside the EACs. PT+NITAP, PT+NITAN,

PT+POTAP: same as PT but with additional training samples. NITAP: use negative
threads inside EACs as positive training samples. NITAN: use negative threads inside
EACs as negative training samples. POTAP: use positive threads outside EACs as
positive training samples.

Training data are video threads

Using additional training threads

Action Clip PT PT+NITAP PT+NITAN PT+POTAP

AnswerPhone 25.4 27.9 20.2 28.4 23.2
DriveCar 54.7 63.5 52.8 60.5 67.5
Eat 31.0 33.4 23.3 31.4 34.5
Fight 28.9 46.3 44.5 43.0 48.7
GetOutCar 23.0 36.5 19.3 34.6 38.1
Shakehand 21.2 28.3 21.2 28.8 26.3
Hug 38.7 43.5 41.6 39.7 44.4
Kiss 72.0 75.2 64.7 74.2 76.2
Run 92.4 93.7 85.8 93.4 94.1
SitDown 77.7 77.8 63.9 77.1 79.0
SitUp 12.4 11.3 3.4 12.2 9.6
StandUp 22.4 24.3 11.4 22.5 25.0
Highfive 13.8 8.4 5.0 8.3 9.3

mean 39.5 43.8 35.2 42.6 44.3

that are annotated to contain the action, and the negative samples are positive
threads for other actions. In training, a thread is believed to contain the action
if it has a shot containing the action (agreed by at least two MTurk workers).
Similarly, we create a test set of positive threads of testing EACs. For testing,
we only use threads that are unanimously agreed to contain the actions by all
MTurk workers. Again, this is to ensure the correctness of test data.

Tab. 6 shows the performance for recognizing relevant action threads. Clip
is the method in which training samples are the whole EACs without consid-
ering threads. As can be seen, Clip performs relatively poorly compared to
PT. PT is the method in which training samples are threads. PT+NITAP,

PT+NITAN, PT+POTAP: are similar to PT, but with additional training sam-
ples. PT+NITAP is the method where negative threads inside EACs are mis-
takenly used as additional positive training samples. As can be seen, a mistake
for identifying relevant threads is devastating. This reaffirms the importance for
identifying relevant threads. PT+NITAN is the method where negative threads
inside EACs are used as additional negative training samples. Surprisingly, this
does not improve the performance. This is perhaps due to the importance of
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contextual cues: a thread might not portray an action, but still provides dis-
criminative cue for recognizing the action. PT+POTAP is the method where
additional positive training samples are positive threads extracted outside EACs
(i.e., either PreEACs or PostEACs). PT+POTAP improves the performance of
PT; this reemphasizes the importance of having more relevant threads in train-
ing data. However, the improvement is slim. This indicates the high degree of
similarity between the additional and the original data. Recall that the positive
threads outside an EAC may just be the continuation of the positive threads
inside.

Several conclusions can be drawn from this experiment and the experiment in
Subsection 4.2. First, it is beneficial to consider threads. Second, it is important
to identify the relevant threads. Third, it is perhaps not so beneficial to consider
additional training threads from action clips (EACs or TEACs) where we already
collect some positive training threads.

5 Summary

We have considered the task of recognizing human actions in TV material and
discussed the problem of ignoring the discontinuity due to shot boundaries. To-
wards addressing the problem, we have introduced a large dataset with annotated
occurrences of human actions in video shots. We used our dataset to study video
threads and human actions, and our experiments confirmed the importance of
considering and identifying relevant video threads in action recognition.
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