
ARTICLE IN PRESS

Pattern Recognition 43 (2010) 584–591
Contents lists available at ScienceDirect
Pattern Recognition
0031-32

doi:10.1

� Corr

E-m

ftorre@c

URL
journal homepage: www.elsevier.de/locate/pr
Optimal feature selection for support vector machines
Minh Hoai Nguyen �, Fernando de la Torre

Robotics Institute, Carnegie Mellon University, Pittsburgh, PA 15213, USA
a r t i c l e i n f o

Article history:

Received 9 February 2009

Received in revised form

17 June 2009

Accepted 1 September 2009

Keywords:

Support vector machine

Feature selection

Feature extraction
03/$ - see front matter & 2009 Elsevier Ltd. A

016/j.patcog.2009.09.003

esponding author.

ail addresses: minhhoai@cmu.edu (M.H. Nguy

s.cmu.edu (F. de la Torre).

: http://www.andrew.cmu.edu/user/minhhoa
a b s t r a c t

Selecting relevant features for support vector machine (SVM) classifiers is important for a variety of

reasons such as generalization performance, computational efficiency, and feature interpretability.

Traditional SVM approaches to feature selection typically extract features and learn SVM parameters

independently. Independently performing these two steps might result in a loss of information related to

the classification process. This paper proposes a convex energy-based framework to jointly perform

feature selection and SVM parameter learning for linear and non-linear kernels. Experiments on various

databases show significant reduction of features used while maintaining classification performance.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Over the last decade, SVMs have become the reference for
many classification problems because of their flexibility, compu-
tational efficiency and capacity to handle high dimensional data.
Like other classifiers, in many supervised learning problems,
failure to discard irrelevant features (e.g. noise, outliers, redun-
dant features) will affect the system performance which includes
classification accuracy, computational efficiency, and learning
convergence. First, the implicit regularization achieved by feature
pruning typically increases the generalization ability of classifiers;
this generally leads to higher classification accuracy. Second, using
irrelevant features also considerably increases the computation
time. Third, too many features may render the convergence
impossible, leading to random classification decisions. In addition
to the system performance, identification of important variables
that have intuitive physical interpretation is another critical
requirement of many applications. Irrelevant features typically
do not have intuitive justification. Due to the aforementioned
reasons, feature selection has been a central topic in a variety of
fields including signal processing, computer vision, statistics,
neural networks, pattern recognition, and machine learning.

Traditionally, feature selection is performed independently of
learning the classifier parameters [1–7]. However, separately
performing these two steps might result in a loss of informa-
tion relevant to classification tasks. Recently, several approaches
ll rights reserved.

en),

n/ (M.H. Nguyen).
[8–12] for joint feature selection and SVM construction have been
proposed. However, the optimization problems of those methods
are not convex; the classifier training procedure often converges
to a local minimum. Extending previous work on feature selection
and classification, this paper proposes a convex framework for
jointly learning optimal feature weights and SVM parameters. We
show, theoretically and experimentally, that the set of feature
weights obtained by our method is naturally sparse and can be
used for feature selection.

Fig. 1 illustrates the main point of the paper. Fig. 1a displays a
17� 29 rectangular patch around an eye. Fig. 1b plots the ROC
curve to detect eyes in unseen test images, using a linear SVM
with all the pixels inside the rectangle (493 pixels) as features.
Fig. 1c displays a sparse set of 64 pixels chosen by our algorithm
(cyan dots). These pixels and their weights are learned jointly
with the SVM parameters. Using only 64 pixels (13% of the
features), our SVM classifier produces an ROC curve (Fig. 1d) that
is almost identical to the one shown in Fig. 1b (using all pixels).
Although the classification performance is not significantly better
in this particular case, using only 13% of the features lead to a
dramatic increase in speed. Notably, most selected pixels are
located around the edges of the eye, which is consistent with our
intuition for eye detection.

The rest of the paper is organized as follows. Section 2 reviews
previous work on SVMs and feature extraction. Section 3 derives a
normalized error function to jointly learn a parameterized kernel
and the SVM parameters. Methods for learning feature weights in
the input space and kernel space are provided in Sections 4 and 5,
respectively. Section 6 relates our method to L1-SVMs and
provides a theoretical justification for the sparsity of the selected
features. Section 7 describes extensive experiments on various
standard datasets.

www.elsevier.de/pr
dx.doi.org/10.1016/j.patcog.2009.09.003
mailto:minhhoai@cmu.edu
mailto:ftorre@cs.cmu.edu
mailto:http://www.andrew.cmu.edu/user/minhhoan/a4.3d

ARTICLE IN PRESS

Fig. 1. (a) 17� 29 rectangular patch used for eye detection. (b) ROC curve of a

linear SVM classifier using all pixels as features. (c) 64 most discriminative pixels

used by our SVM classifier that jointly optimizes pixel weighting and SVM

parameters. (d) ROC curve of the learned SVM classifier, using only 64 pixels.

M.H. Nguyen, F. de la Torre / Pattern Recognition 43 (2010) 584–591 585
2. Previous work

This section reviews previous work on SVMs and feature
selection for SVMs.

2.1. Support vector machines

Given a set of training data x1; . . . ;xnAR
d�1 (see notation)1

with corresponding labels y1; . . . ; ynAf�1;1g, SVMs seek a
separating hyperplane with the maximum margin [13]:

maximize
w ;b ;M

M

subject to yiðw
TjðxiÞþbÞZM 8i; JwJ2 ¼ 1:

ð1Þ

Here, M is the margin, w is the normal vector of the hyperplane,
and jð�Þ represents the mapping from the input space to the
feature space.

Let w¼w=M, b¼ b=M, then Eq. (1) is equivalent to

maximize
w;b

1

JwJ2
subject to yiðw

TjðxiÞþbÞZ1 8i: ð2Þ

The above is equivalent to

minimize
w;b

1

2
JwJ2

2 subject to yiðw
TjðxiÞþbÞZ1 8i: ð3Þ

Using a soft-margin instead of a hard-margin, we obtain the
primal problem for SVMs:

minimize
w;b;n

1

2
JwJ2

2þC
Xn

i ¼ 1

xi

subject to yiðw
TjðxiÞþbÞZ1� xi 8i; xiZ0 8i:

ð4Þ
1 Bold uppercase letters denote matrices (e.g. X), bold lowercase letters denote

column vectors (e.g. x). xi represents the ith column of the matrix X. xij denotes the

scalar in the row jth and column ith of the matrix X. xij also denotes the scalar in

the row jth of column vector xi. Non-bold letters represent scalar variables.

JxJ2 ¼
ffiffiffiffiffiffiffiffi
xT x
p

designates Euclidean norm of x. diagð�Þ is the operator that extracts

the diagonal of a square matrix or constructs a diagonal matrix from a vector.
Here, fxig
n
1 are slack variables which allow for penalized constraint

violation. C is the parameter controlling the trade-off between a
large margin and less constrained violation.

2.2. Feature construction in SVM

This section discusses previous work on selecting features for
SVMs. One popular technique for selecting features is RELIEF
[14,15]. RELIEF assigns a weight to a particular feature based on
the differences between the feature values of nearest neighbor
pairs. Cao et al. [4] further developed this method by learning
feature weights in kernel spaces. This method is often done as a
data processing step, independent of classifier construction. de la
Torre and Vinyals [2] learned a subspace-parameterized Taylor
series kernel expansion that effectively downweighed irrelevant
pixels for classification with SVMs. Recently, there have also been
several papers that learn kernel matrices for classification [16–18].
A popular approach is to define a parameterized family of kernel
matrices and optimize the kernel parameters to align with an
ideal kernel. Another popular approach is to determine a desired
property and learn a kernel which exhibits that property. In these
approaches, the kernel is learned independently of the SVM
parameters. This is a key difference between our proposed
method and previous work.

To address the problem of jointly learning SVM parameters and
kernels, Chapelle et al. [19] and Weston et al. [9] proposed a
method for choosing SVM parameters including the parameters of
kernels by minimizing the leave-one-out cross validation (LOOCV)
error. However, since the LOOCV error could not be expressed
analytically, they instead proposed to minimize some differenti-
able functions that were upper bounds of the LOOCV error.
Mangasarian and Wild [12] introduced a modification to the
objective function of SVMs, and performed feature selection by
repeatedly sweeping through all features to decide weather to
select or deselect a feature depending on which would decrease
the value of the objective function.

One way to select a subset of good features is to prune away
unnecessary ones. Hermes and Buhmann [8] started by construct-
ing an SVM classifier using all available features and recursively
removed the feature that had the least impact on the decision
function. Similarly, Avidan [11] used a greedy sequential forward
selection method to find a subset of features and support vectors
that approximated the SVM solution obtained using all available
features.

To further constraint the SVMs’ parameters, some authors
proposed modifying the objective function of SVMs by including
regularization terms or constraints on the parameter w of SVMs.
For example, Chan et al. [3] included two additional constraints on
the L1 and L2 norms of w in the formulation of SVMs to achieve a
sparse weight vector w. Stoeckel and Fung [20] added a constraint
on w to have the weight for each pixel depend not only on the
pixel itself but also on its neighbors. Dundar et al. [21] added a
regularization term on w in the objective function to encourage
the decision function to produce similar results for neighboring
pixels.
3. SVMs and parameterized kernels

Suppose that the mapping from the input space to the feature
space can be parameterized by a parameter vector p, i.e.
jðxiÞ ¼jðxi;pÞ. We would like to find a parameter vector p and
a separating hyperplane that have the largest margin. However,
different values of p correspond to different feature spaces, and
since the margins in two different feature spaces cannot be
directly compared, it is necessary to consider normalized margins.

ARTICLE IN PRESS

M.H. Nguyen, F. de la Torre / Pattern Recognition 43 (2010) 584–591586
Let us consider the normalized margin as the ratio of the margin
over the square root of sum of squared distances (in the feature
space) between same-class data instances. In other words, the
normalized margin is defined as

MffiP
i;j

1þyiyj

2
Jjðxi;pÞ �jðxj;pÞJ

2
2

r : ð5Þ

Observe that the normalized margin defined above is invariant to
scale and translation in the feature space.

The problem of finding the parameter p for the mapping and
the parameters of the separating hyperplane that provides the
largest normalized margin can be stated as

maximize
w ;b ;M;p

MffiP
i;j

1þyiyj

2
Jjðxi;pÞ �jðxj;pÞJ

2
2

r

subject to yiðw
Tjðxi;pÞþbÞZM 8i; JwJ2 ¼ 1:

ð6Þ

Recall that if p is fixed, finding the hyperplane with the maximum
normalized margin is equivalent to finding the hyperplane that
maximizes the normal margin M.

Let w¼w=M, b¼ b=M, and let fðpÞ denote
P

i;jðð1þyiyjÞ=2Þ
Jjðxi;pÞ �jðxj;pÞJ

2
2, Eq. (6) is equivalent to

maximize
w;b;M;p

1ffiffiffiffiffiffiffiffiffiffi
fðpÞ

p JwJ2

subject to yiðw
Tjðxi;pÞþbÞZ1 8i:

ð7Þ

The above is equivalent to

minimize
w;b;p

1

2
fðpÞJwJ2

2

subject to yiðw
Tjðxi;pÞþbÞZ1 8i:

ð8Þ

Using soft-margin instead of hard-margin, we get

minimize
w;b;p;n

1

2
fðpÞJwJ2

2þC
Xn

i ¼ 1

xi

subject to yiðw
Tjðxi;pÞþbÞZ1� xi 8i; xiZ0 8i:

ð9Þ

Here, fxig
n
1 are slack variables which allow for penalized constraint

violation. C is the parameter controlling the trade-off between
having large normalized margin and having less constraint
violation.
4. Learning feature weights

Consider a mapping that assigns different weights to different
features jðxi;pÞ ¼ diagðpÞ1=2xi, where p¼ ½p1 . . . pd�

T are the
feature weights, and piZ0 8i. We have

fðpÞ ¼
Xd

k ¼ 1

pk

Xn

i;j ¼ 1

1þyiyj

2
ðxik � xjkÞ

2: ð10Þ

Since fðpÞ is homogeneous in p, we can always scale w and p
appropriately to get fðpÞ ¼ 1. Therefore Eq. (9) is equivalent to

minimize
w;b;p;n

1

2
JwJ2

2þC
Xn

i ¼ 1

xi

subject to yiðw
T diagðpÞ1=2xiþbÞZ1� xi 8i;Xd

k ¼ 1

pk

Xn

i;j ¼ 1

1þyiyj

2
ðxik � xjkÞ

2
¼ 1;

xiZ0 8i; pkZ0 8k: ð11Þ
Let v¼ diagðpÞ1=2w and consider the function g : R�R
þ-R

defined by

gðx; yÞ ¼

x2

y
if y40;

0 if y¼ 0; x¼ 0;

1 if y¼ 0; xa0:

8>>><
>>>:

ð12Þ

Eq. (11) is equivalent to

minimize
v;b;p;n

1

2

Xd

k ¼ 1

gðvk; pkÞþC
Xn

i ¼ 1

xi

subject to yiðv
T xiþbÞZ1� xi 8i;Xd

k ¼ 1

pk

Xn

i;j ¼ 1

1þyiyj

2
ðxik � xjkÞ

2
¼ 1;

xiZ0 8i; pkZ0 8k: ð13Þ

Since gð�; �Þ is convex, the above optimization problem is also
convex. It can be optimized using a standard convex optimization
package such as CVX [22,23].
5. Feature weighting in feature space

Let XAR
d�n be the training dataset and X0AR

d�m be the
testing dataset. Let jðXÞ denote ½jðx1Þ . . .jðxnÞ�. The training
kernel is Ktrain ¼jðXÞTjðXÞ, and the testing kernel is Ktest ¼

jðX0ÞTjðXÞ. Suppose Ktrain ¼USUT is non-singular. Let B¼ S�
1
2UT ,

then BT B¼Ktrain. Consider the mapping ~j : Rd-R
n; ~jðxÞ ¼

BjðXÞTjðxÞ. Based on these conditions, the corresponding train
and test kernels are

~Ktrain ¼ ~jðXÞT ~jðXÞ ¼jðXÞTjðXÞBT BjðXÞTjðXÞ ¼Ktrain; ð14Þ

~Ktest ¼ ~jðX0ÞT ~jðXÞ ¼jðX0ÞTjðXÞBT BjðXÞTjðXÞ ¼Ktest : ð15Þ

Thus we have defined a feature mapping ~j that induces the same
training and testing kernels. Now, we can learn the feature
weights as if the training data was BKtrain and the testing data was
BKT

test .
If Ktrain is singular or if we want to reduce the number of

dimensions of the feature space, we can take B as B¼ S�1=2
k UT

k .
Here Uk contains the first k columns of U (corresponding to the
largest eigenvalues of Ktrain) and Sk is the sub-matrix of S
containing the first k columns and k rows. In this case, ~Ktrain

might not exactly match Ktrain, but it is the best rank-k

approximation.
6. Connection to L1-SVMs and sparsity

This section discusses the connection between weighted SVMs
and L1-SVMs. First, recall L1-SVMs minimize the L1 norm of the
weight vector w:

minimize
w;b;n

1

2
JwJ1þC

X
i

xi

subject to yiðw
T xiþbÞZ1� xi 8i; xiZ0 8i:

ð16Þ

We now show the tight connection between Eq. (13) and (16). Let
ak ¼

P
i;jðð1þyiyjÞ=2Þðxik � xjkÞ

2, Eq. (13) becomes

minimize
v;b;p;n

1

2

Xd

k ¼ 1

gðvk; pkÞþC
Xn

i ¼ 1

xi ð17Þ

ARTICLE IN PRESS

2 http://www.cs.toronto.edu/� roweis/data.html

M.H. Nguyen, F. de la Torre / Pattern Recognition 43 (2010) 584–591 587
subject to yiðv
T xiþbÞZ1� xi 8i;Xd

k ¼ 1

pkak ¼ 1; xiZ08i; pkZ0 8k: ð18Þ

If there exists k such that ak ¼ 0, then xik ¼ xjk 8i; j. Thus the kth
components of the feature vectors do not affect the classification
result; they can be safely removed from the feature vectors. From
now on, we assume ak40 8k. We now state a theorem that leads
to the connection between weighted SVMs and L1-SVMs.

Theorem 1. If v; b;p; n are the parameters that globally minimize

Eq. (17), then (ajvkj ¼ apk
ffiffiffiffiffi
ak
p
8k.

The proof of this theorem is given in Appendix A. We now use
this theorem to derive the relation between weighted SVMs and
L1-SVMs. Let a be the scalar such that jvkj ¼ apk

ffiffiffiffiffi
ak
p
8k.

)
ffiffiffiffiffi
ak

p
jvkj ¼ apkak 8k;

)
Xd

k ¼ 1

ffiffiffiffiffi
ak

p
jvkj ¼ a

Xd

k ¼ 1

pkak ¼ a;

) a¼
Xd

k ¼ 1

ffiffiffiffiffi
ak

p
jvkj: ð19Þ

On the other hand,

Xd

k ¼ 1

gðvk; pkÞ ¼
Xd

k ¼ 1

v2
k

pk
¼
Xd

k ¼ 1

a2p2
kak

pk
¼ a2

Xd

k ¼ 1

pkak: ð20Þ

From Eqs. (18)–(20), we have

Xd

k ¼ 1

gðvk; pkÞ ¼
Xd

k ¼ 1

ffiffiffiffiffi
ak

p
jvkj

 !2

: ð21Þ

Furthermore, if pk ¼ jvkj=a
ffiffiffiffiffi
ak
p

, then

Xd

k ¼ 1

pkak ¼
Xd

k ¼ 1

jvkj

a ffiffiffiffiffi
ak
p ak ¼

Xd

k ¼ 1

ffiffiffiffiffi
ak
p
jvkj

a
¼

1

a
Xd

k ¼ 1

ffiffiffiffiffi
ak

p
jvkj;¼

1

a
a¼ 1:

ð22Þ

Therefore, the constraint (18) can be dropped from the optimiza-
tion problem (17). This observation, in addition with Eq. (21),
show that Eq. (17) is equivalent to

minimize
v;b;n

1

2

Xd

k ¼ 1

ffiffiffiffiffi
ak

p
jvkj

 !2

þC
Xn

i ¼ 1

xi

subject to yiðv
T xiþbÞZ1� xi 8i; xiZ0 8i:

ð23Þ

Eq. (23) is not exactly the same with the formulation of L1-SVMs
(Eq. (16)). However, there is a tight connection between the two.
Eq. (23) minimizes a squared weighted L1-norm of the weight
vector v while L1-SVMs minimizes L1-norm of the weight vector.
In fact, for every positive C, there exists a positive number ~C such
that Eq. (23) and the following optimization problem have the
same optimal solution (reach their optimum values at the same
set of variables (v; b; n)):

minimize
v;b;n

1

2

Xd

k ¼ 1

ffiffiffiffiffi
ak

p
jvkjþ

~C
Xn

i ¼ 1

xi

subject to yiðv
T xiþbÞZ1� xi 8i; xiZ0 8i:

ð24Þ

This equivalence follows directly from Theorem 2 which is stated
and proved in Appendix B.

Because weighted SVM (Eq. (13)) is equivalent to Eq. (23)
which shares the same set of optimal variables as Eq. (24), one can
expect the weight vector learned by weighted SVM will be sparse.
Furthermore, though both Eqs. (13) and (24) are convex, the later
can be optimized far more efficiently using an appropriate linear
programming.
7. Experiments

This section compares weighted SVMs with state-of-the-art
feature selection methods on MNIST, a large scale dataset.
Weighted SVMs are also compared with normal SVMs on three
image databases and three others from the UCI machine learning
repository [24].

7.1. Handwritten digit recognition

In this section, we describe experiments on MNIST [25], a
large-scale, publicly available dataset.2 This data collection
contains 28� 28 images of handwritten digits. To focus on binary
classification, we consider the task of distinguishing between the
two most frequently confused digits: four and nine. Each digit
comes with disjoint training and testing subsets that contain
roughly 6000 and 1000 data samples, respectively. The provided
training set was randomly split into two halves; one was used for
training the classifier and the other one was used for tuning the
parameters.

Very little was done for data preprocessing. Images of hand-
written digits are first vectorized into 784� 1 column vectors.
Attribute values were rescaled to be in the range between 0 and 1
by dividing by 255. To further test the ability of our method and
competing algorithms for selecting relevant features, each data
sample was padded with 200 additional random features drawn
from the standard normal distribution.

We compared our method with Hermes and Buhmann’s [8],
RELIEF [14,15], and Iterative RELIEF (I-RELIEF) [5,26] which are
three state-of-the-art feature selection methods. While our
method returns a sparse set of features and their associated
weights, the other methods return a ranking of features. For a fair
comparison, the same number of features is used for all methods.

Table 1 shows the accuracy of the evaluating methods
performed on the testing set. It also displays the number of
support vectors for the methods which use an SVM classifier.
Unlike our method, RELIEF and I-RELIEF solely perform feature
selection. The outputs of these methods need to be fetched into a
subsequent classifier. In Table 1, RELIEFþSVM and I-RELIEFþSVM
denote the method that uses RELIEF and I-RELIEF for feature
selection and SVM for classification. Similarly, I-RELIEFþkNN
indicates the method that combines I-RELIEF and k nearest
neighbors (kNNs).

As can be seen from Table 1, the performance of weighted SVM
is no worse than the performance of linear and Gaussian SVMs
while using only 10% of the features. Weighted SVM also matches
the performance of Hermes and Buhmann’s method. Compared
with RELIEF and I-RELIEF, our method produce a significantly
better set of features for SVMs. It is worth to note that our method
has the least number of support vectors compared with the other
competing methods.

As expected, a two-stage approach for feature selection and
classification is not always ideal; I-RELIEF works well when
combined with a kNN but not with an SVM. Here, I-RELIEFþkNN
is included as a reference rather than a competing method since
we are more interested in feature selection for SVMs. In many
situations, an SVM is the classifier of choice due to various

http://www.cs.toronto.edu/<mml:math altimg=
http://www.cs.toronto.edu/<mml:math altimg=

ARTICLE IN PRESS

Table 1
Performance of different methods on MNIST dataset.

Method Accuracy # Features # SVs

Linear SVM 96.23 984 711

Gaussian SVM 96.53 984 1646

Hermes and Buhmann 96.63 91 913

RELIEFþSVM 94.73 91 914

I-RELIEFþSVM 93.32 91 929

Weighted SVM (ours) 96.53 91 557

I-RELIEFþkNN 96.79 91 N/A

Linear SVM and Gaussian SVM are constructed using the full set of features.

Hermes and Buhmann, RELIEFþSVM, and I-RELIEFþSVM are competing feature

selection methods for SVMs. I-RELIEFþkNN does not use SVM; it is included as a

reference rather than a competing method. As can be seen, our method works

as well as Hermes and Buhmann and it outperforms RELIEFþSVM and

I-RELIEFþSVM.

Fig. 2. Examples of faces from the CMU face database.

Table 2
Comparison of weighted SVMs and normal SVMs on the UCI CMU face images

dataset.

Linear Gaussian kernel

Normal Weighted Normal Weighted

10-fold CV acc. 95.5 95.5 97.48 98.06

Features used 960 67 312 74

SVs 102 85 186 73

The weighted SVMs (both linear and Gaussian) achieve similar accuracy rates

while using much fewer features and support vectors.

Fig. 3. (a) Example of four landmarks used in the FERET database. (b) Centers of

negative training patches were sampled randomly inside the cyan region. (c)

Region of correct classification, positively classified pixels were considered correct

if they are located inside the square.

M.H. Nguyen, F. de la Torre / Pattern Recognition 43 (2010) 584–591588
reasons. For example, compared with a kNN, an SVM is much
faster during testing.

7.2. Pose classification

We performed experiments on the CMU face images dataset
from the UCI machine learning repository [24]. The database
contains 30� 32 pixel facial images of 20 people under different
expressions and poses. Some examples of faces from the database
are given in Fig. 2. The classification task was to distinguish
between two different poses: looking up and looking to the
camera. Because the number of data instances in this database is
small (only 312 faces), the experimental results were taken as the
accuracy of 10-fold cross validation. We constructed four different
SVM classifiers, namely linear SVM, linear weighted SVM,
Gaussian SVM, and Gaussian weighted SVM. For all classifiers,
we repeated the experiments for different values of the C

parameter (and g for Gaussian SVMs) and reported the best
results. Table 2 shows the best results from all methods. Notably,
weighted SVMs achieve similar classification accuracy while using
a much smaller number of pixels and support vectors.

7.3. Eye detection

Following the approach of Everingham and Zisserman [27], we
performed eye detection experiments on the gray-scale FERET
database [28]. This database contains facial images of various
subjects under different expressions and poses. All images have a
256� 384 pixel resolution and limited lighting variation. Some
images are associated with a set of four hand labeled landmarks
(Fig. 3a). Among the images with labeled landmarks, we extracted
all the 2963 available frontal faces for experiments. These images
were further divided into disjointed training and testing sets
(60% and 40%, respectively).

For training, we first performed Procrustes analysis [29] to
align the landmarks w.r.t. the mean shape, removing rotation,
translation, and scale variation. Positive training examples were
obtained by sub-sampling 17� 29 patches inside 27� 47 rectan-
gular regions around the left iris landmark of every training
image. Similarly, negative examples were created by extracting
rectangular patches around random points in an iris neighbor-
hood. The neighborhood was defined as in Fig. 3b. Each patch was
normalized by subtracting the mean intensity and dividing by the
standard deviation.

For each training image, the OpenCV Viola-Jones face detector
[30] was used to produce a square centered on the face. A linear
regression predictor was trained to approximate the iris landmark
from the position and scale of the face detector’s output [27].

We performed experiments with two different SVM classifiers,
namely normal SVM and weighted SVM. For weighted SVM, we
first applied the method described in Section 4 to learn the
optimal pixel weights. Pixels with insignificant weights ðo10�5

Þ

were discarded, and an SVM classifier was constructed based on
the remaining pixels, taking their weights into account. Fig. 1c
shows the locations of 64 pixels (out of 493) chosen by our
weighted SVM (cyan dots).

For each testing image, we used the previously learned linear
regression to produce the first approximation for the iris’ position.

ARTICLE IN PRESS

Fig. 4. Distance threshold versus the proportion of iris localization within the

threshold. The distance is taken as the Euclidean distance from the ground truth

landmark to the predicted iris location normalized by the inter-ocular distance.

Weighted SVM performs as well as the other method while using a much smaller

number of pixels. The regression curve is the result of using initial guess produced

by the linear regression predictor.

Fig. 5. ROC curves of two different methods. Weighted SVM performs as well as

normal SVM while using a much smaller number of pixels.

Table 3
Comparison of weighted SVM and normal SVM on several standard datasets.

Dataset Accuracy rate # Features used # SVs

Normal Weighted Normal Weighted Normal Weighted

Ionosphere 86.89 88.50 34 22 79 65

Breast cancer 95.43 96.31 30 30 40 28

USPS 97.75 97.5 256 36 50 40

Pedestrian 72.83 74.9 648 147 1291 1159

The weighted SVM achieves similar or better accuracy rates while using smaller

numbers of features and support vectors.

3 https://mlpy.fbk.eu/
4 http://www.cs.waikato.ac.nz/�ml/weka/index.html

M.H. Nguyen, F. de la Torre / Pattern Recognition 43 (2010) 584–591 589
A searching window was placed around this initial guess. With a
sliding window approach, the pixel with the highest SVM decision
value was chosen as the final result for the localization of the iris.

The performance of different algorithms was evaluated in
two different ways. Fig. 4 plots the localization error threshold
(x-axis) and the proportion of successful localizations within the
threshold (y-axis). The Euclidean distance from the ground truth
landmark to the predicted iris location was normalized by the
inter-ocular distance (distance between the two iris landmarks) to
account for different scales. Compared with normal SVM,
weighted SVM achieves similar performance results while using
a much smaller number of pixels.

To analyze the trade-off between true detections and false
alarms, we classified all pixels inside the searching window and
produced ROC curves (Fig. 5) by varying the threshold of the
SVM classifier. The positively classified pixels were considered
correct if they fell inside a square neighborhood around the true
landmark. The size of this neighborhood was proportional to the
inter-ocular distance of the subject (illustrated in Fig. 3c). As can
be observed, the ROC curve produced by our weighted SVM is
similar to the one produced by standard SVM. However, weighted
SVM used only 13% of available pixels. In our experiments, C and
other parameters of SVMs were tuned using cross validation.
7.4. Experiments on other datasets

We performed experiments on several other standard datasets.
The ionosphere and breast cancer are downloaded from the UCI
machine learning repository [24]. Because the numbers of data
instances in these datasets are small, the experimental results are
taken as the accuracy of 10-fold cross validation. For both normal
SVM and weighted SVM, we repeat the experiments for different
values of the C parameter and report the best results. The USPS
and pedestrian [31] are two image datasets for digit classification
and pedestrian detection, respectively. These datasets contain
enough instances so we divide them into disjoint subsets for
training, validation, and testing. The validation sets are used to
tune the C parameters of SVMs. We use the same C for learning the
weights and for testing the performance of weighted SVMs.

The results are summarized in Table 3. The table shows that
our method achieves similar accuracy rates compared with the
normal SVM. However, the number of active features used by our
proposed method is fewer than the number of the active features
used by normal SVMs. Furthermore, the number of support
vectors used by our proposed model is always smaller than the
number of support vectors used in standard SVMs. In many
problem domains, this could greatly speed up the application run
time.
7.5. Software packages and training time

In our experiments, we used several publicly available software
packages. For I-RELIEF, we used the implementation of mlPy,3 a
python library for machine learning. For RELIEF, we used the
implementation bundled with Weka [32], a java-based machine
learning toolkit.4 Normal SVM classifiers were built using LibSVM

[33]. To jointly optimize feature weights and construct weighted
SVMs, we used CVX, a package for specifying and solving convex
programs [22,23].

As proved in Section 6, our method can employ either (13) and
(24) because optimizing them lead to equivalent solutions.
However, for a generic convex program solver like CVX, it was
actually more efficient to optimize (13) than to optimize (24).
Because of this empirical reason, all of our experiments produce
solutions by optimizing (13). Nevertheless, it is important to note
that our method is potentially very efficient if an appropriate
linear programming algorithm is used to optimize (24).

All experiments were performed on a MacOS machine with a
2.4 GHz Intel Core 2 Duo chipset and 4 GB of RAM. The main
programming language is MATLAB. The training time of each
method depends on the dataset, the number of training samples,
and the parameter setting. For the experiment on the MNIST
database (6000 training samples), the training phase of our

https://mlpy.fbk.eu/
http://www.cs.waikato.ac.nz/∼ml/weka/index.html
http://www.cs.waikato.ac.nz/∼ml/weka/index.html

ARTICLE IN PRESS

M.H. Nguyen, F. de la Torre / Pattern Recognition 43 (2010) 584–591590
method took 1 h 20 min. To produce ranking for features, RELIEF
and I-RELIEF took 1 h 40 min and 14 h, respectively. Hermes and
Buhmann’s method required 6 min training time. These amounts
of training time are not directly comparable since we used
different software packages written in various programming
languages. Hermes and Buhmann’s method is much faster than
the other methods because it is based on LibSVM [33], a highly
customized optimization package.
8. Conclusion

In this paper, we have presented a convex method for jointly
learning feature weights and parameters of SVM classifiers.
Moreover, we related the proposed framework with L1-SVMs
and provided and theoretical justification for its use as a feature
selection method. Experiments on seven standard datasets and
different classification problems showed that our method pro-
duced SVM classifiers that used sparse sets of features and
support vectors while retaining classification performance.
Acknowledgments

This work was supported by the US Naval Research Laboratory
under Contract no. N00173-07-C-2040. Any opinions, findings,
and conclusions or recommendations expressed in this material
are those of the author(s) and do not necessarily reflect the views
of the US Naval Research Laboratory. We would like to thank Joan
Perez for helping us with the experiment in Section 7.3.
Appendix A. Proof of Theorem 1

In this section, we provide a proof for Theorem 1 given in
Section 6. We first prove that v2

j =ajp
2
j ¼ v2

l =alp
2
l for all pairs of j; l

such that pj40; pl40.
Assume the contrary, (ja l : v2

j =ajp
2
j av2

l =alp
2
l . Consider the

function f ð�Þ defined as follows:

f ðeÞ ¼ g vj; pjþ
e
aj

� �
þg vl; pl �

e
al

� �
: ð25Þ

The derivative of f ðeÞ w.r.t. e is

@f ðeÞ
@e
¼

@g vj; pjþ
e
aj

� �
@e

þ

@g vl; pl �
e
al

� �
@e

: ð26Þ

We have

@g vj; pjþ
e
aj

� �
@e

¼

@
v2

j

pjþ
e
aj

@e
¼ �

v2
j

aj pjþ
e
aj

� �2
: ð27Þ

Similarly,

@g vl; plþ
e
al

� �
@e ¼

@
v2

l

pl �
e
al

@e ¼
v2

l

al pl �
e
al

� �2
: ð28Þ

From Eqs. (26)–(28), we have

@f ðeÞ
@e

����
e ¼ 0

¼ �
v2

j

ajp
2
j

þ
v2

l

alp
2
l

: ð29Þ
From the assumption that v2
j =ajp

2
j av2

l =alp
2
l , we have @f ðeÞ=@

eje ¼ 0a0. Thus e¼ 0 is not a local minimum of f ðeÞ. Therefore,
together with the fact that pj; pl40, we can always find ê such
that f ðêÞo f ð0Þ, pjþ ê=ajZ0, and pl � ê=alZ0. Consider a new
set of feature weights ~p: ~pj ¼ pjþ ê=aj, ~pl ¼ pl � ê=al, and
~pi ¼ pi 8ia j; l. One can easily verify that v;b; ~p; n is the set of
parameters that yield lower objective value for Eq. (17) while
satisfying all the constraints. This contradicts with the assump-
tion that v; b;p; n are the parameters that globally minimize
Eq. (17). Hence, we must have v2

j =ajp
2
j ¼ v2

l =alp
2
l for all pairs of j; l

such that pj40; pl40. Thus v2
k=akp2

k ¼ const 8k : pk40. Equiva-
lently, (a : jvkj ¼ apk

ffiffiffiffiffi
ak
p
8k : pk40. Furthermore, for k : pk ¼ 0, we

must have vk ¼ 0. This means that jvkj ¼ apk
ffiffiffiffiffi
ak
p

for k : pk ¼ 0.
Thus, (a : jvkj ¼ apk

ffiffiffiffiffi
ak
p
8k. The proof of the above theorem is

complete.
Appendix B. Theorem 2

In this section, we state and prove a theorem that is used in
Section 6.

Theorem 2. Consider the following optimization problem:

minimize f ðxÞ2þCgðxÞ ð30Þ

subject to hiðxÞr0 8i¼ 1; k; ð31Þ

in which f ðxÞ; gðxÞ;h1ðxÞ; . . . ;hkðxÞ are multivariate convex functions

and f ðxÞ, gðxÞ are one-sided directional differentiable at all points

satisfying the constraints (31). Let x� be an optimal solution of this

optimization problem and suppose f ðx�Þ40. If ~C ¼ C=2f ðx�Þ then x�

is also an optimal solution of the following optimization problem:

minimize f ðxÞþ ~CgðxÞ subject to hiðxÞr0 8i¼ 1; k: ð32Þ

Proof. Let ~x be an optimal solution of (32) and suppose x� is not
an optimal solution of (32). Thus,

f ðx�Þþ ~Cgðx�Þ4 f ð ~xÞþ ~Cgð ~xÞ: ð33Þ

Consider the directional vector v¼ ~x � x�. Because h1ðxÞ; . . . ;hkðxÞ
are convex and both x� and ~x satisfy all the constraints, all points
between these two ends must also satisfied the constraints.
Consider two one-dimensional functions: FðeÞ ¼ f ðx�þevÞ2þ
Cgðx�þevÞ and ~F ðeÞ ¼ f ðx�þevÞþ ~Cgðx�þevÞ for 0rer1. Because
f ðxÞ and gðxÞ are both convex, ~F ðeÞ must also be convex. Consider
the right derivative at e¼ 0:

@þ FðeÞ
@e

����
e ¼ 0

¼ 2f ðx�Þ
@þ f ðx�þevÞ

@e

����
e ¼ 0

þC
@þ gðx�þevÞ

@e

����
e ¼ 0

ð34Þ

¼ 2f ðx�Þ
@þ f ðx�þevÞ

@e

����
e ¼ 0

þ ~C
@þ gðx�þevÞ

@e

����
e ¼ 0

� �
ð35Þ

¼ 2f ðx�Þ
@þ ~F ðeÞ
@e

�����
e ¼ 0

: ð36Þ

On the other hand, from (33) we have ~F ð0Þ4 ~F ð1Þ. This, together
with the convexity of ~F ðeÞ, leads to @þ ~F ðeÞ=@eje ¼ 0o0. Therefore,
@þ FðeÞ=@eje ¼ 0o0 (from Eq. (36)). Hence, e¼ 0 is the not an
optimal minimizer of FðeÞ. However, this leads to a contradiction
because x¼ x� is an optimal minimizer of f ðxÞ2þCgðxÞ. Thus the
assumption that x� is not an optimal solution of f ðxÞþ ~CgðxÞ
cannot hold. This completes the proof of Theorem 2. &

ARTICLE IN PRESS

M.H. Nguyen, F. de la Torre / Pattern Recognition 43 (2010) 584–591 591
References

[1] B. Moghaddam, Y. Weiss, S. Avidan, Fast pixel/part selection with sparse
eigenvectors, in: Proceedings of the IEEE International Conference on
Computer Vision, 2007.

[2] F. de la Torre, O. Vinyals, Learning kernel expansions for image classification,
in: IEEE Conference on Computer Vision and Pattern Recognition, 2007.

[3] A.B. Chan, N. Vasconcelos, G.R.G. Lanckriet, Direct convex relaxations of
sparse SVM, in: Proceedings of International Conference on Machine
Learning, 2007.

[4] B. Cao, D. Shen, J.-T. Sun, Q. Yang, Z. Chen, Feature selection in a kernel space,
in: Proceedings of International Conference on Machine Learning, 2007.

[5] Y. Sun, J. Li, Iterative RELIEF for feature weighting, in: Proceedings of
International Conference on Machine Learning, 2006.

[6] I. Kononenko, Estimating attributes: analysis and extensions of RELIEF, in:
Proceedings of European Conference on Computer Vision, 1994.

[7] P.S. Bradley, O.L. Mangasarian, Feature selection via concave minimization
and support vector machines, in: Proceedings of International Conference on
Machine Learning, 1998.

[8] L. Hermes, J. Buhmann, Feature selection for support vector machines, in:
Proceedings of International Conference on Pattern Recognition, 2000.

[9] J. Weston, S. Mukherjee, O. Chapelle, M. Pontil, T. Poggio, V. Vapnik, Feature
selection for SVMs, in: Advances in Neural Information Processing Systems,
2001.

[10] S. Avidan, Subset selection for efficient SVM tracking, in: Proceedings of IEEE
Conference on Computer Vision and Pattern Recognition, 2003.

[11] S. Avidan, Joint feature-basis subset selection, in: Proceedings of IEEE
Conference on Computer Vision and Pattern Recognition, 2004.

[12] O.L. Mangasarian, E.W. Wild, Feature selection for nonlinear kernel support
vector machines, in: Workshop on Optimization-based Data Mining Techni-
ques with Applications, IEEE International Conference on Data Mining, 2007.

[13] B. Schölkopf, A. Smola, Learning with Kernels: Support Vector Machines,
Regularization, Optimization, and Beyond, MIT Press, Cambridge, MA, 2002.

[14] K. Kira, L. Rendell, The feature selection problem: traditional methods and
new algorithm, in: Proceedings of AAAI Conference on Artificial Intelligence,
1992.

[15] K. Kira, L. Rendell, A practical approach to feature selection, in: Proceedings of
International Workshop on Machine Learning, 1992.

[16] S.C.H. Hoi, M.R. Lyu, E.Y. Chang, Learning the unified kernel machines for
classification, in: Proceedings of International Conference on Knowledge
Discovery and Data Mining, 2006.

[17] N. Cristianini, J. Shawe-Taylor, A. Elisseeff, J. Kandola, On kernel-target
alignment, in: Advances in Neural Information Processing Systems, 2001.
[18] G.R. Lanckriet, N. Cristianini, P. Bartlett, L.E. Ghaoui, M.I. Jordan, Learning the
kernel matrix with semidefinite programming, Journal of Machine Learning
Research 5 (2004) 27–72.

[19] O. Chapelle, V. Vapnik, O. Bousquet, S. Mukherjee, Choosing multiple
parameters for support vector machines, Machine Learning 46 (1–3) (2002)
131–159.

[20] J. Stoeckel, G. Fung, SVM feature selection for classification of SPECT images
of Alzheimer’s disease using spatial information, in: IEEE International
Conference on Data Mining, 2005.

[21] M. Dundar, J. Theiler, S. Perkins, Incorporating spatial contiguity into
the design of a support vector machine classifier, in: IEEE I
nternational Conference on Geoscience and Remote Sensing Symposium,
2006.

[22] M. Grant, S. Boyd, CVX: Matlab software for disciplined convex programming
(web page & software), October 2008 /http://stanford.edu/�boyd/cvxS.

[23] M. Grant, S. Boyd, Graph implementations for nonsmooth convex
programs, in: V. Blondel, S. Boyd, H. Kimura (Eds.), Recent
Advances in Learning and Control (a tribute to M. Vidyasagar)
Lecture Notes in Control and Information Sciences, Springer, Berlin, 2008,
pp. 95–110.

[24] A. Asuncion, D. Newman, UCI machine learning repository, 2007 /http://
www.ics.uci.edu/�mlearn/MLRepository.htmlS.

[25] Y. LeCun, L. Bottou, Y. Bengio, P. Haffner, Gradient-based learning
applied to document recognition, Proceedings of the IEEE 86 (11) (1998)
2278–2324.

[26] Y. Sun, Iterative relief for feature weighting: algorithms, theories, and
applications, IEEE Transactions on Pattern Analysis and Machine Intelligence
29 (6) (2007) 1035–1051.

[27] M. Everingham, A. Zisserman, Regression and classification approaches
to eye localization in face images, in: Proceedings of the Seventh
International Conference on Automatic Face and Gesture Recognition, 2006.

[28] P. Philips, H. Moon, S. Rizvi, P. Rauss, The FERET evaluation methodology for
face-recognition, Pattern Analysis and Machine Intelligence 22 (10) (2000)
1090–1104.

[29] T. Cootes, C. Taylor, Statistical models of appearance for computer vision,
Technical Report, University of Manchester, 2001.

[30] P. Viola, M. Jones, Robust real-time face detection, International Journal of
Computer Vision 57 (2) (2004) 137–154.

[31] S. Munder, D. Gavrila, An experimental study on pedestrian classification,
IEEE Transactions on Pattern Analysis and Machine Intelligence 28 (11)
(2006) 1863–1868.

[32] I.H. Witten, E. Frank, Data Mining: Practical Machine Learning Tools and
Techniques, second ed., Morgan Kaufmann, San Francisco, 2005.

[33] C.-C. Chang, C.-J. Lin, LIBSVM: a library for support vector machines, 2001,
software available at /http://www.csie.ntu.edu.tw/�cjlin/libsvmS.
About the Author—MINH HOAI NGUYEN received his M.S. in Robotics from
Carnegie Mellon University and B.E. in Software Engineering from the University of
New South Wales — Australia in 2009 and 2005, respectively. Currently, he is a 4th
year Ph.D. student at the Robotics Institute, Carnegie Mellon University. His
research work focuses on learning optimal data representations for image
classification, clustering, visualization, and modeling.
About the Author—FERNANDO DE LA TORRE received his Ph.D. in E.E. in 2002
from La Salle School of Engineering, Barcelona. Since 2005 he is an Associate
Research Professor at the Robotics Institute, Carnegie Mellon University. Currently,
he is directing the Component Analysis Lab (http://ca.cs.cmu.edu), and the Human
Sensing Lab (http://humansensing.cs.cmu.edu) at CMU.

http://stanford.edu/∼boyd/cvx
http://stanford.edu/∼boyd/cvx
http://www.ics.uci.edu/∼mlearn/MLRepository.html
http://www.ics.uci.edu/∼mlearn/MLRepository.html
http://www.ics.uci.edu/∼mlearn/MLRepository.html
http://www.csie.ntu.edu.tw/∼cjlin/libsvm
http://www.csie.ntu.edu.tw/∼cjlin/libsvm
http://ca.cs.cmu.edu
http://humansensing.cs.cmu.edu

	Optimal feature selection for support vector machines
	Introduction
	Previous work
	Support vector machines
	Feature construction in SVM

	SVMs and parameterized kernels
	Learning feature weights
	Feature weighting in feature space
	Connection to L1-SVMs and sparsity
	Experiments
	Handwritten digit recognition
	Pose classification
	Eye detection
	Experiments on other datasets
	Software packages and training time

	Conclusion
	Acknowledgments
	Proof of Theorem 1
	Theorem 2
	References

