
Advanced Structured Prediction

Editors:

Sebastian Nowozin Sebastian.Nowozin@microsoft.com

Microsoft Research

Cambridge, CB1 2FB, United Kingdom

Peter V. Gehler pgehler@tuebingen.mpg.de

Max Planck Insitute for Intelligent Systems

72076 Tübingen, Germany

Jeremy Jancsary jermyj@microsoft.com

Microsoft Research

Cambridge, CB1 2FB, United Kingdom

Christoph Lampert chl@ist.ac.at

IST Austria

A-3400 Klosterneuburg, Austria

This is a draft version of the author chapter.

The MIT Press

Cambridge, Massachusetts

London, England

1 Structured Prediction for Event Detection

Minh Hoai minhhoai@robots.ox.ac.uk

University of Oxford

Oxford, UK

Fernando De la Torre ftorre@cs.cmu.edu

Carnegie Mellon University

Pittsburgh, PA, USA

This chapter describes Segment-based SVMs (SegSVMs), a framework for

event detection. SegSVMs combine energy-based structured prediction, max-

imum margin learning, and Bag-of-Words (BoWs) representation. Unlike

traditional approaches for event detection based on Dynamic Bayesian Net-

works, the learning formulation of SegSVMs is convex, and the inference

over multiple events can be efficiently done in linear time. Beyond detecting

a single event, SegSVMs can be extended to solve two relatively unexplored

problems in computer vision: early event detection and sequence labeling of

multiple events. We illustrate the benefits of SegSVMs in several computer

vision applications namely facial action unit detection, early recognition of

hand gestures, early detection of facial expressions, and sequence labeling of

human actions.

1.1 Introduction

Event detection (ED) is a cornerstone in many important applications, from

video surveillance (Piciarelli et al., 2008) to motion analysis (Aggarwal

and Cai, 1999) and psychopathology assessment (Cohn et al., 2009). ED

refers to the task of localizing and recognizing the occurrences of temporal

patterns that belong to some predefined target classes. Examples of target

event classes are human actions (Ke et al., 2005), sport events (Efros

2 Example Chapter

et al., 2003; Xu et al., 2003), and facial expressions (Lucey et al., 2006;

Bartlett et al., 2006; Zhu et al., 2009; Valstar and Pantic, 2007). ED is

different from and harder than event recognition. ED in continuous time

series involves both localization and recognition. Event recognition systems,

such as those from Yamato et al. (1992), Brand et al. (1997), Gorelick et al.

(2007), Sminchisescu et al. (2005), and Laptev et al. (2008), only need to

classify pre-segmented subsequences that correspond to coherent events.

ED in video is a challenging problem. Several highly important challenges

are to: (1) accommodate large variability of human behavior across subjects;

(2) train classifiers when relatively few examples for each event are present;

(3) recognize events with subtle human motion; (4) model the temporal

dynamics of events, which can be highly variable; and (5) determine the

beginnings and the ends of the events.

Existing approaches for ED are typically based on segment classification

or Dynamic Bayesian Networks (DBNs). Segment classification works by

classifying candidate temporal segments (e.g., Piciarelli et al. (2008); Vas-

silakis et al. (2002); Nowozin et al. (2007); Shechtman and Irani (2007)).

Although segment classification has been widely used for ED, it has sev-

eral limitations. First, this approach classifies each candidate segment in-

dependently; it makes myopic decisions (Wang et al., 2006) and requires

post-processing (e.g., to handle overlapping detections). Second, the seg-

ment classification approach often has difficulties for accurate localization

of event boundaries (Wang et al., 2006), due to the ineffective use of neg-

ative examples in training. Negative examples are segments that misalign

with target events, and they are either ignored (e.g., (Shechtman and Irani,

2007; Bobick and Wilson, 1997)) or required to be disjoint from the positive

training examples (e.g., (Ke et al., 2005; Laptev and Perez, 2007)). In both

cases, segments that partially overlap with positive examples are not used in

training; those segments, however, are candidates for inaccurate localization

at test time. Another popular approach for ED is to use a variant of DBNs.

However, DBNs typically lead to a high-dimensional optimization problem

with multiple local minima. Furthermore, generative models such as HMMs

and variants, have limited ability to model the null class (no event or unseen

events) due to the large variability of the null class.

In this chapter, we propose Segment-based SVMs (SegSVMs) to address

the limitations of existing EDmethods. SegSVMs combine structured predic-

tion, maximum margin learning, and Bag-of-Words (BoW) representation.

SegSVMs have several benefits for ED. First, SegSVMs use energy-based

structured prediction because detecting semantic events in continuous time

series is inherently a structured prediction task. Given a time series, the de-

sired output is more than a binary label indicating the presence or absence

1.1 Introduction 3

Figure 1.1: During testing, the events are found by efficiently searching over the
segments (position and length) that maximize the SVM score. During training, the
algorithm searches over all possible negative segments to identify those hardest to
classify, which improves classification of subtle events.

of target events. It must predict the locations of target events and their asso-

ciated class labels, and energy-based structured prediction provides a prin-

cipled mechanism for concurrent top-down recognition and bottom-up tem-

poral localization (see Fig. 1.1). Second, SegSVMs model temporal events

using the BoW representation (Lewis, 1998; Sivic and Zisserman, 2003).

The BoW representation requires no state transition model, eliminating the

need for detailed annotation and manual definition of event dynamics. This

representation can model and detect events of different lengths, removing

the necessity of multi-size templates or multi-scale processing. BoW repre-

sentation is not as rigid as template matching or dynamic time warping;

it tolerates errors in misalignment, and it is robust to the impreciseness

in human annotation. Finally, SegSVMs are based on the maximum margin

training (Taskar et al., 2003; Tsochantaridis et al., 2005), which learns a dis-

criminative model that maximizes the separating margin between different

event classes. Maximizing the separating margin yields classifiers that are

less prone to over-fitting. Furthermore, the learning formulation of SegSVMs

is convex and extendable.

Beyond ED, SegSVMs can be extended to address the problems of early

event detection and sequence labeling of multiple events. A temporal event

has a duration, and by early detection, we mean to detect the event as

soon as possible, after it starts but before it ends. Figure 1.2 illustrates

the problem of early detection of an smile facial event. While ED has been

studied extensively, little attention has been paid to early detection, even

in the broader literature of computer vision. In Section 1.3, we will describe

an extension of SegSVMs for early event detection, by training them to

recognize partial events.

The last section of this chapter presents another extension of SegSVMs

4 Example Chapter

$#%&'()#
*$%+# ,-+-.)#

/-..)0+#

$0#'0/1&*()+)#%&'()#

Figure 1.2: How many frames do we need to detect a smile reliably? Can we even
detect a smile before it finishes? Existing event detectors are trained to recognize
complete events only; they require seeing the entire event for a reliable decision,
preventing early detection. We propose a learning formulation to recognize partial
events, enabling early detection.

%&'()#,.160# 0)-+.$(# %&'()# 0)-+.$(#

Figure 1.3: Sequence labeling factorizes a time series into a set of non-overlapping
segments and recognizes their classes. In this figure, a facial video is labeled as a
sequence of expressions.

for sequence labeling of multiple events. Sequence labeling factorizes a time

series into a set of non-overlapping segments and assigns a class label to each

segment. Recall that sequence labeling system assigns a unique semantic

label to each frame, while an ED system may assign none or multiple labels.

Figure 1.3 shows an example of sequence labeling. While the problems are

slightly different, SegSVMs can be extended to solve the sequence labeling

problem too.

1.2 Structured prediction for event detection

This section formulates ED as a structured prediction problem.

1.2.1 Event detection as a structured prediction problem

Consider a time series X, and suppose that we need to detect a target event

of which the length is bounded by lmin and lmax. We denote Z(t) be the set

of length-bounded time intervals from the 1st to the tth frame:

Z(t) = {[s, e] ∈ N
2|1 ≤ s ≤ e ≤ t, lmin ≤ e− s+ 1 ≤ lmax} ∪ {∅}.

1.2 Structured prediction for event detection 5

Here | · | is the length function. For a time series X of length l, Z(l) (or Z for

brevity) is the set of all possible locations of an event. The empty segment,

z = ∅, indicates no event occurrence. For an interval z = [s, e] ∈ Z, let Xz

denote the subsegment of X from frame s to e inclusive.

Let g(X) denote the output of the detector. We will learn the mapping g

as in the structured prediction framework (Tsochantaridis et al., 2005; Bakir

et al., 2007; Blaschko and Lampert, 2008) as:

g(X) = argmax
z∈Z(l)

f(Xz;θ). (1.1)

Here, f(Xz;θ) is the detection score of segment Xz, and θ is the parameter

vector of the score function. The output of the detector is defined as the

segment that maximizes the detection score. We assume here that each

sequence contains at most one occurrence of the event to be detected.

This can be extended to k-or-fewer occurrences (Nguyen et al., 2010). The

detector searches over all locations and temporal scales from lmin to lmax.

The output of the detector may be the empty segment, and if it is, we report

no detection.

1.2.2 Learning and inference

Let (X1, z1), · · · , (Xn, zn) be the set of training time series and their as-

sociated ground truth annotations for the events of interest. We assume

each training sequence contains at most one event of interest, as a training

sequence containing several events can always be divided into smaller subse-

quences of single events. Thus zi = [si, ei] consists of two numbers indicating

the start and the end of the event in time series Xi.

We consider a linear detection score function, where the detection score is

a linear combination of the features:

f(Xz;θ) =

{

wTϕ(Xz) + b if z 6= ∅,

0 otherwise.
(1.2)

Here, ϕ(Xz) is the feature vector for segment Xz and θ = [wT , b]. For

brevity, hereafter we use f(Xz) instead of f(Xz;θ) to denote the score

of segment Xz. The function parameters can be learned using Structured

Output SVM (SOSVM) (Taskar et al., 2003; Tsochantaridis et al., 2005):

min.
w,{ξi}

1

2
||w||2 +

C

n

n
∑

i=1

ξi, (1.3)

s.t. f(Xi
z
i) ≥ f(Xi

z
) + ∆(zi, z)− ξi ∀z ∈ Z and ξi ≥ 0 ∀i.

6 Example Chapter

Here, ∆(zi, z) is a loss function that decreases as a label z approaches the

ground truth label zi. Intuitively, the constraints in Eq. (1.3) force the score

of f(·) to be higher for the ground truth label zi than for any other value of

z, and moreover, to exceed this value by a margin equal to the loss associated

with labeling z.

This optimization problem is convex, but it has an exponentially large

number of constraints. A typical optimization strategy is constraint gen-

eration (Tsochantaridis et al., 2005), which is theoretically guaranteed to

produce a global optimal solution. Constraint generation is an iterative pro-

cedure that optimizes the objective w.r.t. a smaller set of constraints. The

constraint set is expanded at every iteration by adding the most violated

constraint. Thus at each iteration of constraint generation, given the current

value of w, we need to solve:

ẑ = argmax
z∈Z

{∆(zi, z) + f(Xi
z
)}. (1.4)

Thus, for the feasibility of the training phase, it is necessary that (1.4) can

be solved effectively and efficiently at every iteration. It is worth noting that

this inference problem is different from the one for localizing an event:

ẑ = argmax
z∈Z

f(Xi
z
). (1.5)

The optimization of (1.4) & (1.5) depends on the feature representation

ϕ(Xz). In the next section, we describe two types of signal representation

that render fast optimization.

1.2.3 Segment features using Bag-of-Words representation

We consider the feature mapping ϕ(Xz) as the histogram of temporal

words (Nguyen et al., 2009). A temporal dictionary is built by applying

a clustering algorithm to a set of feature vectors sampled from the training

data (Sivic and Zisserman, 2003). Subsequently, each feature vector is

represented by the ID of the corresponding vocabulary entry. Finally, the

feature mapping ϕ(Xz) is taken as the histogram of IDs associated with the

frames inside the interval z. Let xi be the feature vector associated with

the ith frame of signal X, and let Cj denote the cluster j of the temporal

dictionary. The feature mapping is defined as:

ϕ(Xz) = [ϕ1, · · · , ϕd, len(z)]
T ; ϕj =

∑

i∈z

ϕji; ϕji = δ(xi ∈ Cj). (1.6)

Here d is the number of clusters, and [ϕ1, · · · , ϕd]
T is the histogram of

temporal words located within segment [s, e] of signal X.

1.3 Early event detection 7

In this work, instead of using hard quantization where each frame is

associated with only one cluster, we propose to use soft quantization instead:

ϕ(Xz) = [ϕ1, · · · , ϕd, len(z)]
T ; ϕj =

∑

i∈z

ϕji; ϕji = k(xi, cj). (1.7)

Here {cj} are cluster centers, and k(·, ·) is the kernel function that measures

the similarity between the frame xi to the cluster center cj . ϕj measures the

total similarity of the frames inside the segment z to the cluster center cj .

Notably, the vectors {cj} do not need to be the cluster centers. They can

be chosen to be any set of representative vectors. For example, {cj} can be

taken as the support vectors of a frame-based SVM trained to distinguish

between individual positive and negative frames. In this case, our method

directly improves the performance of frame-based SVM by relearning the

weights to incorporate temporal constraints. To see this, consider the score

function of frame-based SVM. For a frame xi of a given signal X, the

SVM score is of the form vTϕ(xi) + b. It has been shown that v can be

expressed as a linear combination of the support vectors: v =
∑d

j=1 αjϕ(cj).

Thus the SVM score for frame xi is: v
Tϕ(xi) + b =

∑d
j=1 αjk(xi, cj) + b.

Meanwhile, the decision function of structured learning is: wTϕ(Xz) + b =
∑e

i=s

∑d
j=1wjk(xi, cj) + wd+1 · len(z) + b.

For both feature mappings defined in Eq. (1.6) and Eq. (1.7), let ai denote
∑d

j=1wjϕji +wd+1. Thus w
Tϕ(Xz) =

∑e
i=s ai. The label ẑ that maximizes

wTϕ(Xz) is: ẑ = [ŝ, ê] = argmax1≤s≤e

∑e
i=s ai. There exists a linear time

algorithm (Nguyen et al., 2009) for this optimization problem. Similarly, the

label ẑ that maximizes ∆(zi, z) +wTϕ(Xi
z
) can be found as:

ẑ = [ŝ, ê] = argmax
1≤s≤e

{

∆(zi, [s, e]) +

e
∑

t=s

at

}

. (1.8)

This can be conveniently solved using exhaustive search, or it can be

efficiently optimized by means of a branch-and-bound algorithm (Lampert

et al., 2008; Chu et al., 2012).

1.3 Early event detection

The ability to make reliable early detection of temporal events has many

potential applications in a wide range of fields, ranging from security (e.g.,

pandemic attack detection), environmental science (e.g., tsunami warning)

to health care (e.g., risk-of-falling detection) and robotics (e.g., affective

computing). While temporal ED has been extensively studied, early detec-

8 Example Chapter

tion is a relatively unexplored problem. By early detection, we mean to

detect the event as soon as possible, after it starts but before it ends, as il-

lustrated in Fig. 1.2. To see why it is important to detect events before they

finish, consider a concrete example of building a robot that can affectively

interact with humans. Arguably, a key requirement for such a robot is its

ability to accurately and rapidly detect human emotional states from facial

expressions so that appropriate responses can be made in a timely manner.

More often than not, a socially acceptable response is to imitate the current

human behavior. This requires facial events such as smiling or frowning to

be detected even before they are complete; otherwise, the imitation response

would be out of synchronization. However, the learning formulation provided

in Sec. 1.2 does not train detectors to recognize partial events. Consequently,

using this formulation for Early Event Detection (EED) would lead to un-

reliable decisions as we will illustrate in the experimental section.

This section proposes Max-Margin Early Event Detectors (MMED), a

novel formulation for training event detectors that recognize partial events,

enabling early detection. MMED is based on SOSVM (Taskar et al., 2003;

Tsochantaridis et al., 2005), but extends it to accommodate the nature of

sequential data. In particular, we simulate the sequential frame-by-frame

data arrival for training time series and learn an event detector that correctly

classifies partially observed sequences. Fig. 1.4 illustrates the key idea behind

MMED: partial events are simulated and used as positive training examples.

It is important to emphasize that we train a single event detector to

recognize all partial events. But MMED does more than augment the set

of training examples; it trains a detector to localize the temporal extent

of a target event, even when the target event has not yet finished. This

requires monotonicity of the detection function with respect to the inclusion

relationship between partial events—the detection score (confidence) of a

partial event cannot exceed the score of an encompassing partial event.

MMED provides a principled mechanism to achieve this monotonicity, which

cannot be assured by a naive solution that simply augments the set of

training examples.

1.3.1 Learning with sequential data

To support early detection of events in time series data, we propose to

use partial events as positive training examples (Fig. 1.4). In particular,

we simulate the sequential arrival of training data as follows. Suppose the

length of Xi is li. For each time t = 1, · · · , li, let zit be the part of event

zi that has already happened, i.e., zit = zi ∩ [1, t], which is possibly empty.

Ideally, we want the output of the detector on time series Xi at time t to

1.3 Early event detection 9

3'&-($+)4#

*$.5$(#%&'()%#

$#/1&*()+)#%&'()#

Figure 1.4: Given a training time series that contains a complete event, we simulate
the sequential arrival of training data and use partial events as positive training
examples. The red segments indicate the temporal extents of the partial events. We
train a single event detector to recognize all partial events, but our method does
more than augment the set of training examples.

be the partial event, i.e., g(Xi
[1,t]) = zit. Note that g(X

i
[1,t]) is not the output

of the detector running on the entire time series Xi. It is the output of the

detector on the subsequence of time series Xi from the first frame to the tth

frame only, i.e.,

g(Xi
[1,t]) = argmax

z∈Z(t)
f(Xi

z
). (1.9)

The desired property of the score function is: f(Xi
z
i
t

) ≥ f(Xi
z
) ∀z ∈ Z(t).

This constraint requires the score of the partial event zit to be higher than

the score of any other time series segment z that has been seen in the past,

z ⊂ [1, t]. This is illustrated in Fig. 1.5. Note that the score of the partial

event is not required to be higher than the score of a future segment.

As in the case of SOSVM, the previous constraint can be required to

be well satisfied by an adaptive margin. This margin is ∆(zit, z), the loss

of the detector for outputting z when the desired output is zit (in our

case ∆(zit, z) = 1 − 2|zi
t∩z|

|zi
t|+|z|). The desired constraint is: f(Xi

z
i
t

) ≥ f(Xi
z
) +

∆(zit, z) ∀z ∈ Z(t). This constraint should be enforced for all t = 1, · · · , li.

As in the formulations of SVM, constraints are allowed to be violated by

introducing slack variables, and we obtain the following learning formulation:

minimize
w,b,ξi≥0

1

2
||w||2 +

C

n

n
∑

i=1

ξi, (1.10)

s.t. f(Xi
z
i
t
) ≥ f(Xi

z
) + ∆(zit, z)−

ξi

µ
(

|zi
t|

|zi|

) ∀i, ∀t = 1 · · · li, ∀z ∈ Z(t).

(1.11)

Here | · | denotes the length function, and µ
(

|zi
t|

|zi|

)

is a function of the

proportion of the event that has occurred at time t. µ
(

|zi
t|

|zi|

)

is a slack vari-

10 Example Chapter

X
i

t

*$%+##

%)8&)0+#
,-+-.)##

%)8&)0+#

s
i

e
i

4)%'.)4#%/1.)#,-0/510#f(·)

/1&*()+)##

)9)0+#*$.5$(##

)9)0+#

#/10%+.$'0+:#

z
i

t

f(Xi

z
i
t
) > f(Xi

zpast
)

Figure 1.5: The desired score function for early event detection: the complete event
must have the highest detection score, and the detection score of a partial event
must be higher than that of any segment that ends before the partial event. To
learn this function, we explicitly consider partial events during training. At time
t, the score of the partial event is required to be higher than the score of any
past segment; however, it is not required to be higher than the score of any future
segment.

able rescaling factor and should correlate with the importance of correctly

detecting at time t whether the event zi has happened. µ(·) can be any ar-

bitrary non-negative function, and in general, it should be a non-decreasing

function in (0, 1]. In our experiments, we found the following piece-wise

linear function a reasonable choice: µ(0) = 1; µ(x) = 0 for 0 < x ≤ α;

µ(x) = (x− α)/(β − α) for α < x ≤ β; and µ(x) = 1 for β < x ≤ 1. Here, α

and β are tunable parameters. µ(0) = µ(1) emphasizes that true rejection

is as important as true detection of the complete event.

This learning formulation is an extension of SOSVM. From this formula-

tion, we obtain SOSVM by not simulating the sequential arrival of training

data, i.e., to set t = li instead of t = 1, · · · , li in Constraint (1.11). Notably,

our method does more than augment the set of training examples; it enforces

the monotonicity of the detector function, as shown in Fig. 1.6.
For a better understanding of Constraint (1.11), let us analyze the con-

straint without the slack variable term and break it into three cases: i)
t < si (event has not started); ii) t ≥ si, z = ∅ (event has started; compare
the partial event against the detection threshold); and iii) t ≥ si, z 6= ∅
(event has started; compare the partial event against any non-empty seg-
ment). Recall f(X∅) = 0 and zit = ∅ for t < si, cases (i), (ii), (iii) lead to

1.3 Early event detection 11

4)%'.)4#%/1.)#,-0/510#f(·)

t t t t t

Figure 1.6: Monotonicity requirement – the detection score of a partial event
cannot exceed the score of an encompassing partial event. MMED provides a
principled mechanism to achieve this monotonicity, which cannot be assured by
a naive solution that simply augments the set of training examples.

Constraints (1.12), (1.13), (1.14), respectively:

f(Xi
z
) ≤ −1 ∀z ∈ Z(si − 1) \ {∅}, (1.12)

f(Xi
zi
t
) ≥ 1 ∀t ≥ si, (1.13)

f(Xi
zi
t
) ≥ f(Xi

z
) + ∆(zit, z) ∀t ≥ si, z ∈ Z(t) \ {∅}. (1.14)

Constraint (1.12) prevents false detection when the event has not started. Con-

straint (1.13) requires successful recognition of partial events. Constraint (1.14)

trains the detector to accurately localize the temporal extent of the partial events.

The proposed learning formulation Eq. (1.10) is convex, but it contains a large

number of constraints. As in Sec. 1.2.2, we propose to use constraint generation in

optimization (Tsochantaridis et al., 2005). In our experiments described in Sec. 1.5,

constraint generation usually converges within 20 iterations. Each iteration requires

minimizing a convex quadratic objective. This objective is optimized using Cplex1

in our implementation.

1.3.2 Loss function and empirical risk minimization

In Sec. 1.3.1, we have proposed a formulation for training early event detectors.

This section provides further discussion on what exactly is being optimized. First,

we briefly review the loss of SOSVM and its surrogate empirical risk. We then

1. www-01.ibm.com/software/integration/optimization/cplex-optimizer/

12 Example Chapter

describe two general approaches for quantifying the loss of a detector on sequential

data. In both cases, what Eq. (1.10) minimizes is an upper bound on the loss.

As previously explained, ∆(z, ẑ) is the function that quantifies the loss associated

with a prediction ẑ, if the true output value is z. Thus, in the setting of offline

detection, the loss of a detector g(·) on a sequence-event pair (X, z) is quantified

as ∆(z, g(X)). Suppose the sequence-event pairs (X, z) are generated according to

some distribution P (X, z), the loss of the detector g is

R
∆
true(g) =

∫

X×Z

∆(z, g(X))dP (X, z). (1.15)

However, P is unknown so the performance of g(.) is described by the empirical

risk on the training data {(Xi, zi)}, assuming they are generated i.i.d according to

P . The empirical risk is R∆
emp(g) = 1

n

∑n

i=1 ∆(zi, g(Xi)). It has been shown that

SOSVM minimizes an upper bound on the empirical risk R∆
emp (Tsochantaridis

et al., 2005).

Due to the nature of continual evaluation, quantifying the loss of an online

detector on streaming data requires aggregating the losses evaluated throughout the

course of the data sequence. Let us consider the loss associated with a prediction

z = g(Xi
[1,t]) for time series Xi at time t as ∆(zit, z)µ

(

|zi
t|

|zi|

)

. Here ∆(zit, z) accounts

for the difference between the output z and true truncated event zit. µ
(

|zi
t|

|zi|

)

is

the scaling factor; it depends on how much the temporal event zi has happened.

Two possible ways for aggregating these loss quantities is to use their maximum or

average. They lead to two different empirical risks for a set of training time series:

R
∆,µ
max(g) =

1

n

n
∑

i=1

max
t

{

∆(zit, g(X
i
[1,t]))µ

(

|zit|

|zi|

)}

,

R
∆,µ
mean(g) =

1

n

n
∑

i=1

mean
t

{

∆(zit, g(X
i
[1,t]))µ

(

|zit|

|zi|

)}

.

In the following, we state and prove a proposition that establishes that the

learning formulation given in Eq. (1.10) minimizes an upper bound of the above

two empirical risks.

Proposition: Denote by ξ∗(g) the optimal solution of the slack variables in

Eq. (1.10) for a given detector g, then 1
n

∑n

i=1 ξ
i∗ is an upper bound on the empirical

risks R∆,µ
max(g) and R∆,µ

mean(g).

Proof : Consider Constraint (1.11) with z = g(Xi
[1,t]) and together with the

fact that f(Xi
g(Xi

[1,t]
)
) ≥ f(Xi

zi
t

), we have ξi∗ ≥ ∆(zit, g(X
i
[1,t]))µ

(

|zi
t|

|zi|

)

∀t. Thus

ξi∗ ≥ maxt{∆(zit, g(X
i
[1,t]))µ

(

|zi
t|

|zi|

)

}. Hence 1
n

∑n

i=1 ξ
i∗ ≥ R∆,µ

max(g) ≥ R∆,µ
mean(g).

This completes the proof of the proposition. This proposition justifies the objective

of the learning formulation.

1.4 Sequence Labeling 13

1.4 Sequence Labeling

Another important problem in time series analysis is sequence labeling, which

factorizes a time series into a set of non-overlapping segments and assigns a class

label to each segment. Sequence labeling is related to ED and it is often used for ED.

But these two problems are different. A sequence labeling system assigns a unique

semantic label to each frame, while an ED system may assign no or multiple labels.

Sequence labeling has been shown to be useful in a wide range of applications, from

natural language processing (Rabiner, 1989) to office activity understanding (Brand

and Kettnaker, 2000) and animal behavior analysis (Oh et al., 2008).

Most existing techniques for sequence labeling are based on probabilistic hidden-

state models, and labeling a time series is equivalent to finding the sequence of

event labels that yields the highest probability. Brand and Kettnaker (2000) use

Hidden Markov Models (HMMs) (Rabiner, 1989) for understanding office activities.

Xu et al. (2003) use multi-layer HMMs (Rabiner, 1989) to analyze baseball and

volleyball videos. Oh et al. (2008) and Fox et al. (2009) use variants of Switching

Linear Dynamical Systems (SLDS) (Pavlovic et al., 2000; Pavlovic and Rehg, 2000)

to analyze human and animal behavior. Valstar and Pantic (2007); Koelstra and

Pantic (2008); Tong et al. (2007); Shang and Chan (2009); Chang et al. (2009)

use Dynamic Bayesian Networks (DBNs) for detecting facial events, while Laxton

et al. (2007) design a hierarchical structure based on DBNs to decompose complex

activities. Although these generative methods have been shown to be effective in

their respective scenarios, they have limited ability to model the null class (i.e., no

event, unseen event, or anything that we do not have a label for) due to the large

variability of the null class. Conditional Random Fields (CRFs) (Lafferty et al.,

2001) are the discriminative alternatives to HMMs, and they have been successfully

used for a number of applications such as detection of highlight events in soccer

videos (Wang et al., 2006). CRFs, however, cannot model long-range dependencies

between labels (Sarawagi and Cohen, 2005), disabling the use of segment-level

features. CRFs can be extended to account for higher-order dependencies, but

the computational cost increases exponentially with the clique size. Semi-Markov

CRFs (Sarawagi and Cohen, 2005) have lower computational cost, but they also

require short segment lengths (Okanohara et al., 2006). Nevertheless, CRF-based

models, like HMMs or any other hidden-state model, suffer the drawbacks of

needing either an explicit definition of the latent state of all frames, or the need

to simultaneously learn a state sequence and state transition model that fits

the data, resulting in a high-dimensional minimization problem with typically

many local minima. This section develops a multi-class extension of Seg-SVMs

for sequence labeling, which simultaneously performs temporal segmentation and

event recognition in time series.

14 Example Chapter

1 len(X)
st st+1s2

!"#$!%yt

Figure 1.7: Joint segmentation and recognition process – we need to find the
events’ boundary points s1, · · · , sk+1 and the class labels y1, · · · , yk.

1.4.1 Structured prediction for sequence labeling

Our goal is to factorize a time series into a sequence of events and recognize their

classes. Suppose there are m classes of events. We will discuss how to learn the

detectors in Section 1.4.2, but assume for now that the detectors {wj}
m
j=1 have been

learned. These detectors can be used independently to detect each class of target

events in turn. This works well for many applications such as facial Action Unit

(AU) detection. In many other applications, however, knowledge about the presence

or absence of a particular event constrains on those of any other events, just like

drinking and kissing do not occur together. This constraint can be incorporated in

the joint segmentation and recognition process by finding a set of change points

s1, · · · , sk+1 (see Fig. 1.7) that:

minimize
k,st,yt,ξt≥0

k
∑

t=1

ξt, (1.16)

s.t. lmin ≤ st+1 − st ≤ lmax ∀t, s1 = 0, sk+1 = len(X),

(wyt
−wy)

Tϕ(X(st,st+1]) ≥ 1− ξt ∀t, y 6= yt.

Observe that the number of segments k is not known in advance and, therefore,

needs to be optimized over. In the above formulation, lmin and lmax are the

minimum and maximum lengths of segments, which can be inferred from training

data. Here X(st,st+1] denotes the segment of time series X, taken from frame st +1

to frame st+1 inclusive. len(X) denotes the length of time series X. wT
y ϕ(X(st,st+1])

is the SVM score for assigning segment X(st,st+1] to class y. What we propose is to

maximize the difference between the SVM score of the winning class yt and that

of any other class y 6= yt, filtering through the Hinge loss. The idea is to seek a

segmentation in which each resulting segment is assigned a class label with high

confidence. This is different from what was proposed by Shi et al. (2008), who

maximize the total SVM scores:

maximize
k,st,yt

k
∑

t=1

wT
yt
ϕ(X(st,st+1]), s.t. (1.17)

lmin ≤ st+1 − st ≤ lmax ∀t, s1 = 0, sk+1 = len(X),

Different from the above formulation, our segmentation criterion, Eq. (1.16), re-

quires suppressing the non-maximum classes. To see the difference between these

two criteria, consider breaking a time series AB in Fig. 1.8 at either M or N . For

1.4 Sequence Labeling 15

<# =#># ?#

!@A#B#C@D# C@"#B#C@E#

C@A#B#FA@"# A@C#B#C@!#

5&)#%).')%#

%)8&)0+$510#C#

%)8&)0+$510#!#

Figure 1.8: Which segmentation is preferred, breaking time series AB at M or
N? Suppose there are only two classes, SVM scores of the first and second class for
corresponding segments are printed in red and blue, respectively. Our segmentation
criterion prefers to cut at N because the resulting segments can be confidently
classified.

simplicity, suppose there are only two classes, and the SVM scores of the first and

second class for some segments in Figure 1.8 are in printed in underlined and over-

lined, respectively. The segmentation criterion of Eq. (1.17) would prefer to divide

AB at M because it leads to higher total SVM scores of the winning classes (total

score of 3.5 = 2.0 + 1.5, 2.0 from segment AM and 1.5 from MB). On the other

hand, our segmentation criterion does not prefer to cut at M because it cannot

confidently classify the resulting segments. To see this, consider the segment AM ,

even though the SVM score of the winning class, class 1, is high, the SVM score

of the alternative, class 2, is also similarly high. Our proposed criterion seeks the

optimal segmentation that maximizes the difference between the SVM scores of the

winning class and the next best alternative, filtering through the robust Hinge loss.

As we will show in Subsection 1.4.2, our segmentation criterion optimizes the same

objective as that of the training formulation.

1.4.2 Maximum-margin learning for sequence labeling

We now describe how to learn w1, · · · ,wm from a collection of training time series

X1, · · · ,Xn with known segmentation and class labels, i.e., the change points

between actions 0 = si1 < · · · < siki+1 = len(Xi) and the associated class

labels yi1, · · · , y
i
ki

∈ {1, · · · ,m} are provided (see Fig. 1.7). We can use multi-class

SVM Crammer and Singer (2001) to train a model for temporal actions:

minimize
wj ,ξ

i
t≥0

1

2m

m
∑

j=1

||wj ||
2 +

C

n

n
∑

i=1

ki
∑

t=1

ξit, (1.18)

s.t. (wyi
t
−wy)

Tϕ(Xi
(sit,s

i
t+1]

) ≥ 1− ξit ∀i, t, y 6= yit. (1.19)

Constraint (1.19) requires segment Xi
(sit,s

i
t+1]

to belong to class yit with high confi-

dence; in other words, the SVM score for class yit should be relatively higher than

that of any other class by a large margin. {ξit} are slack variables which allow for

penalized constraint violation. C is the parameter controlling the trade-off between

a large margin and less constrained violation.

16 Example Chapter

1.4.3 Dynamic programming algorithm for sequence labeling

Given the parameters {wj}
m
j=1, the inference for Eq. (1.16) can be solved using a

dynamic programming algorithm, which makes two passes over the time series X.

In the forward pass, at frame u (1 ≤ u ≤ len(X)), it computes the best objective

value for segmenting and labeling truncated time seriesX(0,u] (ignoring frames from

u+ 1 onward), i.e.

h(u) = min
k,st,yt,ξt≥0

k
∑

t=1

ξt, (1.20)

s.t. lmin ≤ st+1 − st ≤ lmax ∀t, s1 = 0, sk+1 = u,

(wyt
−wy)

Tϕ(X(st,st+1]) ≥ 1− ξt ∀t, y 6= yt.

The forward pass computes h(u), as well as l(u), for u = 1, · · · , len(X) using the

recursive formulas:

h(u) = min
lmin≤l≤lmax

{ξ(u, l) + h(u− l)}; l(u) = argmin
lmin≤l≤lmax

{ξ(u, l) + h(u− l)}.

Here ξ(u, l) denotes the slack value of segment X(u−l,u], i.e.

ξ(u, l) = max{0, 1− (wŷ −wỹ)
Tϕ(X(u−l,u])}, (1.21)

where

ŷ = argmax
y

wT
y ϕ(X(u−l,u]), and ỹ = argmax

y 6=ŷ

wT
y ϕ(X(u−l,u]). (1.22)

The backward pass of the algorithm finds the best segmentation forX, starting with

sk+1 = len(X) and using the backward-recursive formula: st = st+1− l(st+1). Once

the optimal segmentation has been determined, the optimal assignment of class

labels can be found using: yt = argmaxy w
T
y ϕ(X(st,st+1]). The total complexity

for the forward and backward passes of this dynamic programming algorithm is

O(m(lmax − lmin + 1)len(X)). This is linear in the length of the time series.

1.5 Experiments

This section describes experimental results on detection of facial Action Units (AUs)

from video, early detection of facial expressions and sign language, and sequence

labeling of human actions from video.

1.5.1 Detection of facial AUs

This section describes the experiments on detecting AUs in video. The experiments

were performed on RU-FACS-1 dataset (Bartlett et al., 2006), a relatively large

1.5 Experiments 17

corpus of FACS coded videos. Recorded at Rutgers University, subjects were

asked to either lie or tell the truth under a false opinion paradigm in interviews

conducted by police and FBI members who posed around 13 questions. These

interviews resulted in 2.5 minute long continuous 30-fps video sequences containing

spontaneous AUs of people of varying ethnicity and sex. Ground truth FACS coding

was provided by expert coders. Data from 28 of the subjects was available for our

experiments. In particular, we divided this dataset into 17 subjects for training

(97000 frames) and 11 subjects for testing (67000 frames).

The AUs for which we present results were selected by requiring at least 100

event occurrences in the available RU-FACS-1 data, resulting in the following set of

AUs: 1, 2, 12, 14, 15, 17, 24. Additionally, to test performance on AU combinations,

AU1+2 and AU6+12 were selected due to the large number of occurrences.

Following Zhu et al. (2009), we extracted fixed-scale-and-orientation SIFT de-

scriptors (Lowe, 1999) anchored at several points of interest at the tracked land-

marks for frame-level feature representation. Intuitively, the histogram of gradient

orientations calculated in SIFT has the potential to capture much of the informa-

tion that is described in FACS (e.g., the markedness of the naso-labial furrows, the

direction and distribution of wrinkles, the slope of the eyebrows). At the same time,

the SIFT descriptor has been shown to be robust to illumination changes and small

errors in localization.

After the facial components have been tracked in each frame, a normalization

step registers each image with respect to an average face (Zhu et al., 2009). An

affine texture transformation is applied to each image so as to warp the texture

into this canonical reference frame. This normalization provides further robustness

to the effects of head motion. Once the texture is warped into this fixed reference,

SIFT descriptors are computed around the outer outline of the mouth (11 points for

lower face AU) and on the eyebrows (5 for upper face AU). Due to the large number

of resulting features (128 by number of points), the dimensionality of the resulting

feature vector was reduced using PCA to keep 95% of the energy, obtaining 261

and 126 features for lower face and upper face AU respectively.

We compared our method against a frame-based SVM and dynamic methods

using HMM (Rabiner, 1989). The frame-based SVM (Bartlett et al., 2006) (referred

to as SVM) is trained to distinguish between positive (AU) negative (non-AU)

frames and uses a radial basis kernel k(x, z) = exp(−γ||x − z||2). Our method

(SegSVM) is based on soft-clustering, with the cluster centers are chosen to be the

support vectors (SVs) of frame-based SVMs with a radial basis kernel. Because for

several AUs the number of SVs can be quite large (2000− 4000), we apply the idea

proposed by Avidan (2003) to reduce the number of SVs for faster training time

and better generalization. However, instead of using a greedy algorithm for subset

selection, we used LASSO regression (Tibshirani, 1996). In our experiments, the

sizes of the reduced SV sets ranges from 100 to 500 SVs.

We also compared the performance of our method with dynamic approaches using

HMMs which have been used with success in the facial expression literature (Valstar

and Pantic, 2007). In this experiment, we will limit ourselves to a basic generative

18 Example Chapter

HMM model where the observations for each state are modeled as a Gaussian

distribution using a full covariance matrix with ridge regularization (i.e., Σ̂ = Σ+λI

where I is the identity matrix), and consider the same feature set used for all other

experiments. Two different state mappings where tried resulting in HMM2 and

HMM4. HMM2 is a 2-state model, where state-0 corresponds to a neutral face (no

AU present) and state-1 corresponds to frames where the AU is present. HMM4 is a

4-state model, where state-0 is mapped to neutral face frames, state-1 corresponds

to AU onset frames, state-2 corresponds to peak frames, and state-3 corresponds

to offset frames.

Following Bartlett et al. (2005), positive samples were taken to be frames where

the AU was present, and negative samples where it was not. To evaluate perfor-

mance, we used the precision-recall values and the maximum F1 score. The pre-

cision and recall measures were computed on a frame-by-frame basis by varying

the bias or threshold of the corresponding classifier. The F1 score is defined as:

F1 = 2·Recall·Precision
Recall+Precision

, summarizing the trade-off between high recall rates and ac-

curacy among the predictions. F1 score is a better performance measure than the

more common ROC metric because the latter is designed for balanced binary clas-

sification rather than detection tasks, and fails to reflect the effect of the proportion

of positive to negative samples on classification performance.

Parameter tuning is done using 3-fold subject-wise cross-validation on the train-

ing data. For the frame-based SVM, we need to tune C and γ, the scale parameter

of the radial basis kernel. For SegSVM, we need to tune C only. The kernel param-

eter γ of SegSVM could also potentially be tuned, but for simplicity it was set to

the same γ used for frame-based SVM.

Tab. 1.1 shows the experimental results on the RU-FACS-1 dataset. As can be

seen, SegSVM, based on structured prediction, consistently outperforms frame-

based SVM and HMM, achieving highest F1 score on 7 out of 10 test cases. Fig. 1.9

depicts the precision-recall curves of AU12 and AU15. These curves clearly show

superior performance for SegSVM. For example, at 70% recall, the precision of SVM

and SegSVM are 0.79 and 0.87, respectively. At 50% recall for AU15, the precision

of SVM is 0.48 compared to 0.67, roughly 2
3 that of SegSVM.

Action Units

Methods 1 2 6 12 14 15 17 24 1+2 6+12

SVM 0.48 0.42 0.50 0.74 0.20 0.50 0.55 0.15 0.36 0.55

HMM2 0.43 0.42 0.62 0.76 0.18 0.26 0.38 0.18 0.31 0.64

HMM4 0.39 0.18 0.63 0.77 0.12 0.25 0.28 0.05 0.31 0.63

SegSVM 0.59 0.56 0.59 0.78 0.27 0.59 0.56 0.08 0.56 0.62

Table 1.1: Max F1-score on the RU-FACS-1 dataset. Higher numbers indicate
better performance, and best results are printed in bold.

1.5 Experiments 19

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
re
c
is
io
n

Recall

SVM

SegSVM

(a) AU 12

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
re
c
is
io
n

Recall

SVM

SegSVM

(b) AU 15

Figure 1.9: Precision-recall curves for AU 12 and AU 15. Our method significantly
outperforms Frm-SVM.

1.5.2 Early detection of facial expression

The experiment for early detection of facial expression was performed on CK+,

the Extended Cohn-Kanade dataset (Lucey et al., 2010). This dataset contains

327 facial image sequences from 123 subjects performing one of seven discrete

emotions: anger, contempt, disgust, fear, happiness, sadness, and surprise. Each

of the sequences contains images from onset (neutral frame) to peak expression

(last frame). We considered the task of detecting negative emotions: anger, disgust,

fear, and sadness.

We used the canonical normalized appearance feature, CAPP (Lucey et al., 2010).

For comparison purposes, we implemented two frame-based SVMs: Frm-peak was

trained on peak frames of the training sequences while Frm-all was trained using

all frames between the onset and offset of the facial action. Frame-based SVMs can

be used for detection by classifying individual frames. In contrast, SOSVM and

MMED are segment-based. Since a facial expression is a deviation of the neutral

face, we represented each segment of an emotion sequence by the difference between

the end frame and the start frame. Even though the start frame was not necessarily

a neutral face, this representation led to good recognition results.

We used the area under the ROC curve for accuracy comparison and Normalized

Time to Detection (NTtoD) for benchmarking the timeliness of detection. The ROC

and AMOC curves are defined below.

ROC area: Consider testing a detector on a set of time series. The False Positive

Rate (FPR) of the detector is defined as the fraction of time series that the detector

fires before the event of interest starts. The True Positive Rate (TPR) is defined

as the fraction of time series that the detector fires during the event of interest.

A detector typically has a detection threshold that can be adjusted to trade off

high TPR for low FPR and vise versa. By varying this detection threshold, we can

generate a ROC curve, which is a function of TPR against FPR. We used the area

20 Example Chapter

(a)

disgust

0.00 0.53 0.73 1.00

(b)

fear

0.00 0.44 0.62 1.00

Figure 1.10: Disgust (a) and fear (b) detection on CK+ dataset. From left to
right of each sequence are the onset frame, the frame at which MMED fires, the
frame at which SOSVM fires, and the peak frame. The number in each image is the
corresponding NTtoD.

under the ROC for evaluating the detector accuracy.

AMOC curve: To evaluate the timeliness of detection we use Normalized Time

to Detection (NTtoD) which is defined as follows. Given a testing time series where

the event of interest occurs from s to e, suppose the detector starts to fire at time

t. For a successful detection, s ≤ t ≤ e, we define the NTtoD as the fraction of

event that has occurred, i.e., t−s+1
e−s+1 . NTtoD is defined as 0 for a false detection

(t < s) and ∞ for a false rejection (t > e). By adjusting the detection threshold,

one can achieve smaller NTtoD at the cost of higher FPR and vice versa. For

a complete characteristic picture, we vary the detection threshold and plot the

curve of NToD versus FPR. This is referred as the Activity Monitoring Operating

Curve (AMOC) (Fawcett and Provost, 1999).

We randomly divided the data into disjoint training and testing subsets. The

training set contained 200 sequences with equal numbers of positive and negative

examples. For reliable results, we repeated our experiment 20 times and recorded

the average performance. Regarding the detection accuracy, segment-based SVMs

outperformed frame-based SVMs. The ROC areas (mean and standard deviation)

for Frm-peak, Frm-all, SOSVM, MMED are 0.82 ± 0.02, 0.84 ± 0.03, 0.96 ± 0.01,

and 0.97 ± 0.01, respectively. Comparing the timeliness of detection, our method

was significantly better than the others, especially at low false positive rate which

is what we care about. For example, at 10% false positive rate, Frm-peak, Frm-all,

SOSVM, and MMED can detect the expression when it completes 71%, 64%, 55%,

and 47% respectively. Fig. 1.11a plots the AMOC curves, and Fig. 1.10 displays

some qualitative results. We used a linear SVM with C = 1000, α = 0, β = 0.5.

1.5 Experiments 21

1.5.3 Early detection of sign language

This section describes our experiments on a publicly available dataset (Kadous,

2002) that contains 95 Auslan signs, each with 27 examples. The signs were captured

from a native signer using position trackers and instrumented gloves; the location

of the two hands, the orientation of the palms, and the bending of the fingers

were recorded. We considered detecting the sentence “I love you” in monologues

obtained by concatenating multiple signs. In particular, each monologue contained

an I-love-you sentence which was preceded and succeeded by 15 random signs. The

I-love-you sentence was ordered concatenation of random samples of three signs:

“I”, “love”, and “you”. We created 100 training and 200 testing monologues from

disjoint sets of sign samples; the first 15 examples of each sign were used to create

training monologues while the last 12 examples were used for testing monologues.

The average lengths and standard deviations of the monologues and the I-love-you

sentences were 1836± 38 and 158± 6 respectively.

Previous work (Kadous, 2002) reported high recognition performance on this

dataset using Hidden Markov Models (HMMs) (Rabiner, 1989). Following their

success, we implemented a continuous density HMM for I-love-you sentences. Our

HMM implementation consisted of 10 states, each was a mixture of 4 Gaussians.

To use the HMM for detection, we adopted a sliding window approach; the window

size was fixed to the average length of the I-love-you sentences.

Inspired by the high recognition rate of HMM, we constructed feature represen-

tation for SVM-based detectors (SOSVM and MMED) as follows. We first trained

a Gaussian Mixture Model of 20 Gaussians for the frames extracted from the I-love-

you sentences. Each frame was then associated with a 20× 1 log-likelihood vector.

We retained the top three values of this vector, zeroing out the other values, to

create a frame-level feature representation. This is the soft quantization approach.

To compute the feature vector for a given window, we divided the window into two

roughly equal halves, the mean feature vector of each half was then calculated, and

the concatenation of these mean vectors was then used as the feature representation

of the window.

A naive strategy for early detection is to use truncated events as positive

examples. For comparison, we implemented Seg-[0.5,1], a binary SVM that used the

first halves of the I-love-you sentences in addition to the full sentences as positive

training examples. Negative training examples were random segments that had no

overlapping with the I-love-you sentences.

We repeated our experiment 10 times and recorded the average performance.

Regarding the detection accuracy, all methods except SVM-[0.5,1] performed simi-

larly well. The ROC areas for HMM, SVM-[0.5,1], SOSVM, and MMED were 0.97,

0.92, 0.99, and 0.99, respectively. However, when comparing the timeliness of de-

tection, MMED outperformed the others by a large margin. For example, at 10%

false positive rate, our method detected the I-love-you sentence when it observed

the first 37% of the sentence. At the same false positive rate, the best alternative

method required seeing 62% of the sentence. The full AMOC curves are depicted

22 Example Chapter

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Positive Rate

N
o
rm

a
liz

e
d
 T

im
e
 t

o
 D

e
te

c
t

Frm−peak

Frm−all

SOSVM

MMED

(a) CK+, AMOC

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Positive Rate

N
o
rm

a
liz

e
d
 T

im
e
 t

o
 D

e
te

c
t

HMM

Seg−[0.5,1]

SOSVM

MMED

(b) Auslan, AMOC

Figure 1.11: AMOC curves on Auslan and CK+ datasets; at the same false positive
rate, MMED detects target events sooner than the other methods.

.-0# *G-&*# G-&*# %H'*# 6$9)C#

G$/H# 6$9)!# %'4)# I)04# 6$(H#

(a) Typical frames (b) (c) (d)

Figure 1.12: Weizmann dataset. (b)-(d): how frame-level features are computed;
(b): original frame, (c): binary mask, and (d): Euclidean distance transform.

in Fig. 1.11b. In this experiment, we used linear SVM with C = 1, α = 0.25, β = 1.

1.5.4 Sequence labeling of human actions

The experiments on sequence labeling of human actions were performed on the

Weizmann dataset (Gorelick et al., 2007). This dataset contains 90 video se-

quences (180 × 144 pixels, deinterlaced 50fps) of 9 people, each performing 10

actions. Figure 1.12(a) displays several typical frames extracted from the dataset.

Each video sequence in this dataset only consists of a single action.

To evaluate the segmentation and recognition performance of our method, we

performed experiments on longer video sequences that were created by concatenat-

ing existing single-action sequences. Specifically, we created 9 long sequences, each

composed of 10 videos for 10 different actions (each original video sample was used

only once). To evaluate the performance of the proposed method in the presence

of the null class, background clutter with large variability, we considered the last

five classes of actions (side, skip, walk, wave1, and wave2) as the null class. Follow-

ing Gorelick et al. (2007), we extracted binary masks (Figure 1.12c) and computed

1.6 Summary 23

b
e
n
d

ja
ck

ju
m
p

p
ju
m
p

ru
n

N
u
ll

bend .96 .01 .01 .00 .00 .01

jack .00 .97 .00 .01 .00 .02

jump .00 .00 .88 .06 .04 .02

pjump .00 .00 .01 .98 .00 .01

run .00 .00 .01 .00 .91 .08

Null .01 .03 .00 .03 .03 .90

Table 1.2: Results on Weizmann dataset – Confusion matrix for segmentation and
recognition of five different actions: bend, jack, jump, pjump, and run. The null
class is the combination of all other classes. The average accuracy is 93.3%.

Euclidean distance transform (Figure 1.12d) for frame-level features. We built a

codebook of temporal words with 100 clusters using k-means.

We measured the leave-one-out joint segmentation and recognition performance

as follows. We ran our algorithm on long video sequences to find the optimal

segmentation and class labels. At that point, each frame was associated with a

particular class, and the overall frame-level accuracy against the ground truth

labels was calculated as the ratio between the number of agreements over the total

number of frames. This evaluation criterion is different from recognition accuracy

of algorithms that require pre-segmented video clips (Gorelick et al., 2007).

Table 1.2 shows the confusion matrix for five actions and the null class. Our

method yielded the average accuracy of 93.3%. The variant of our method, MaxS-

coreSeg (Shi et al., 2008), which performed temporal segmentation by maximizing

the total SVM scores (Eq. 1.17), obtained an average accuracy of 77.9%. This rel-

atively low accuracy is due to the mismatch between the segmentation criterion

and the training objective, as explained in Section 1.4.1. Figure 1.13 displays side-

by-side comparison of the prediction result and the human-labeled ground truth.

Except for several cases, the majority of error occurs at the boundaries between ac-

tions. Error at the boundaries does not necessarily indicate the flaw of our method

as human labels are often imperfect (Satkin and Hebert, 2010).

1.6 Summary

This chapter proposed SegSVMs, a structured prediction framework for ED, early

ED, and sequence labeling. SegSVMs have convex learning formulations and effi-

cient inference algorithms. We illustrated the benefits of our approaches in a number

of existing and new problems in computer vision.

24 Example Chapter

0
1
2
3
4
5

Truth

0
1
2
3
4
5

Ours

(a) sequence 1

0
1
2
3
4
5

Truth

0
1
2
3
4
5

Ours

(b) sequence 2

0
1
2
3
4
5

Truth

0
1
2
3
4
5

Ours

(c) sequence 3

0
1
2
3
4
5

Truth

0
1
2
3
4
5

Ours

(d) sequence 4

0
1
2
3
4
5

Truth

0
1
2
3
4
5

Ours

(e) sequence 5

0
1
2
3
4
5

Truth

0
1
2
3
4
5

Ours

(f) sequence 6

0
1
2
3
4
5

Truth

0
1
2
3
4
5

Ours

(g) sequence 7

0
1
2
3
4
5

Truth

0
1
2
3
4
5

Ours

(h) sequence 8

0
1
2
3
4
5

Truth

0
1
2
3
4
5

Ours

(i) sequence 9

Figure 1.13: Automatic segmentation-recognition versus human-labeled ground
truth for Weizmann dataset. The segments at values 0, 1, 2, 3, 4, 5 correspond to
null, bend, jack, pjump, jump, run, respectively.

In this chapter, we have addressed the problems of ED, early ED, and sequence

labeling using supervised learning. However, other important problems arise in the

context of weakly-supervised and unsupervised settings. For instance, in weakly

supervised learning, we need to localize the discriminative events from a set of

time series annotated with binary labels indicating the presence of the event, but

not its location (Nguyen et al., 2009). This has many important applications, e.g.,

for analyzing times series with or without a particular medical condition. Similarly,

unsupervised clustering of time series is important for learning taxonomies of human

behavior (Hoai and De la Torre, 2012a). These tasks can also be formulated as

extensions of SegSVMs, and we refer the reader to (Nguyen et al., 2009; Hoai et al.,

2011; Hoai and De la Torre, 2012a,b) for more details.

Acknowledgements

This work was supported by the National Science Foundation (NSF) under Grant

No. RI-1116583. Any opinions, findings, and conclusions or recommendations ex-

pressed in this material are those of the author(s) and do not necessarily reflect the

views of the NSF. The authors would like to thank Jeffrey Cohn and Tomas Simon

for their contribution on the experiment 1.5.1. and many helpful discussions.

1.7 References 25

1.7 References

J. Aggarwal and Q. Cai. Human motion analysis: A review. Computer Vision and
Image Understanding, 73(3):428–440, 1999.

S. Avidan. Subset selection for efficient SVM tracking. In Proc. CVPR, 2003.

G. Bakir, T. Hofmann, B. Schölkopf, A. Smola, B. Taskar, and S. Vishwanathan,
editors. Predicting Structured Data. MIT Press, Cambridge, MA, 2007.

M. Bartlett, G. Littlewort, M. Frank, C. Lainscsek, I. Fasel, and J. Movellan.
Recognizing facial expression: Machine learning and application to spontaneous
behavior. In Computer Vision and Pattern Recognition, 2005.

M. Bartlett, G. Littlewort, M. Frank, C. Lainscsek, I. Fasel, and J. Movellan.
Automatic recognition of facial actions in spontaneous expressions. Journal of
Multimedia, 1(6):22–35, 2006.

M. B. Blaschko and C. H. Lampert. Learning to localize objects with structured
output regression. In Proc. ECCV, 2008.

A. F. Bobick and A. D. Wilson. A state-based technique for the summarization
and recognition of gesture. IEEE PAMI, 19(12):1325–1337, 1997.

M. Brand and V. Kettnaker. Discovery and segmentation of activities in video.
IEEE PAMI, 22(8):844–851, 2000.

M. Brand, N. Oliver, and A. Pentland. Coupled hidden Markov models for complex
action recognition. In Proc. CVPR, 1997.

K. Chang, T. Liu, and S. Lai. Learning partially-observed hidden conditional
random fields for facial expression recognition. In Computer Vision and Pattern
Recognition, 2009.

W.-S. Chu, F. Zhou, and F. D. la Torre. Unsupervised temporal commonality
discovery. In Proc. ECCV, 2012.

J. Cohn, T. Simon, I. Matthews, Y. Yang, M. H. Nguyen, M. Tejera, F. Zhou, and
F. De la Torre. Detecting depression from facial actions and vocal prosody. In
Proceedings of International Conference on Affective Computing and Intelligent
Interaction, 2009.

K. Crammer and Y. Singer. On the algorithmic implementation of multiclass kernel-
based vector machines. J. Machine Learning Research, 2:265–292, 2001.

A. Efros, A. Berg, G. Mori, and J. Malik. Recognizing action at a distance. In
Proc. ICCV, 2003.

T. Fawcett and F. Provost. Activity monitoring: Noticing interesting changes in
behavior. In Proceedings of the SIGKDD Conference on Knowledge Discovery
and Data Mining, 1999.

E. B. Fox, E. B. Sudderth, M. I. Jordan, and A. S. Willsky. Nonparametric Bayesian
learning of switching linear dynamical systems. In NIPS. 2009.

L. Gorelick, M. Blank, E. Shechtman, M. Irani, and R. Basri. Actions as space-time
shapes. IEEE PAMI, 29(12):2247–2253, 2007.

M. Hoai and F. De la Torre. Maximum margin temporal clustering. In Proceedings
of International Conference on Artificial Intelligence and Statistics, 2012a.

M. Hoai and F. De la Torre. Max-margin early event detectors. In Proc. CVPR,
2012b.

M. Hoai, Z.-Z. Lan, and F. De la Torre. Joint segmentation and classification of

26 Example Chapter

human actions in video. In Proc. CVPR, 2011.

M. Kadous. Temporal classification: Extending the classification paradigm to mul-
tivariate time series. PhD thesis, The University of New South Wales, 2002.

Y. Ke, R. Sukthankar, and M. Hebert. Efficient visual event detection using
volumetric features. In Proc. ICCV, 2005.

S. Koelstra and M. Pantic. Non-rigid registration using free-form deformations
for recognition of facial actions and their temporal dynamics. In International
Conference on Automatic Face and Gesture Recognition, 2008.

J. Lafferty, A. McCallum, and F. Pereira. Conditional random fields: Probabilistic
models for segmenting and labeling sequence data. In Proc. ICML, 2001.

C. H. Lampert, M. B. Blaschko, and T. Hofmann. Beyond sliding windows: object
localization by efficient subwindow search. In Proc. CVPR, 2008.

I. Laptev and P. Perez. Retrieving actions in movies. In Proc. ICCV, 2007.

I. Laptev, M. Marszalek, C. Schmid, and B. Rozenfeld. Learning realistic human
actions from movies. In Proc. CVPR, 2008.

B. Laxton, J. Lim, and D. Kriegman. Leveraging temporal, contextual and ordering
constraints for recognizing complex activities in video. In Proc. CVPR, 2007.

D. Lewis. Naive (Bayes) at forty: The independence assumption in information
retrieval. In Proc. ECML, 1998.

D. Lowe. Object recognition from local scale-invariant features. In Proc. ICCV,
1999.

P. Lucey, J. F. Cohn, T. Kanade, J. Saragih, Z. Ambadar, and I. Matthews. The
extended Cohn-Kanade dataset (CK+): A complete dataset for action unit and
emotion-specified expression. In CVPR Workshop on Human Communicative
Behavior Analysis, 2010.

S. Lucey, I. Matthews, C. Hu, Z. Ambadar, F. De la Torre, and J. Cohn. AAM
derived face representations for robust facial action recognition. In International
Conference on Automatic Face and Gesture Recognition, 2006.

M. H. Nguyen, L. Torresani, F. De la Torre, and C. Rother. Weakly supervised
discriminative localization and classification: a joint learning process. In Proc.
ICCV, 2009.

M. H. Nguyen, T. Simon, F. De la Torre, and J. Cohn. Action unit detection with
segment-based SVMs. In Proc. CVPR, 2010.

S. Nowozin, G. Bakir, and K. Tsuda. Discriminative subsequence mining for action
classification. In Proc. ICCV, 2007.

S. M. Oh, J. M. Rehg, T. Balch, and F. Dellaert. Learning and inferring motion
patterns using parametric segmental switching linear dynamic systems. IJCV,
77(1–3):103–124, 2008.

D. Okanohara, Y. Miyao, Y. Tsuruoka, and J. Tsujii. Improving the scalability
of semi-Markov conditional random fields for named entity recognition. In
Proceedings of International Conference on Computational Linguistics, 2006.

V. Pavlovic and J. M. Rehg. Impact of dynamic model learning on classification of
human motion. In Proc. CVPR, 2000.

V. Pavlovic, J. M. Rehg, and J. MacCormick. Learning switching linear models of
human motion. In NIPS, 2000.

C. Piciarelli, C. Micheloni, and G. L. Foresti. Trajectory-based anomalous event

1.7 References 27

detection. IEEE Transactions on Circuits and System for Video Technology, 18
(11):1544–1554, 2008.

L. R. Rabiner. A tutorial on hidden Markov models and selected applications in
speech recognition. Proceedings of the IEEE, 77(2):257–286, 1989.

S. Sarawagi and W. Cohen. Semi-Markov conditional random fields for information
extraction. In NIPS, 2005.

S. Satkin and M. Hebert. Modeling the temporal extent of actions. In Proc. ECCV,
2010.

L. Shang and K. Chan. Nonparametric discriminant HMM and application to
facial expression recognition. In Conference on Computer Vision and Pattern
Recognition, 2009.

E. Shechtman and M. Irani. Space-time behavior based correlation –or– how to
tell if two underlying motion fields are similar without computing them? IEEE
PAMI, 29(11):2045–2056, 2007.

Q. Shi, L. Wang, L. Cheng, and A. Smola. Discriminative human action segmen-
tation and recognition using semi-Markov model. In Proc. CVPR, 2008.

J. Sivic and A. Zisserman. Video Google: A text retrieval approach to object
matching in videos. In Proc. ICCV, 2003.

C. Sminchisescu, A. Kanaujia, Z. Li, and D. Metaxas. Conditional models for
contextual human motion recognition. In Proc. ICCV, 2005.

B. Taskar, C. Guestrin, and D. Koller. Max-margin Markov networks. In NIPS.
2003.

R. Tibshirani. Regression shrinkage and selection via the LASSO. Journal of the
Royal Statistical Society, Series B, 58(267–288), 1996.

Y. Tong, W. Liao, and Q. Ji. Facial action unit recognition by exploiting their
dynamic and semantic relationships. Transactions on Pattern Analysis and
Machine Intelligence, pages 1683–1699, 2007.

I. Tsochantaridis, T. Joachims, T. Hofmann, and Y. Altun. Large margin methods
for structured and interdependent output variables. Journal of Machine Learning
Research, 6:1453–1484, 2005.

M. Valstar and M. Pantic. Combined support vector machines and hidden markov
models for modeling facial action temporal dynamics. In ICCV Workshop on
Human Computer Interaction, 2007.

H. Vassilakis, A. J. Howell, and H. Buxton. Comparison of feedforward (TDRBF)
and generative (TDRGBN) network for gesture based control. In Proceedings of
Revised Papers From the International Gesture Workshop on Gesture and Sign
Languages in Human-Computer Interaction, 2002.

T. Wang, J. Li, Q. Diao, W. Hu, Y. Zhang, and C. Dulong. Semantic event detection
using conditional random fields. In CVPR Workshop, 2006.

G. Xu, Y.-F. Ma, H.-J. Zhang, and S. Yang. A HMM based semantic analysis
framework for sports game event detection. International Conference on Image
Processing, 2003.

J. Yamato, J. Ohya, and K. Ishii. Recognizing human action in time sequential
images using hidden Markov model. In Proc. CVPR, 1992.

Y. Zhu, F. De la Torre, and J. Cohn. Dynamic cascades with bidirectional boot-
strapping for spontaneous facial action unit detection. In Affective Computing
and Intelligent Interaction, 2009.

