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Abstract

Active Appearance Models (AAMs) have been exten-

sively used for face alignment during the last 20 years.

While AAMs have numerous advantages relative to alter-

nate approaches, they suffer from two major drawbacks: (i)

AAMs are especially prone to local minima in the fitting

process; (ii) few if any of the local minima of the cost func-

tion correspond to acceptable solutions. To minimize these

problems, this paper proposes a method to learn the fitting

cost function that explicitly optimizes that the local minima

occur at and only at the places corresponding to the correct

fitting parameters. The paper explores two methods to pa-

rameterize the cost function: pixel weighting and subspace

learning. Experiments on synthetic and real data show the

effectiveness of our approach for face alignment.

1. Introduction

Since the early work of Sirovich and Kirby [23] param-

eterizing the human face using Principal Component Anal-

ysis (PCA) and the successful eigenfaces of Turk and Pent-

land [25], many computer vision researchers have used

PCA techniques to construct linear models of optical flow,

shape or gray level [4–6,8,12,13,16,21]. In particular, Ac-

tive Appearance Models (AAMs) [8,12,13,19] have proven

to be an appropriate statistical tool for modeling shape and

appearance variation of faces in images. In AAMs, the ap-

pearance/shape models of objects are built by performing

PCA on training data. Once PCA model has been built

from training samples, finding the location/configuration of

an object of interest in a testing image is achieved by mini-

mizing a cost function w.r.t. some geometric transformation

(motion) parameters; this is referred to as the fitting process.

Although widely used, AAMs have two major problems

in the fitting process. First, they are especially prone to lo-

cal minima. Second, often few, if any, of the local min-

ima of the cost function correspond to acceptable solutions.
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Figure 1. Learning a better model for image alignment. a: Origi-

nal image to align (b,c): mean and eigenvectors of the AAM. (d,f):

surface and contour plot of the PCA model. It has many local min-

ima; (e, g): our method learns a better error surface for alignment.

This figure is best seen in color.

Figures 1d,f illustrate these problems. Fig. 1d plots the

error surface constructed by translating the testing image

(Fig. 1a) around the ground truth landmarks and computing

the values of the cost function. The cost function measures

the reconstruction error from the PCA model constructed

from labeled training data. Fig. 1f shows the contour plot of

this error surface. As can be observed, any gradient-based

optimization method is likely to get stuck at local minima,

and will not converge to the global minimum. Moreover,
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the global minimum of this cost function is not at the de-

sired position, the black dot of Fig. 1d, which corresponds

to the correct landmarks’ locations. These problems occur

because the PCA model is constructed without considering

the neighborhood of the correct motion parameters (param-

eters that correspond to ground truth landmarks of training

data). The neighborhoods determine the local minima prop-

erties of the error surface, and should be taken into account

while constructing the models.

In this paper, we propose to learn the cost function (i.e.

appearance model) that has a local minimum at the “ex-

pected” location and no other local minima in its neighbor-

hood. This is done by enforcing constraints on the gradients

of the cost function at the desired location and its neighbor-

hood. Fig. 1e,g plot the error surface and contours of the

learned cost function. This cost function has a local min-

imum in the expected place (black dot of Fig. 1e), and no

other local minima near by.

2. Previous work

Over the last decade, appearance models have become

increasingly important in computer vision and graphics. In

particular, Parameterized Appearance Models (PAMs) have

been proven useful for alignment, detection, tracking, and

face synthesis [5, 6, 8, 12, 13, 16, 19, 21, 26]. This section

reviews PAMs and gradient-based methods for the efficient

alignment of high dimensional deformation models.

2.1. Parameterized Appearance Models (PAMs)

PAMs [5, 6, 8, 12, 16, 21, 26] build the objects’ appear-

ance/shape representation from the principal components

of training data. Let di ∈ ℜm×1 (see notation 1) be the

ith sample of a training set D ∈ ℜm×n and U ∈ ℜm×k

the first k principal components [15]. Once the model has

been constructed (i.e. U is known), tracking/alignment is

achieved by finding the motion parameter p that best aligns

the data w.r.t. the subspace U, i.e.

min
c,p

||d(f(x,p)) − Uc||22 (1)

Here x = [x1, y1, ...xl, yl]
T is the vector containing

the coordinates of the pixels to track. f(x,p) is the

function for geometric transformation; denote f(x,p) by

[u1, v1, ..., ul, vl]
T . d is the image frame in consideration,

1Bold uppercase letters denote matrices (e.g. D), bold lowercase letters

denote column vectors (e.g. d). dj represents the jth column of the matrix

D. dij denotes the scalar in the row ith and column jth of the matrix

D. Non-bold letters represent scalar variables. 1k ∈ ℜk×1 is a column

vector of ones. 0k ∈ ℜk×1 is a column vector of zeros. Ik ∈ ℜk×k

is the identity matrix. tr(D) =
∑

i dii is the trace of square matrix D.

||d||2 =
√

dT d designates Euclidean norm of d. ||D||F = tr(DT D)
is the Frobenious norm of D. diag(·) is the operator that extracts the

diagonal of a square matrix or constructs a diagonal matrix from a vector.

and d(f(x,p)) is the appearance vector of which the ith

entry is the intensity of image d at pixel (ui, vi). For affine

and non-rigid transformations, (ui, vi) relates to (xi, yi) by:

[

ui

vi

]

=

[

a1 a2

a4 a5

] [

xs
i

ys
i

]

+

[

a3

a6

]

(2)

with [xs
1, y

s
1, ...x

s
l , y

s
l ]

T = x + Uscs, where Us is the non-

rigid shape model learned by performing PCA on a set of

registered shapes [7]. a, cs are affine and non-rigid motion

parameters respectively, and p = [a; cs].

2.2. Optimization for PAMs

Given an image d, PAM tracking/alignment algorithms

optimize (1). Due to the high dimensionality of the motion

space, a standard approach to efficiently search over the pa-

rameter space is to use gradient-based methods [1,5,7,9,19,

27]. To compute the gradient of the cost function given in

(1), it is common to use Taylor series expansion to approx-

imate d(f(x,p + δp)) by d(f(x,p)) + Jd(p)δp, where

Jd(p) = ∂d(f(x,p))
∂p

is the Jacobian of the image d w.r.t. to

the motion parameter p [18]. Once linearized, a standard

approach is to use the Gauss-Newton method for optimiza-

tion [3, 5]. Other approaches learn an approximation of the

Jacobian matrix with linear [7] or non-linear [17,22] regres-

sion.

Over the last few years, several strategies for improving

the fitting performance have been proposed. For examples,

Black & Anandan [5] and Cootes & Taylor [7] proposed

using multi-resolution schemes, Xiao et al [29] proposed

using 3D models to constrain 2D solutions, De la Torre et

al [10] proposed learning filters to build a multi-band rep-

resentation that proven to achieve robustness to local min-

ima in AAM fitting. Baker et al. [2] learned a PCA model

invariant to rigid and non-rigid transformations to improve

the PCA model. De la Torre and Nguyen [11] learned a

non-linear PCA model invariantly to non-rigid transforma-

tions that is less prone to local minima. Recently, Wu et

al [28] propose avoiding local minima in discriminative fit-

ting of appearance models by learning boosting with ranked

functions. Although these methods show significant perfor-

mance improvement, they do not directly address the prob-

lem of learning a cost function with no local minima to fit

AAMs. In this paper, we deliberately learn a cost function

which has local minima at and only at the desired places.

3. Learning parameters of the cost functions

Gradient-based algorithms, such as the ones discussed

in the previous section, might not converge to the correct

location (i.e. correct motion parameters) for several rea-

sons. First, gradient-based methods are susceptible to being

stuck at local minima. Second, even when the optimizer

converges to a global minimum, the global minimum might



not correspond to the correct motion parameters. These two

problems occur primarily because PCA has limited gener-

alization capabilities to model appearance variation. This

section proposes a method to learn cost functions that do

not exhibit these two problems in training data.

3.1. A generic cost function for alignment

This section proposes a generic quadratic error function

where many PAMs can be cast. The quadratic error function

has the form:

E(d,p) = d(f(x,p))T Ad(f(x,p)) + 2bT d(f(x,p))
(3)

Here A ∈ ℜm×m and b ∈ ℜm×1 are the fixed param-

eters of the function, and A is symmetric. This function

is the general form of many cost functions used in the lit-

erature including Active Appearance Models [8], Eigen-

tracking [5], and template tracking [18, 20]. For in-

stance, consider the cost function given in (1). If p is

fixed, the optimal c that minimizes (1) can be obtained us-

ing c = UT d(f(x,p)). Substituting this back into (1)

and performing some basic algebra, (1) is equivalent to:

minp d(f(x,p))T (Im − UUT )d(f(x,p)). Thus (1) is a

special case of (3), with A = Im − UUT , and b = 0m.

For template tracking, the cost function is typically the

sum of squared differences: ||d(f(x,p)) − dref ||
2
2, where

dref is the reference template. This cost function is equiv-

alent to: d(f(x,p))T d(f(x,p)) − 2dT
refd(f(x,p)). Thus

the cost function used in template tracking is also a special

case of (3) with A = Im and b = −dref .

3.2. Desired properties of cost functions

As discussed previously, it is desirable that the cost func-

tion have minima at and only at the ‘right’ places. In this

section, we deliberately address this need as an optimization

problem over A and b.

Let {di}
n
1 be a set of training images containing the ob-

jects of interest (e.g. faces), and assume the landmarks for

the object shapes are available (e.g. manually labeled facial

landmarks as in Fig. 5a). Let si be the vector containing

the landmark coordinates of image di. Given {si}
n
1 , we

perform Procrustes analysis [7] and build the shape model

as follows. First, the mean shape s̄ = 1
n

∑

i si is calcu-

lated. Second, we compute ai the affine parameter that best

transforms s̄ to si, and let a−1
i be the inverse affine transfor-

mation of ai. Third, ŝi is obtained by applying the inverse

affine transformation a−1
i on si (warping toward the mean

shape). Next, we perform PCA on {ŝi − s̄}n
i=1 to construct

Us, a basis for non-rigid shape variation. We then com-

pute cs
i , the coefficients of ŝi − s̄ w.r.t. the the basis Us.

Finally, let pi = [ai; cs
i ], pi is the parameter of image di

w.r.t. to our shape model. Notably, the shape model and

{pi}
n
1 are derived independently of the appearance model.

Figure 2. Neighborhoods around the ground truth motion parame-

ter pi (ret dot). N−

i : region inside the orange circle; it is satisfac-

tory for fitting algorithms to converge to this region. N+

i : region

outside the blue circle; alignment algorithm will not be initialized

in this region. Ni: shaded region, region to enforce constraints on

gradients.

The appearance model (i.e. the cost function E(d,p) ) is

what needs to be learned.

For E(di,p) to have a local minimum at the right place,

pi must be a local minimum of E(di,p). Theoretically, this

requires
∂E(di,p)

∂p

∣

∣

∣

pi

to vanish, i.e.

∂E(di,p)

∂p

∣

∣

∣

∣

pi

= 0 ∀i (4)

To learn a cost function that has few local minima, it is

necessary to consider pi’s neighborhoods. Let Ni = {p :
lb ≤ ||p − pi||2 ≤ ub}, N−

i = {p : ||p − pi||2 < lb},

N+
i = {p : ||p − pi||2 > ub}. Here lb is chosen such

that N−

i is a set of neighbor parameters that are very close

to pi; it is satisfactory for a fitting algorithm to converge

to a point in N−

i . ub is chosen so that the fitting algorithm

is guaranteed to be initialized at a point in Ni or N−

i . In

most applications, such ub exists. For example, for track-

ing problems, ub can be set to the maximum movement of

the object being tracked between two consecutive frames.

Fig. 2 depicts the relationship between N−

i ,Ni, andN+
i .

For a gradient descent algorithm to converge to pi or a

point close enough to pi, it is necessary that E(di, .) have

no local minima in Ni. This implies that
∂E(di,p)

∂p
does not

vanish for p ∈ Ni. Notably, it is not necessary to enforce

similar constraints for p ∈ N−

i ∪ N+
i because of the way

lb, ub are chosen. Another desirable property is that each

iteration of gradient descent advances closer to the correct

position. Because gradient descent walks against the gradi-

ent direction at every iteration, we would like the opposite

direction of the gradient at point p ∈ Ni to be similar to

the optimal walking direction pi − p. This quantity can

be measured as the projection of the walking direction onto

the optimal direction. Fig. 3 illustrates the rationale of this



Figure 3. pi: desired convergence location. Blue arrows: gradient

vectors, red arrows: walking directions of gradient descent algo-

rithm, orange arrows: optimal directions to the desired location.

Performing gradient descent at p advances closer to pi while per-

forming gradient descent at p′ moves away from pi.

requirement. This requirement leads to the constraints:

〈

−

(

∂E(di,p)

∂p

)T

,
pi − p

||pi − p||2

〉

> 0 ∀p ∈ Ni (5)

Equations (4) and (5) specify the constraints for the ideal

cost function.

The gradient of the function E(d,p) plays a funda-

mental role in the above two constraints. To compute

the gradient
∂E(d,p)

∂p
, it is common to use first order Tay-

lor series expansion to approximate d(f(x,p + δp)) by

d(f(x,p)) + Jd(p)δp, where Jd(p) = ∂d(f(x,p))
∂p

is the

spatial intensity gradient of the image d w.r.t. to the motion

parameter p [18]. This yields:

(

∂E(d,p)

∂p

)T

≈ 2(Jd(p))T (Ad(f(x,p)) + b) (6)

Substituting (6) into (4) and (5), we obtain a set of linear

constraints over A and b.

3.3. Practical issues and alternative fitting methods

In practice, there is an issue regarding the optimization

using steepest gradient descent: the small components of
∂E(d,p)

∂p
tend to be neglected in the optimization. This oc-

curs due to the magnitude difference between some columns

of Jd(p). For example, in (2), the magnitudes of the Ja-

cobians of d(f(x,p)) w.r.t. to a1, a2, a4, a5 can be much

larger than the magnitudes of the Jacobians of d(f(x,p))
w.r.t. to a3, a6.

To address this concern, we consider an alternative opti-

mization strategy where the update rule at iteration kth is:

pk+1 = pk + ∆d(pk) (7)

with ∆d(pk) = −
1

2
Hd(pk)−1

(

∂E(d,p)

∂p

∣

∣

∣

∣

pk

)T

Hd(pk) = Jd(pk)T Jd(pk)

The update rule of the above algorithm is a variant of New-

ton iteration. Intuitively, Hd(pk) is similar to the Hessian

of E(d,p) at pk, and it acts as a normalization matrix for

the gradient. This algorithm is indeed a reasonable opti-

mization scheme for cost functions in which A is symmet-

ric positive semidefinite with all eigenvalues less than or

equal to 1. For the interest of space, we omit the proof in

this paper.

Similar to the case of gradient descent, requiring the

incremental updates to vanish at only at the places corre-

sponding to acceptable solutions yields the following con-

straints:

∆di(pi) = 0 ∀i (8)
〈

∆di(p),
pi − p

||pi − p||2

〉

> 0 ∀i,∀p ∈ Ni. (9)

However, these constraints might be too stringent.

Therefore, we propose to relax the constraints to get the

optimization problem:

min
A,b,ξ

1

2

∑

i

∣

∣

∣

∣∆di(pi)
∣

∣

∣

∣

2

2
+ C

∑

i

ξi (10)

s.t.

〈

∆di(p),
pi − p

||pi − p||2

〉

> −ξi ∀i,∀p ∈ Ni

ξi ≥ 0 ∀i.

Here ∆di(pi) is required to be small instead of strictly zero,

ξi’s are slack variables for constraints in (9) which allows

for penalized constraint violation. C is the parameter con-

trolling the trade-off between having few local minima and

having local minima at the right places.

A is also constrained to be a symmetric positive semidef-

inite matrix where eigenvalues are less than or equal one.

Adding this constraint to the optimization problem and in-

corporating the idea of margin, we obtain:

min
A,b,ξ

1

2

∑

i

∣

∣

∣

∣∆di(pi)
∣

∣

∣

∣

2

2
+ C

∑

i

ξi (11)

s.t.

〈

∆di(p),
pi − p

||pi − p||2

〉

≥ M − ξi ∀i,∀p ∈ Ni

ξi ≥ 0 ∀i & A ∈ Hm,

where Hm denotes the set of all m × m symmetric matri-

ces of which all eigenvalues are non-negative and less than



or equal to one. M is the user-defined margin size. Since

∆di(p) is linear in terms of A and b, this is a quadratic pro-

gramming problem with linear constraints, provided the re-

quirement A ∈ Hm can be described by linear constraints.

4. Special cases and experiments

Sec. 3.3 proposes a method for learning generic A and

b. However, in specific situations, A and b can be further

parameterized. The benefits of further parameterization are

threefold. First, the number of parameters to learn can be

reduced. Second, the relationship between A and b can be

established. Third, the constraint that A ∈ Hm can be re-

placed by a set of linear constraints. This section provides

the formulation for two special cases, namely weighted tem-

plate alignment and weighted-basis AAM alignment.

Experimental results on Multi-PIE database [14] are in-

cluded. This database consists of facial images of 337 sub-

jects taken under different illuminations, expressions and

poses. Each face is manually labeled with 68 landmarks, as

shown in Fig. 5a. Images are down sampled to 120 × 160
pixels.

4.1. Weighted template alignment

As shown in Sec. 3.1, template alignment is a special

case of (3) in which A = Im, and b = −dref . In tem-

plate alignment, pixels of the template are typically weighed

equally. In this section, we show to how to learn the optimal

pixel weighting to avoid local minima in image alignment.

In particular, we illustrate results for face alignment.

Consider the weighted sum of squared differences:

(d(f(x,p))−dref )T diag(w)(d(f(x,p))−dref ), where,

w is the weight vector for the template’s pixels. This

cost function is equivalent to (3) with A = diag(w) and

b = −diag(w)dref . The constraint A ∈ Hm can be

imposed by requiring 0 ≤ wi ≤ 1. Thus (11) becomes

a quadratic programming problem with linear constraints

over w.

For this experiment, we only use directly-illuminated

frontal neutral faces. Each subject in the Multi-PIE database

might have more than one image. However, to ensure the

testing data is completely independent of the training data,

we restrict our attention to at most one image per subject.

Our dataset contains 217 images, 10 are selected for train-

ing, 65 are used for validation (parameter tuning), and the

rest are reserved for testing.

The shape model is built as described in Sec. 3.2. The

final shape model requires 6 coefficients (only affine trans-

formation) to describe a shape. For object appearance, we

extract intensity values of pixels inside the region formed

by the landmarks (Fig. 5c).

The template is taken to be the mean image of all im-

ages (Fig. 4a). Thus the task is to do template alignment

a b

Figure 4. (a) the template (mean image) used in weighted template

experiment. (b) the learned weights, brighter pixels mean higher

weights. Interestingly, the eye and mouth regions do not receive

high weights.

Table 1. Alignment results of different methods for three differ-

ent difficulty levels of testing data (PerMag). Initial is the initial

amount of perturbation before running any alignment algorithm.

Best is the best result can be achieved by using affine transforma-

tion. Default is the method which give uniform weights for the

pixels. The table shows the means and standard deviations of mis-

alignment (average over 68 landmarks and over testing data). The

unit for measurement is pixel.

PerMag 0.75 1.25 1.75

Initial 0.99±0.29 1.37±0.43 1.93±0.68

Best 0.60±0.18 0.60±0.18 0.60±0.18

Default 1.13±1.31 1.22±1.75 1.38±2.72

Ours 0.98±0.61 1.05±0.70 1.20±0.82

between an arbitrary image with the mean image. The tem-

plate’s weights are learned by optimizing (11) with the fol-

lowing parameter settings: M = 0.01, C = 1. To avoid

Ni being of infinite size, we restrict our attention to a set

of 150 random samples from Ni. The random samples are

drawn by introducing random Gaussian perturbation to the

correct shape parameter pi. Fig. 4b displays the learned

weights; bright pixels mean higher weights. Notably, the

pixels in the eye and mouth regions do not actually receive

high weights. This is consistent with the intuition that cost

function using high weights in area with high variability are

more susceptible to local minima.

Testing data are generated by randomly perturbing the

components of pi, the correct shape parameters of test

image di. Perturbation amounts are generated from a

zero mean Gaussian distribution with standard deviation

PerMag × [0.05 0.05 1 0.05 0.05 1]T . PerMag con-

trols the overall difficulty of the testing data. The relative

perturbation amounts of shape coefficients are determined

to simulate possible motion in tracking. Fig. 5b shows an

example of shape perturbation, the ground truth landmarks

are marked in red (circles), while the perturbed shape is

shown in yellow (pluses).

Table 1 describes the experimental results with three dif-

ficulty levels of testing data (controlled by PerMag). The

performance of the learned cost function is compared with

the default (uniform weight) cost function. The results show



a b c d

Figure 5. (a) example of landmarks associated with each face (red

dots), (b) example of shape distortion (yellow pluses), (c) example

of patches for appearance modeling.

that the learned cost function outperforms the default func-

tion in all levels of perturbation.

4.2. Weighted-basis for AAM alignment

As shown in Sec. 3.1, AAM alignment is a special case

of (3) in which A = Im−UUT = Im−
∑k

1 uiu
T
i , and b =

0. U is the set of k first eigenvectors from the total of K

PCA basis of the training data subspace. k (≤ K) is usually

chosen experimentally. In this section, we propose to use

all K eigenvectors, but weigh them differently. Specifically,

we learn A which has the form: A = Im −
∑K

1 λiuiu
T
i .

To ensure that A ∈ Hm, we require 0 ≤ λi ≤ 1. Let w =
[λT

bT ]T . Substituting this into (11) we get a quadratic

programming problem with linear constraints over w.

From the Multi-PIE database, we only make use of the

directly-illuminated frontal face images under five expres-

sions (smile, disgust, squint, surprise and scream). Our

dataset contains 1100 images, 400 are selected for training,

200 are used for validation (parameter tuning), and the rest

are reserved for testing.

The shape model is built as described in Sec. 3.2. The

final shape model requires 10 coefficients (6 affine + 4 non-

rigid) to describe a shape. For object appearance, we extract

intensity values of pixels inside the patches located at the

landmarks (Fig. 5d).

The training data is further divided into two subsets, one

contains 300 images and the other contains 100 images. U

is obtained by performing PCA on the subset of 300 im-

ages. The second subset is used to set up the optimization

problem (11). For better generalization, (11) is constructed

without using images in the first training subset. To avoid

Ni being of infinite size, we restrict our attention to a set

of 200 random samples from Ni. The random samples are

drawn by introducing random Gaussian perturbation to the

correct shape parameter pi.

Following the approach by Tsochantarisdis et al [24] for

minimizing a quadratic function with an exponentially large

number of linear constraints, we maintain a smaller subset

of active constraints S and optimize (11) iteratively. We re-

peat the following steps for 10 iterations: (i) empty S; (ii)

randomly choose 20 training images; (iii) for each chosen

Table 2. Alignment results of different methods for four differ-

ent difficulty levels of testing data (PerMag). Initial is the initial

amount of perturbation before running any alignment algorithm.

PCA e% is the cost function constructed using PCA preserving e%

of energy. The table shows the means and standard deviations of

mis-alignment (average over 68 landmarks and over testing data).

The unit for measurement is pixel.

PerMag 0.75 1.00 1.25 1.5

Initial 0.75±.25 1.08±.38 1.37±.52 1.54±.54

PCA 100% 0.37±.18 0.41±.25 0.55±.45 0.60±.51

PCA 90% 0.36±.20 0.43±.33 0.47±.36 0.60±.65

PCA 80% 0.40±.23 0.43±.34 0.49±.37 0.57±.50

PCA 70% 0.41±.20 0.43±.25 0.47±.30 0.55±.46

Ours 0.37±.19 0.40±.25 0.43±.29 0.48±.39

training image di, find the 100 most violated constraints

from Ni and include them in S; (iv) run quadratic program-

ming with the reduced set of constraints.

Similar to the case of weighted template alignment, test-

ing data are generated by randomly perturbing the com-

ponents of pi, the correct shape parameters of test image

di. Perturbation amounts are generated from a zero mean

Gaussian distribution with standard deviation PerMag ×
[0.05 0.05 1 0.05 0.05 1 2 2 2 2]T .

Table 2 describes the experimental results with four dif-

ficulty levels of testing data (controlled by PerMag). The

performance of the learned cost function is compared with

four other cost functions constructed using PCA with popu-

lar energy settings (70%, 80%, 90%, and 100%). As can be

observed, when the amount of perturbation is small, PCA

models with higher energy levels perform better. How-

ever, as the amount of pertubation increases, PCA models

with lower energy levels perform better. This suggests that

cost functions using fewer basis vectors have less local min-

ima while cost functions using more basis vectors are more

likely to have local minima at the ‘right’ places. Thus it is

unclear what the energy for the PCA model should be. On

the other hand, the learned cost function performs signifi-

cantly better than the PCA models for most difficulty lev-

els. Because the magnitude of b is related to the sensitiv-

ity of the alignment algorithm, we add a regularization term

0.1∗||b||22 into the objective function of ( 11) to regulate b to

be small. The values of other parameters C = 2,M = 0.01
are tuned using the validation set.

5. Conclusion

In this paper, we have proposed a method to learn a cost

function for image alignment that avoids local minima in

training. We directly address the problem of learning cost

functions that have local minima at and only at the desired

places. The task of learning a cost function is formulated

as optimizing a quadratic function under linear constraints.



Encouraging results have been achieved for face alignment

with template matching and AAM fitting. Further work

needs to address how to select the most informative sam-

ples in the error surface to reduce the number of constraints

to optimize.
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