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Abstract

The success of an image classification algorithm largely
depends on how it incorporates local information in the
global decision. Popular approaches such as average-
pooling and max-pooling are suboptimal in many sit-
uations. In this paper we propose Region Ranking
SVM (RRSVM), a novel method for pooling local informa-
tion from multiple regions. RRSVM exploits the correlation
of local regions in an image, and it jointly learns a region
evaluation function and a scheme for integrating multiple
regions. Experiments on PASCAL VOC 2007, VOC 2012,
and ILSVRC2014 datasets show that RRSVM outperforms
the methods that use the same feature type and extract fea-
tures from the same set of local regions. RRSVM achieves
similar to or better than the state-of-the-art performance on
all datasets.

1. Introduction

Image classification is one of the most fundamental and
challenging tasks in computer vision. Image classification
aims at recognizing the semantic category of an image, such
as whether the image contains a certain object (e.g., bicycle,
car), depicts a certain scene (e.g., beach, bedroom), or cap-
tures a certain action (e.g., answering phone, riding horse).
Recognizing the semantic category of an image, however, is
challenging because the location of the semantic region, the
image area that corresponds to the semantic category that
we need to recognize, is unknown.

A popular approach is to tackle this problem is to aggre-
gate the information computed at multiple regions of an im-
age. Recent examples of this approach are to average CNN
feature vectors [4, 18, 31] that are computed at multiple lo-
cations and scales [30, 35]. These approaches lead to im-
pressive recognition performance on a number of datasets,
including PASCAL VOC [7] an ImageNet [27]. However,
average pooling does not always yield good performance,
especially when the semantic region is small and has little
or no overlap with the majority of the local regions being
considered. In this case, average pooling harms recognition
due to too much background noise.
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Figure 1: Image classification with unknown object lo-
cation. A popular approach is to consider multiple local
regions (b), and uses either max-pooling (c) or average-
pooling (d). We propose a method that selectively uses the
regions and combine them for classification (e).

Another popular approach is to treat the semantic region
as a latent variable and use a region classifier to localize
the semantic region. A region classifier is used to evalu-
ate multiple regions of an image, and the one that yields
the maximum classifier score is considered the semantic re-
gion. This approach assumes the semantic region is among
the local regions being considered, or significantly overlaps
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with one of them. This assumption, however, does not usu-
ally hold in practice because: (i) the local regions may be
required to have some certain shape (e.g., axis parallel rect-
angular regions, while the semantic region can be free-form
and dis-contiguous), and (ii) the total number of regions that
can be considered must be limited to meet a computational
budget. For example, CNN features [4, 18, 31] can only be
computed on square regions of a certain size. Also, com-
puting CNN features is time consuming so the total num-
ber of regions is usually limited to ten [18] or at most sev-
eral hundred [31, 35]. Furthermore, this approach might
not work well even when the semantic region is among the
regions being considered: there is no guarantee that the re-
gion that yields the maximum score would actually corre-
spond to the semantic region. This is especially true when
the region classifier is far from perfect; it is often trained
without region-level labels because training images are gen-
erally not divided into annotated regions.

Several prior works also suggest the inefficacy of using
the maximum score for classification [6, 13, 16]. Hu et al.
[16] considered both the maximum and the average scores,
and reported better classification performance for the maxi-
mum score in many experiments. Hoai and Zisserman [13]
considered the problem of recognizing human actions in
video where the exact locations of human actions are un-
known. To tackle temporal uncertainty, they posed it as a
multiple instance learning problem where subsequences of
a video clip were considered as candidates for the actual lo-
cation of a human action. Assuming there was a base clas-
sifier, they observed the inadequacy of using the maximum
score of the subsequences as the decision value. Instead,
they proposed Subsequence Score Distribution (SSD), a de-
cision function that was based on the distribution of the
scores of the video subsequences. They showed that SSD
outperformed the method that used the maximum score by
a wide margin. Although SSD was more robust than the
maximum score, its performance largely depends on the
performance of the base classifier, which had been learned
independently of SSD.

In this paper, we propose Region Ranking SVM
(RRSVM), a novel formulation for the classification of mul-
tiple regions. RRSVM is based on SSD, which uses all re-
gion scores instead of using just the max (e.g., [15, 23]) or
the mean for classification. RRSVM trains an SVM base
classifier and uses the scores of all the regions in an im-
age to predict the image label. The scores of the regions in
an image are ranked and combined using a weight vector,
called region-combination vector. This vector is common
to all images of a category, and it is jointly learned with the
base classifier. The region-combination vector can be con-
sidered as a classifier of which the input is the distribution
of region scores. The distribution preserves more informa-
tion than both extreme (i.e., max) and summary (i.e., mean)

statistics, and it will be empirically shown to be more ro-
bust and effective. Figure 1 illustrates the essence of our
approach.

RRSVM bares some similarities to bilinear models [26,
36]. Bilinear models also consider the correlation between
multiple data instances and learn two weight vectors for fac-
torizing ‘styles’ and ‘contents’. However, bilinear models
require a fixed and known ordering of the instances, which
is not applicable to image classification problems. In con-
trast, RRSVM automatically determines the order of re-
gions by ranking them using the scores obtained from the
base classifier.

2. Related Work
2.1. Image Classification

Image classification is one of the most important prob-
lems in computer vision. Training SVM classifiers on
Fisher Vectors (FVs) [25, 28] and variant methods [1, 3,
5, 17, 22, 42] have once been the dominating methods
for large scale image classification problems. Recent de-
velopment in deep learning and Convolution Neural Net-
works [18, 21, 30, 31, 35, 41] have significantly advanced
the performance of large scale image classification. Many
algorithms, either based on Fisher Vectors or CNN, often
compute an average feature vector over multiple local re-
gions. This often oversimplifies the situations that actu-
ally the different local regions of an image contain differ-
ent amount of information for image classification. Unlike
existing works, our proposed method selectively integrates
information into the classification decision.

Many works have been proposed [2, 11, 20, 40] to utilize
local information for classification tasks. Among these the
most widely used is the spatial pyramid representation [20].
Spatial pyramid representation, however, relies on rigid ge-
ometric correspondence of grid division, which ignores the
importance of semantic or discriminative localization. This
model has limited discriminative power for recognizing se-
mantic category with huge variance in location.

2.2. Subsequence Score Distribution (SSD)

SSD [13] is a method for considering the score distribu-
tion of multiple feature vectors. SSD was initially proposed
for human action recognition. The technique is general and
can be applied to image classification. For convenience,
here we review it in the context of image classification.

SSD assumes a base classifier f for evaluating image re-
gions has been learned. Consider an image region x, ideally,
f(x) should be 1 if x is a region that contains the target ob-
ject and -1 otherwise. Given a test image B, instead of using
the maximum score maxx∈B f(x) as the decision value for
B, SSD proposes to learn an aggregation operator as below.

Consider the training data that consists of n images



{Bi}ni=1 and associated image labels {yi}ni=1. Assume for
now that all images have the same number of sampled re-
gions. Let m be the number of regions and d the dimension
of each region descriptor. SSD represents each image as a
matrix Bi ∈ <d×m, but the order of the columns can be ar-
bitrary. Let b1

i , · · · ,bm
i be the region descriptors in image

Bi. Let ai = [sort(f(b1
i ), · · · , f(bm

i ))]T . Here, sort is
the function that reorders the inputs in descending order. ai
represents the score distribution of regions from Bi. SSD
learns score-combination vector s by optimizing the follow-
ing objective:

minimize
s,b

n∑
i=1

max(1− yi(sTai + b), 0) (1)

s.t. s1 ≥ s2 ≥ · · · ≥ sm ≥ 0, (2)
m∑
j=1

sj = 1. (3)

The above optimization problem seeks a weight vector s
and the bias term b for separating between the score distri-
bution vectors of positive and negative data. The objective
in Eq. (1) is the sum of Hinge losses, as used in the objective
of SVMs [37].

SSD has been shown to yield impressive results on hu-
man action recognition [13]. However, the performance of
SSD depends heavily on the base classifier. In [13], the
base classifier is simply trained to separate the mean vec-
tors of positive videos and the mean vectors of negative
videos. This base classifier may not work well for other
problems. Unfortunately, a straight forward formulation for
iterative learning of the base classifier and the SSD classifier
will lead to a degenerate solution. This will be explained in
Sec. 3.2.

3. Region-Ranking SVM (RRSVM)
3.1. RRSVM Formulation

RRSVM is a framework that jointly learns the base clas-
sifier and the SSD decision function. Using the same nota-
tion as in Sec. 2.2, RRSVM is posed as the following opti-
mization problem:

minimize
w,s,b

λ||w||2 +

n∑
i=1

(wT Γ(Bi;w)s + b− yi)2 (4)

s.t. s1 ≥ s2 ≥ · · · ≥ sm ≥ 0, (5)
h({Γ(Bi;w)s}) ≤ 1. (6)

In the above formulation, w and b are the weight vector and
the bias term of the SVM base classifier. Γ(B;w) denotes
a matrix that can be obtained by rearranging the columns
of the matrix B so that wT Γ(B;w) is a sequence of non-
increasing values. This sequence is the sorted list of the

SVM scores of individual regions, which will be referred to
as the region-score vector. This region-score vector is es-
sentially a non-parametric representation for the score dis-
tribution of the regions in an image B. Vector s is the weight
vector for combining the SVM region scores for each im-
age; this vector is common to all images of a class.

The objective of the above formulation consists of the
regularization term λ||w||2 and the sum of regression
losses. There, λ is the only parameter of RRSVM and it
is tunable. This objective is analogous to the objective of
Least-Squares SVMs (LSSVM) [33]. LSSVM, also known
as kernel Ridge regression [29]. LSSVM has been shown to
perform equally well as SVM in many classification bench-
marks [34? ]. We base our formulation on LSSVM instead
of SVM [37] because LSSVM has a closed-form solution,
which is a computational advantage over SVM.

Constraint (5) requires s to be non-negative and mono-
tonic. This is to emphasize the relative importance of higher
region-classification scores (recall that we take the dot prod-
uct between s and wT Γ(B;w), the sorted vector of local
region scores).

Constraint (6) requires the feature vectors to be bounded.
Here h(·) is the function that measures the spread of a set
of vectors:

h({xi}ni=1) =

n∑
i=1

∣∣∣∣∣
∣∣∣∣∣xi −

1

n

n∑
i=1

xi

∣∣∣∣∣
∣∣∣∣∣
2

(7)

Recall that Γ(Bi;w)s is a linear combination of local re-
gion feature vectors of Bi; it is essentially the representa-
tion vector for the image Bi. Constraint (6) requires the
spread of these representation vectors to be bounded by 1.
In theory, this constraint governs the compactness of the
feature vectors, which is important for the theoretical analy-
sis of the max-margin learning framework [37]. In practice,
this constraint prevents s to become extremely large. To see
why this is important, consider the loss terms in Eq. (4).
These loss terms remain the same if w and s are scaled in-
versely. Thus, if s can be made extremely large then w
can be made extremely small; rendering the margin term
λ||w||2 ineffective.

The right hand side of Constraint (6) is rather arbitrary.
We can replace 1 by any positive value γ, and obtain an
equivalent formulation by adjusting the value of λ as fol-
lows: λnew := γλold.

Once (w, b, s) have been learned, the classification deci-
sion value for a test image B is taken as:

wT Γ(B;w)s + b. (8)

As can be seen, this decision function is the same as the
decision function of SSD, which has been shown to be very
effective [13].



3.2. Alternative Formulations

Compare SSD (Eq. 1) and RRSVM (Eqs. 4 & 11), one
can notice the two differences in the formulations for learn-
ing s. First, SSD uses Hinge loss while RRSVM uses
squared loss. This modification is necessary to ensure that
w and s optimizes the same objective.

Second, the L1-norm constraint for s in Eq. (3) is re-
placed by the bound on the spread of representation vec-
tors in Eq. (6). Apart from the theoretical reasons for using
Eq. (6) as explained above, there are potential issues for us-
ing the L1-norm constraint.

Consider an alternative RRSVM formulation where
Eq. (6) is replaced by Eq. (3). This formulation often leads
to a solution where s degenerates to the solution s1 = 1 and
s2 = · · · = sm = 0. This has been observed in many cases
of our experiments. This tendency can be explained as fol-
lows. In the learning formulation, the margin term λ||w||2
is included in the objective. Thus, the formulation prefers
small ||w||. Consider the loss terms in the objective, these
terms remain the same if ||w|| and ||Γ(Bi;w)s|| are scaled
inversely. Thus, in general, the bigger {||Γ(Bi;w)s||} are,
the smaller ||w|| can become. But, for any image B, the
vector s that leads to highest value of ||Γ(B;w)s|| is the
degenerated solution given above. To see this, suppose
Γ(B;w) = [b1, · · · ,bm] and the local feature vectors of
B are L2-normalized (i.e., ||b1|| = · · · = ||bm|| = 1).
Using the Cauchy-Schwarz inequality, we have:

||Γ(B;w)s||2 = ||
m∑
i=1

sib
i||2 (9)

≤ (

m∑
i=1

si)(

m∑
i=1

si||bi||2) = 1 (10)

In general, bi 6= bj , so equality holds only when s1 = 1
and s2 = · · · = sm = 0. Thus, the alternative learning
formulation is biased toward the degenerated solution. The
formulation for joint learning of w and s should avoid us-
ing the L1-norm constraint. Note that the usage of this con-
straint in the SSD formulation is fine because w is fixed.

3.3. Optimization

The learning formulation given in Eq. 4 can be optimized
with block coordinate descent, alternating between the fol-
lowing two procedures:

(A) Fix w, optimize Eq. (4) w.r.t. s and b,

(B) Fix s, optimize Eq. (4) w.r.t. w and b.

For Procedure (A), w is fixed, and let B̂i be Γ(Bi;w)

and ai be B̂T
i w. Procedure (A) is equivalent to:

minimize
s,b

n∑
i=1

(aTi s + b− yi)2 (11)

s.t. s1 ≥ s2 ≥ · · · ≥ sm ≥ 0, (12)

sT

(
n∑

i=1

B̂T
i B̂i −

1

n
(

n∑
i=1

B̂i)
T (

n∑
i=1

B̂i)

)
s ≤ 1. (13)

The above is a Quadratically Constrained Quadratic Pro-
gram (QCQP). This optimization problem is convex, and it
can be solved efficiently and globally using a QCQP solver,
such as IBM Cplex1.

For Procedure (B), s is fixed, and let (wold, bold) are the
current values of (w, b). Procedure (B) seeks new values
for (w, b) to decrease the objective of Eq. (4). Let ui be
Γ(Bi;wold)s, we first solve the following ridge regression
problem to get (w∗, b∗):

w∗, b∗ := argmin
w,b

λ||w||2 +

n∑
i=1

(wTui + b− yi)2 (14)

There exists a closed form solution for the above optimiza-
tion problem, and therefore (w∗, b∗) can be found effi-
ciently. (w∗, b∗) define the line search direction for new
values of (w, b); we perform binary search until we find
a feasible solution with lower objective value as follows.
Let g(w, b, s) denote the objective value of Eq. (4). If
g(w∗, b∗, s) ≤ g(wold, bold, s) and h({Γ(Bi;w

∗)}) ≤ 1
then we terminate the Procedure (B) and output wnew :=
w∗, bnew := b∗. Otherwise, let w∗ := (w∗ +
wold)/2, b∗ := (b∗ + bold)/2 and we check the objective
value an the constraint satisfaction again. If the number of
binary splits exceeds 10, we terminate the procedure and re-
turn wold, bold. In practice, this procedure usually requires
no binary split and always terminate within six splits.

The block-coordinate descent algorithm is guaranteed
to converge because each procedure does not increase the
objective value. In our experiments, it usually converges
within 15 iterations.

We initialize the algorithm by: i) set s1 = · · · sm =
1/m, ii) represent each image by the mean of its local region
features, and iii) train a binary SVM to get initial w and b.
This initialization and the optimization algorithm discussed
in this section work well in our experiments, but smarter
initialization strategies or better optimization policies can
be used, e.g., [9, 19, 32].

As discussed in Sec. 3.1, the right hand side of Con-
straint (6) is rather arbitrary. In practice, it is convenient
to set it to be the spread of the initial image representation
vectors (the means of images’ local region descriptors in
our experiments). Learning s can be considered as learning

1www-01.ibm.com/software/commerce/optimization/cplex-optimizer/



the new feature representation, and this constraint requires
the space contraction of the new feature representation.

3.4. Extensions

One way of extending the formulation presented in
Sec. 3.1 is to replace Γ by another appropriate function.
This function must take an unordered set of vectors and re-
turn a matrix of fixed dimensions. These dimensions must
be matched by the dimensions of w and s. For example:

• If the number of regions of each image (m) is high,
Γ can be replaced by a function that returns the m′

highest scored regions in descending order and set the
dimension of s to m′, with m′ � m.

• If it is impossible to enumerate and find regions with
the highest scores, Γ can be combined with random
sampling, which represents a distribution by its ran-
dom samples.

• If the number of the regions from each image differ,
Γ can be replaced by a function that combines sorting
and region selection. This selection procedure could
simply use random sampling with replacement, or it
could deterministically cycle through the regions in the
decreasing order of the region scores.

4. Experiments
We perform experiments on three classification bench-

marks: image classification on the PASCAL VOC 2007 [7]
dataset, human action recognition in still images on the
PASCAL VOC 2012 [8] dataset, and the object classifica-
tion challenge of the ImageNet Large Scale Visual Recog-
nition Challenge 2014 (ILSVRC 2014) [27]. In our ex-
periments, we compare RRSVM with several competing
methods that use the same feature representation. While
RRSVM is agnostic to the particular feature representa-
tions, we use features extracted from the pre-trained VGG-
D network [31], which has 16 layers and is commonly re-
ferred to as VGG16. We use VGG16 because of its excel-
lent performance, being the best among methods that use a
single neural network. Our feature extraction is based on
the MatConvNet library [38].

4.1. Feature Extraction

Our feature extraction pipeline is the same as described
in [31]. The last fully connected layer of VGG16 is removed
and the remaining fully connected layer is converted to a
fully convolutional layer, similar to [30]. To compute fea-
ture vectors for an image, the image is first resized isotrop-
ically so that the smallest size is equal to a predefined size
Q, where Q ∈ {256, 384, 512}. Additionally, the resized
images are flipped horizontally, creating six images at three
scales. The fully-convolutional net is applied to each of the

six images, leading to a feature map with 4096 channels.
The size of feature map depends on the size of the resized
image. Combining the feature vectors at three scales and
with and without flipping, each input image typically yields
200 to 400 densely sampled feature vectors, each feature
vector can be mapped back to a subwindow of the original
input image.

Our work differs from [31] only in the feature pool-
ing step. In [31], average pooling is applied on each im-
age scale. Meanwhile, we compute the averaged of all
feature vectors of all scales and subsequently perform L2-
normalization to create a global feature descriptor. We also
perform L2 normalization on each densely sampled feature
vectors to create local feature descriptors. Finally, we stack
the global feature descriptor with each local feature descrip-
tor to get a 8192-dim vector to represent a local region of
the input image. We do not use multi-crop sampling [35],
which is very computationally demanding.

4.2. PASCAL VOC 2007 Object Classification

We first perform experiments on the PASCAL VOC 2007
dataset [7]. This dataset consists of three disjoint subsets for
training, validation and testing; and they contain 2501, 2510
and 4952 images respectively. Each image is annotated with
one or several labels, corresponding to 20 object categories.
Classification performance for each category is measured
by Average Precision. The mean Average Precision of all
categories is denoted as mAP.

The baseline of our method is the one that trains a clas-
sifier on the average of all feature vectors computed for an
image, as in [31]. We consider this as the fairest method
to compare with RRSVM because they use the same set
of feature vectors. In this paper, we use LSSVM as the
classifier because of its computational efficiency and com-
petitive performance [12, 34? ? ]. The top two rows in
Table 1 show that LSSVM performs similar to SVM (with
the best C tuned using 5-fold cross validation). Hereafter,
we use LSSVMs as baselines for all the remaining experi-
ments. We used the validation set for tuning parameter λ of
LSSVM and RRSVM. We found that the best performance
is achieved when λ = 10−4n, where n is the total number
of training data. For final classification results, we trained
classifiers on the combined training and validation data and
the average precision is reported in Table 1.

There are several noticeable results in Table 1. First,
for the baseline method (denoted as LSSVM), the mAP is
slightly higher than 89.3% of VGG16 reported in [31]. This
may be due to the slight difference in the feature normal-
ization step. Second, LSSVM-SSD and LSSVM-Max per-
form similarly. This might be because SSD elects to use
a single effective region in this situation. Third, there is a
significant performance gap between RRSVM and the base-
line LSSVM, and RRSVM also outperforms all other meth-



Model aero bike bird boat bottle bus car cat chair cow table dog horse mbike prsn plant sheep sofa train tv mAP

SVM 98.6 95.9 97.1 95.8 71.2 91.0 93.6 96.1 72.9 86.6 88.3 96.3 96.7 94.0 97.4 70.5 92.8 82.5 97.4 89.9 90.2
SVM-Max 98.6 97.3 97.4 96.6 78.3 93.0 95.2 96.9 76.3 87.2 88.4 96.8 97.0 95.0 98.5 75.1 93.2 83.7 97.7 92.4 91.7
LSSVM 98.9 95.6 97.2 95.4 69.5 91.1 93.5 96..4 73.9 87.4 88.7 96.5 96.9 94.1 97.1 70.3 93.7 83.5 98.3 88.4 90.3
LSSVM-Max 98.9 96.9 97.9 95.7 75.1 92.8 94.7 97.1 76.9 88.7 88.9 97.2 97.1 95.2 98.2 75.5 95.0 84.3 98.4 91.4 91.8
LSSVM-SSD 98.9 96.8 97.7 95.8 75.0 92.7 94.4 97.0 76.9 89.0 88.9 97.3 97.1 95.2 98.2 75.5 95.0 84.3 98.4 91.3 91.8
RRSVM 99.2 97.4 98.1 96.7 79.7 94.5 95.9 97.4 79.3 89.3 88.9 97.7 97.1 95.7 98.8 79.5 95.4 84.8 98.6 93.1 92.9

Chatfield [4] 95.3 90.4 92.5 89.6 54.4 81.9 91.5 91.9 64.1 76.3 74.9 89.7 92.2 86.9 95.2 60.7 82.9 68.0 95.5 74.4 82.4
Wei et al. [39] 96.0 92.1 93.7 93.4 58.7 84.0 93.4 92.0 62.8 89.1 76.3 91.4 95.0 87.8 93.1 69.9 90.3 68.0 96.8 80.6 85.2
VGG16 [31] - - - - - - - - - - - - - - - - - - - - 89.3

Table 1: Average Precision (%) on VOC 2007 test set. The entries with the highest APs for each object category are printed
in bold. The top four methods use VGG16 features where LSSVM-Max is for max pooling and LSSVM-SSD learns SSD
based on LSSVM scores. RRSVM has the highest AP in all categories.

ods in every object category especially in the ones where
the baseline classifiers have relatively low accuracy (e.g.,
for categories bottle and plant, the performance gaps are
10.2% and 9.2% respectively). Some previous state-of-the-
art methods are listed at the bottom of Tab. 1, and RRSVM
outperforms them by a wide margin (approximately 30%
error reduction).

Figure 2 shows the local regions used by RRSVM on
some representative test images. From these images we see
that RRSVM assigns weights to meaningful regions of the
images that contain relevant object information. More ex-
amples are provided in the supplemental material.

4.3. VOC 2012 Action Classification

In this section, we describe the experiments on the Ac-
tion dataset from the PASCAL VOC2012 Challenge. The
task is to recognize actions in still images, given the bound-
ing box of a person performing the action. The dataset con-
tains 2296 training images with 3134 bounding boxes, 2292
validation images with 3144 bounding boxes, and 4569 test
images with 6283 bounding boxes.

This classification task is similar to the image classi-
fication task of VOC2007 described in the previous sec-
tion. The key difference is the availability of the regions
of interest, which are the human bounding boxes. Follow-
ing [12, 14, 31], for each method in consideration, we train
two classifiers, one for the entire images and the other for
the human regions. Finally, we combine two classifiers by
averaging their scores.

Table 2 compares the performance of RRSVM and
LSSVM. Both methods use the same sets of feature vectors
produced by VGG16. As can be seen, RRSVM outperforms
LSSVM on all action categories. The gap in mean average
precision is 3.2%.

Table 3 compares RRSVM with several state-of-the-art
methods on the test set. For this experiment, we use both
VGG16 and VGG19 as also used by [31]. We train the

RRSVMs for VGG16 and VGG19 separately and average
their scores. We train them on both train and validation
sets. The results on the test set are obtained by submitting
the output to the PASCAL evaluation server, conforming to
the rules of PASCAL VOC Challenge. As can be seen in
Table 3, our proposed RRSVM, without any task-specific
heuristics, outperforms the previous state-of-the-art meth-
ods.

4.4. ILSVRC 2014 Image Classification

We also evaluate RRSVM on ILSVRC 2014 classifica-
tion challenge [27] to study its benefits for large-scale image
classification. The ILSVRC 2014 classification challenge
requires classifying images into one of the 1000 leaf-node
categories of the ImageNet dataset. There are 1,281,167
images for training, 50,000 for validation, and 100,000 for
testing. The number of positive training examples for each
class ranges from 732 to 1300, and all images of the other
classes are considered as negative examples. Two numbers
are usually reported: the top-1 error rate, which compares
the class with highest prediction score with the ground truth
class, and the top-5 error rate, which considers the predic-
tion correct if the ground truth is within the top 5 predicted
classes. The top-5 error is used to address the potential
problem of inexhaustive ground truth annotation.

4.4.1 Experiment setup

The experiment setup for the ILSVRC dataset is similar to
the setup for the PASCAL VOC 2007 dataset (Section 4.2)
with two modifications to: 1) be possible to train 1000 clas-
sifiers on a large dataset of more than one million images,
and 2) calibrate the scores of 1000 binary one-versus-rest
classifiers for a multi-class categorization task.

The first modification is to train LSSVM and RRSVM
with a smaller number of negative examples. In theory, it
is possible to train LSSVM and RRSVM with all the ex-



Figure 2: Local regions used by RRSVM for classification. These are representative images from the test set of PASCAL
VOC 2007. The blue boxes with numbers correspond to the regions and their weights used for classification. Yellow boxes
with labels are the ground truth regions of interest for the specific category. Best viewed on a digital device.

Model jump. phone. playinstr. read. ridebike ridehorse run takephoto usecomp. walk. mAP

LSSVM-Mean 85.5 64.5 95.2 71.6 93.0 95.9 82.5 69.0 90.7 62.0 81.0
LSSVM-Max 85.2 65.3 95.8 73.3 93.4 96.5 84.3 70.2 90.0 61.3 81.5
LSSVM-SSD 85.2 65.7 95.8 73.2 93.6 96.5 84.4 70.1 90.0 62.3 81.7
RRSVM 87.2 72.3 96.2 76.9 94.6 96.8 87.8 74.4 92.9 62.6 84.2

Table 2: Average precision (%) on VOC2012 Action validation set. Both methods use VGG16 features. LSSVM average
all feature vectors while RRSVM uses them selectively. RRSVM outperforms LSSVM on all action categories.

amples. In practice, however, this creates a bottleneck in
data loading because the data is too big to be fit in memory,
and this is especially problematic for iterative optimization.
To circumvent this problem, we train LSSVM and RRSVM
with a reduced set of negative examples. The set of nega-
tive examples is based on hard negative mining as follows.
For each class, we first train an LSSVM with all positive
training examples and a random set of negative examples.
To maximize the diversity, we randomly pick 15 negative
examples in each of the 999 negative classes. The LSSVM
obtained is subsequently used to select a new set of hard
negative examples for retraining the LSSVM. The new set
of hard negative examples is selected from negative exam-
ples with the highest classification scores. Additionally, we
maintain the cardinality of the negative set and ensure that
each negative class has at least 10 examples. The procedure
for training an LSSVM and picking a new set of negative
examples is repeated for three iterations (it often converges
in three iterations). The final selected set of negative exam-
ples is then used to train both an LSSVM and an RRSVM.

The second modification is to integrate multiple bi-
nary classifiers in to a single multi-class classifier. Since
RRSVMs (and also LSSVMs) are independently trained for
each class, they must be calibrated to be used for multi-class

Method mAP

Oquab et al. [24] 70.2
Hoai et al. [14] 70.5
Gkioxari et al. [10] 73.6
Hoai [12] 76.3
Simonyan and Zisserman [31] 84.0
RRSVM (ours) 85.5

Table 3: Mean average precision on VOC2012 action
recognition test set. RRSVM outperforms the previous
state-of-the-art by 1.5%.

classification. We use a 3-layer neural network to reconcile
the outputs of the 1000 classifiers. The first layer of the net-
work is a fully connected layer with 1000 units followed by
a rectified linear unit (ReLU). The second layer is the same
as the first layer but without ReLU. The last layer is a soft-
max layer with 1000 outputs for 1000 classes. The network
is trained to minimize the negative log likelihood using all
training examples.



4.4.2 Classification performance

Table 4 compares the performance of RRSVM with sev-
eral other methods on the validation and the test sets of the
ILSVRC 2014 dataset. Overall, the results of RRSVM are
comparable with the state-of-the-art methods even though
it uses only one neural network and without the expensive
multi-cropping procedure. The fairest comparison is be-
tween RRSVM and VGG16 that does not use multi-crop
(first method of Table 4) because both methods use the
same features and have the same setup. In this compari-
son, RRSVM outperforms the baseline by 0.8% and 1.9%
using Top-5 and Top-1 error measurement respectively.

4.4.3 Category based analysis

The diversity and size of ILSVRC 2014 enable us to further
analyze the performance of RRSVM. In this section we use
AP to measure the performance on the validation set for
individual object categories.

We first of all consider the differences between APs of
RRSVM and results of VGG16, which will be referred to
as AP gaps. We sort the AP gaps for 1000 classes and plot
them in Figure 3a. As can be seen, the AP gaps are pos-
itive for more than70% of the classes. The mean of the
AP gaps is 1.6%. The category with the largest AP gap is
n03673027 (ocean liner) with 13% AP gap. The lowest AP
gap is -23.7% for n02447721 (gong), which seems to be an
outlier case as the second lowest AP gap is -9.8%. There
are two possible reasons for poor performance on this cat-
egory: (i) the images of gong have various shapes/textures
and with relatively uniform backgrounds, and the classifier
being trained by RRSVM deteriorates through the iterations
of the iterative optimization; and (ii) we did not use enough
negative training examples (recall we only use 15K nega-
tive training samples for efficiency). Examples of the failure
cases are showed in the supplementary material.

We also consider the number of non-zero values of the s
vector. It corresponds to the number of local regions used
by RRSVM. Figure 3b plots the distribution of the numbers
of effective regions. RRSVM uses no more than 10 regions
for the majority of the categories.

4.5. Timing

The optimization of RRSVM typically converges
within 15 iterations. Each iteration requires solving a
QCQP and one or several least square problems. On an
Intel Xeon 2.5GHz machine with 16 cores for parallel data
loading, it takes roughly 10 minutes to train an RRSVM
classifier for each ILSVRC 2014 category. This excludes
the feature computation using VGG16.
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Figure 3: (a): AP gaps between RRSVM and VGG16 for in-
dividual classes on ILSVRC 2014. The majority of classes
have positive AP gaps. (b): distribution of the numbers of
effective regions used by RRSVM on ILSVRC 2014. Most
classes require 20 effective regions or less.

Validation Test

Model top-1 top-5 top-5

VGG16, dense eval. (baseline) 24.8 7.5 -
VGG16, dense eval., multi-crop 24.4 7.1 7.0
VGG16+19, dense eval., multi-crop 23.7 6.8 6.8
GoogLeNet (7 nets, multi-crop) - 6.7 6.7

RRSVM 22.9 6.7 6.8

Table 4: Error rates on ILSVRC 2014 dataset (%).
RRSVM performs similarly to methods that use multiple
nets and use multiple cropped regions (computationally ex-
pensive). RRSVM uses the same setup as the first method
shown in this table.

5. Conclusions
We have proposed Region Ranking SVM (RRSVM), a

novel framework for image classification. RRSVM is de-
veloped on the foundation of a robust decision function
that is based on the distribution of multiple region scores.
During training, RRSVM jointly learns a region evaluation
function and a region-combination vector. We have showed
that RRSVM outperforms the baseline methods that use the
same features as RRSVM by a wide margin. Tested on the
image classification task of PASCAL VOC 2007, the ac-
tion recognition task of PASCAL VOC 2012, and the object
classification task of ILSVRC 2014, RRSVM is better than
or comparable to the state-of-the-art methods that use more
powerful features or require more computational resources.

Currently, each RRSVM is a binary classifier, and multi-
ple RRSVMs must be calibrated before they can be used for
multi-class classification. A future direction is to extend the
current framework to jointly train multiple RRSVMs and
the multi-class classifier.
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