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Abstract

We propose a novel framework for interactive class-

agnostic object counting, where a human user can in-

teractively provide feedback to improve the accuracy of

a counter. Our framework consists of two main compo-

nents: a user-friendly visualizer to gather feedback and

an efficient mechanism to incorporate it. In each itera-

tion, we produce a density map to show the current pre-

diction result, and we segment it into non-overlapping re-

gions with an easily verifiable number of objects. The user

can provide feedback by selecting a region with obvious

counting errors and specifying the range for the estimated

number of objects within it. To improve the counting re-

sult, we develop a novel adaptation loss to force the vi-

sual counter to output the predicted count within the user-

specified range. For effective and efficient adaptation, we

propose a refinement module that can be used with any

density-based visual counter, and only the parameters in

the refinement module will be updated during adaptation.

Our experiments on two challenging class-agnostic object

counting benchmarks, FSCD-LVIS and FSC-147, show that

our method can reduce the mean absolute error of multi-

ple state-of-the-art visual counters by roughly 30% to 40%

with minimal user input. Our project can be found at

https://yifehuang97.github.io/ICACountProjectPage/.

1. Introduction

The need for counting objects in images arises in many

applications, and significant progress has been made for

both class-specific [17, 30, 13, 46, 47, 9, 3, 24, 44, 25, 19,

38, 23, 16, 34, 36, 1] and class-agnostic [49, 35, 33, 41,

51, 26, 31, 32] counting. However, unlike in many other

computer vision tasks where the predicted results can be

verified for reliability, visual counting results are difficult to

validate, as illustrated in Fig. 1. Mistakes can be made, and

often there are no mechanisms to correct them. To enhance

the practicality of visual counting methods, the results need

*Work done at Stony Brook University, prior to joining Amazon

Figure 1. Given an input image and several exemplar objects, a

class-agnostic counter will output a density map and the total ob-

ject count. It is often challenging to validate these outputs, making

it difficult to adopt automatic visual counting in practice. To im-

prove the practicality of a visual counter, we propose an interactive

framework that allows a human user to quickly detect mistakes and

improve performance based on the identified errors.

to be more intuitive and verifiable, and feedback mecha-

nisms should be incorporated to allow errors to be corrected.

This necessitates a human-in-the-loop framework that can

interactively display the predicted results, collect user feed-

back, and adapt the visual counter to reduce counting errors.

It is, however, challenging to develop an interactive

framework for visual counting. The first challenge is to

provide the user with an intuitive visualizer for the count-

ing result. Current state-of-the-art visual counting meth-

ods typically generate a density map and then sum the den-

sity values to obtain the final count. However, as shown

in Fig. 1, verifying the final predicted count can be diffi-

cult, as can verifying the intermediate density map, due to

the mismatch between the continuous nature of the density

map and the discrete nature of the objects in the image. The

second challenge is to design an appropriate user interac-

tion method that requires minimal user effort while being

suited for providing feedback on object counting. The third

challenge is developing an effective adaptation scheme for

the selected interaction type that can incorporate user feed-

back and improve the performance of visual counters. In

this paper, we address all three aforementioned challenges

to develop an interactive framework for visual counting.

For the first challenge, we propose a novel segmentation

method that segments a density map into non-overlapping

regions, where the sum of density values in each region is a

near-integer value that can be easily verified. This provides

the user with a more natural and understandable interpreta-

tion of the predicted density map. Notably, developing such

This ICCV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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an algorithm that must also be suitably fast for an interactive

system is challenging, which constitutes a technical contri-

bution of our paper.

For the second challenge, we propose a novel type of in-

teraction that enables the user to provide feedback with just

two mouse clicks: the first click selects the region, and the

second click selects the appropriate range for the number

of objects in the chosen region. The proposed user inter-

action method is unique as it is specifically tailored for ob-

ject counting and requires minimal user effort. Firstly, the

auto-generated segmentation map allows the user to select

an image region using just one mouse click, which is faster

compared to drawing a polygon or scribbles. Secondly,

by leveraging the humans’ subitizing ability, which allows

them to estimate the number of objects in a set quickly with-

out counting them individually, we can obtain an approxi-

mate count with just another mouse click, which is quicker

than one by one counting using dot annotations.

For the third challenge, we develop an interactive adap-

tation loss based on range constraints. To update the visual

counter efficiently and effectively and to reduce the disrup-

tion of the learned knowledge in the visual counter, we pro-

pose the refinement module that directly refines the spatial

similarity feature in the regression head. Furthermore, we

propose a technique to estimate the user’s feedback confi-

dence and use this confidence to adjust the learning rate and

gradient steps during the adaptation process.

In this paper, we primarily focus on class-agnostic count-

ing, and we demonstrate the effectiveness of our framework

with experiments on FSC-147 [35] and FSCD-LVIS [31].

However, our framework can be extended to category-

specific counting, as will be seen in our experiments on sev-

eral crowd-counting and car-counting benchmarks, includ-

ing ShanghaiTech [52], UCF-QNRF [11], and CARPK [8].

We also conduct a user study to investigate the practicality

of our method in a real-world setting.

In short, the main contribution of our paper is a frame-

work that improves the accuracy and practicality of visual

counting. Our technical contributions include: (1) a novel

segmentation method that quickly segments density maps

into non-overlapping regions with near-integer density val-

ues, which enhances the interpretability of predicted density

maps for users; (2) an innovative user feedback scheme that

requires minimal user effort for object counting by utilizing

subitizing ability and auto-generated segmentation maps;

and (3) an effective adaptation approach that incorporates

the user’s feedback into the visual counter through a refine-

ment module and a confidence estimation method.

2. Related Works

Visual counting. Various visual counting methods have

been proposed, e.g., [17, 30, 13, 46, 47, 9, 3, 24, 44, 25,

19, 38, 23, 16], but most of them are class-specific coun-

ters, requiring large amounts of training data with hun-

dreds of thousands of annotated objects. To address this

limitation and enable counting of objects across multiple

categories, several class-agnostic counters have been pro-

posed [49, 35, 33, 41, 51, 26, 31]. These methods work by

regressing the object density map based on the spatial corre-

lation between the input image and the provided exemplars.

However, in many cases, a limited number of exemplars are

insufficient to generalize over object instances with varying

shapes, sizes, and appearances.

Interactive counting. There exists only one prior method

for interactive counting [2]. This method uses low-level fea-

tures and ridge regression to predict the density map. To vi-

sualize the density map, it uses MSER [29] or spectral clus-

tering [40] to generate some candidate regions, then seeks a

subset of candidate regions that can keep the integrality of

each region in the subset. At each iteration, the user must

draw a region of interest and mark the objects in this region

with dot annotations. Additionally for the first iteration, the

user has to specify the diameter of a typical object. This

method [2] has two drawbacks. First, it requires significant

effort from the user to draw a region of interest, specify the

typical object size, and mark all objects in the region. Sec-

ond, MSER and spectral clustering may not generate suit-

able candidate regions for dense scenes, as will be shown

in Sec. 3.2. To alleviate the user’s burden, the counting re-

sults should be easy to verify, and feedback should be sim-

ple to provide. In this paper, we propose a density map

visualization method that can generate regions by finding

and expanding density peaks. Unlike MSER and spectral

clustering, our approach works well on dense density maps.

Interactive methods for other computer vision tasks.

Various interactive methods have been developed for other

computer vision tasks, such as object detection [50], track-

ing [39], and segmentation [12, 42, 5, 22, 20, 10, 28, 27, 18,

21, 48, 43]. While the success of these methods is inspir-

ing, none of them are directly applicable to visual counting

due to unique technical challenges. Unlike object detection,

tracking, and segmentation, the immediate and final out-

puts of visual counting are difficult to visualize and verify.

Designing an interactive framework for visual counting re-

quires addressing the technical challenges discussed in the

introduction section, none of them has been considered in

previous interactive methods.

3. Proposed Approach

We propose an interactive framework for visual count-

ing, as illustrated in Fig. 2. Each interactive iteration con-

sists of two phases. The first phase visualizes the predicted

density map to collect user feedback. The second phase

uses the provided feedback to improve the visual counter.
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Figure 2. We propose a practical approach for visual counting

based on interactive user’s feedback. In each iteration: (1) the

visual counter estimates the density map for the input image; (2)

the density map is segmented and visualized; (3) the user selects

a region and provides a range for the number of objects in the re-

gion; (4) an objective function is defined based for the provided

region and count range, and the parameters of a refinement mod-

ule are updated by optimizing this objective function.

3.1. Overview of the two phases

In the first phase, we will visualize the density map by

segmenting it into regions {R1, · · · , Rn} with the follow-

ing desiderata:

C1. Non-overlapping: Ri ∩Rj = ∅ for all i �= j,

C2. Total coverage:
n
∪
i=1

Ri = the predicted density map,

C3. Moderate size: each region is not too big or too small,

C4. Near-integer and small integral: the sum of density val-

ues within each region should be close to an integer

and smaller than a verifiable counting limit.

The above desiderata are for visualization and easy verifi-

cation of the results. The last desideratum is motivated by

humans’ subitizing ability, which is the ability to identify

the number of objects in an image simply by quickly look-

ing at them, not by counting them one by one.

In the second phase of each iteration, the user is

prompted to pick a region and specify the range for the

number of objects in that region. Let R denote the selected

region and c = (cl, cu] the range specified by the user for

the number of objects in R, a loss L(R, c) will be gener-

ated and used to adapt the counting model. For efficient and

effective adaptation, instead of adapting the whole count-

ing network, we propose a refinement module that directly

refines the feature map in the regression head and we only

adapt the parameters of this module using gradient descent.

3.2. Density map segmentation algorithm

One technical contribution of this paper is the develop-

ment of a fast segmentation algorithm called Iterative Peak

Selection and Expansion (IPSE) that satisfies the desider-

ata described in Sec. 3.1. The input to this algorithm is

a smoothed density map, and the output is a set of non-

overlapping regions. IPSE is an iterative algorithm where

the output set will be grown one region at a time, starting

from an empty set. To yield a new region for the output, it

starts from the pixel p with the highest density value (called

the peak) among the remaining pixels that have not been in-

cluded in any previously chosen region. IPSE seeks a region

R containing p that minimizes the below objective:

h(R) =
|Rs − �Rs −

1
2�|

max(1, �Rs −
1
2�)

+
max(0, Tl −Ra)

Tl

+ �max(0, Rs − C)�, (1)

where Rs denote the sum of density values in R and Ra the

area of R. Tl is the preferred minimum area for the region

R, and C is the preferred maximum number of objects in

the region. The first term of the objective function encour-

ages the sum of the densities to be close to an integer. It also

encourages the region not to have too small count. The sec-

ond term penalizes small regions. The region cannot be too

big either. The expansion algorithm will stop when the area

reaches a predefined upper bound. The last term penalizes

regions with a total density greater than C.

Because there are exponentially many regions contain-

ing a given peak p, finding the optimal region R that mini-

mizes h(R) is an intractable problem. Fortunately, we only

need to obtain a sufficiently good solution. We therefore

restrict the search space to a smaller list of expanding re-

gions S0 ⊂ S1 ⊂ · · · ⊂ Sm and perform an exhaustive

search among this list. This list can be constructed by start-

ing from the seed p, i.e., S0 = {p} and constructing Si+1

from Si by adding a pixel q selected from neighboring pix-

els of Si that have not been part of any existing output re-

gions. If multiple such neighboring pixels are available, we

prioritize pixels with positive density values and select the

one closest to p. The process terminates when any of the

following conditions is met: (1) all neighboring pixels of

Si have been included in an output region; (2) the area or

the sum of density values in Si has reached a predefined

limit; or (3) the proportion of zero-density pixels in Si has

exceeded a predefined threshold.

The above peak selection and expansion process is used

repeatedly to segment the density map, with each iteration

commencing from the seed pixel p that has the highest den-

sity value among the remaining pixels that have not been

included in any prior output region. If all the remaining

pixels have zero-density values, a random seed location is

selected. The process continues until complete coverage of

the density map is achieved, at which point all small regions

are merged into their neighboring regions.

Comparison with other density segmentation methods.

Our algorithm for segmenting the density map bares some

similarity to gerrymandering or political redistricting.
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Gerrymandering involves dividing a large region into

several smaller regions while adhering to certain constraints

related to the population and contiguity of the regions. Most

methods for this problem are based on weighted graph par-

titioning or heuristic algorithms [6, 37, 14, 4, 7]. However,

an object density map contains several hundred thousand

pixels, making these methods too slow for interactive sys-

tems. For example, the time and iteration limit of [6] is 600

seconds and 1000 iterations, which cannot meet the real-

time requirements of interactive systems. In contrast, our

method takes less than one second, as reported in Sec. 4.3.

Another approach for visualizing a density map is to use

MSER [29] or spectral clustering[40] to generate some can-

didate regions, as used in [2]. MSER and spectral cluster-

ing, however, often fail to generate suitable candidate re-

gions for dense scenes, as shown in Fig. 3.

3.3. Interactive feedback and adaptation

Upon presenting the segmented density map, the user

will be prompted to pick a region R and choose a nu-

meric range c for the number of objects in R, from a list

of range options, c ∈ {(−∞, 0], (0, r], (r, 2r], . . . , (C −
r, C], (C,∞)}, where r is the range interval and C is the

counting limit. This method of user interaction is innova-

tive and specifically tailored for object counting, necessi-

tating only two mouse clicks per iteration. The reason for

using a range instead of an exact number is because it can

be ambiguous to determine an exact number for a region.

Despite our segmentation efforts to ensure that each region

contains an integral number of objects, some regions may

still contain partial objects, making it more challenging for

the user to provide an accurate number quickly.

An important technical contribution of our paper is the

creation of an adaptation technique capable of leveraging

the user’s weak supervision feedback. This feedback is

weak in terms of both object localization and count. Specifi-

cally, it does not provide exact locations of object instances,

only indicating the number of objects present in an image

region. Additionally, the number of objects is provided only

as a range, rather than an exact count. Below, we will detail

our adaptation technique, starting from the novel refinement

module for effective and efficient adaptation.

3.3.1 Refinement module

We aim for an adaptation method that works for all class-

agnostic counting networks [49, 35, 33, 41, 51]. Most of

them contain three components: a feature extractor f , a

spatial-similarity module g (e.g., convolution [35] or learn-

able bilinear transform [41]), and a regression head h con-

sisting of upsampling layers and convolution layers. Let I

be the input image, E the exemplars, S = g(f(I), f(E)) the

correlation map for the spatial similarity between the input

MSER [2] IPSE (Proposed)

Figure 3. Density map segmentation comparison with MSER [2].

These two examples are from the FSC-147 dataset.

image and exemplars, and D = h(S) the predicted density

map. The predicted count is obtained by summing over the

predicted density map D.

The correlation map serves as input to the regression

head, which applies several convolution and upsampling

layers to generate the output object density map. We ob-

serve that if the correlation map or any intermediate fea-

ture map between the input and output maps accurately

represents the spatial similarity between the input image

and exemplar objects, the final output density map and the

predicted count will be correct. Therefore, the adaptation

process need not revert to layers earlier than the correla-

tion map. To minimize disruption to learned knowledge

and accelerate adaptation for user interaction, we propose a

lightweight refinement module that is integrated only within

the regression head.

The refinement module, depicted in Fig. 4, can be ap-

plied to any intermediate feature map F between the input

correlation map S and the output density map D: F
′ =

R(F ), where F ′ is the refined feature map. Our refinement

module consists of two components: channel-wise refine-

ment and spatial-wise refinement.

The channel-wise refinement is illustrated in Fig. 5,

and it refines the feature of each channel by multiplying

with a scale parameter and adding with a bias parameter:

Rch(F ) = θscalech � F + θbiasch , where F ∈ R
H×W×C is

the input feature map, θscalech ∈ R
C is the vector of scale

parameters, θbiasch ∈ R
C is the vector of bias parameters.

The spatial-wise refinement is illustrated in Fig. 6, and it

also refines the feature at each spatial position: Rsp(F ) =
θscalesp �F +θbiassp , where θscalesp ∈ R

H×W , θbiassp ∈ R
H×W .

The overall refinement module is the successive appli-

cation of channel-wise refinement and spatial-wise refine-

ment: F ′ = R(F ) = Rsp(Rch(F )). The set of adaptable
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Figure 4. The refinement module can be integrated into the regression head of any density estimation visual counter.

Figure 5. Channel-wise refinement refines the feature of each

channel by multiplying with scale and adding with a bias.

Figure 6. Spatial-wise refinement refines the feature at each spatial

position by multiplying with scale and adding with a bias.

parameters of the two refinement modules are: θscale =
[θscalech ; θscalesp ] and θbias = [θbiasch ; θbiassp ]. At the beginning

of each adaptation iteration, the scale parameters are reset

to one and the bias parameters to zero, so that the refined

feature map F
′ is the same as the input feature map F.

3.3.2 Adaptation schemes

Given a selected region R and a specified range c = (cl, cu]
for the number of objects in region R, a weekly-supervised

adaptation loss is defined as:

LI(R, c) = ReLU(cl −Rs) +ReLU(Rs − cu), (2)

If the sum of predicted density values in the selected region

is outside the count range provided by the user, the above

loss will be positive.

To account for the scenario where the user can provide

feedback for multiple regions either in a single iteration or

through multiple iterations, we extend the adaptation loss to

use multiple regions to update the counter. Let Ω = (R, c)
denote the user’s selected regions and their corresponding

specified count ranges. We use the following combined loss

for adaptation:

L(Ω) = LL(Ω)+LG(Ω)+η(||θscale−1||+||θbias||), (3)

where LL(Ω) is the sum of regional losses, with each loss

corresponding to an individual region separately:

LL(Ω) =
∑

(R,c)∈Ω

LI(R, c), (4)

and LG(Ω) is the single loss for all the regions combined:

LG(Ω) = LI(
∑

(R,c)∈Ω

Rs,
∑

(R,c)∈Ω

c). (5)

Here, we combine all the selected regions and view them

as one big region, and then use Eq. (2) on the big region to

adapt the visual counter. Hereafter, we will refer to LL(Ω)
as Local Loss and LG(Ω) as Global Loss.

The last term of Eq. (3) is a regularization term to dis-

courage large changes to the scale and bias parameters of

the refinement module and η is the weight for the regular-

ization term. In our experiments, η = 0.002.

Our adaptation loss is based on the sum of predicted den-

sity values within one or multiple regions, which provides

a weak supervision signal as it lacks penalty terms related

to individual values. This type of supervision signal can be

problematic if a large learning rate is used. Meanwhile, us-

ing a small learning rate would require numerous gradient

steps, leading to a prolonged convergence process. To over-

come this issue, we propose determining the impact value

of the user’s feedback and using it to adjust the learning

rate and gradient steps, resulting in a smoother adaptation

process. When the uncertainty level is higher, such as hav-

ing too few regions or inconsistent error types (i.e., under-

counting in some regions and over-counting in others), we

use a lower learning rate with more gradient steps. Con-

versely, we apply a larger learning rate with fewer gradient

steps to shorten the adaptation process when the uncertainty

level is lower. We define the user feedback value as follows:

FC(Ω) = 0.5Fi(Ω) + 0.5Fs(Ω), (6)

The first term of the above measures the informativeness of

the feedback while the second term measures the inconsis-

tency of the feedback for multiple regions. The informa-

tiveness term can be defined as:

Fi(Ω) = min(1, exp(
|Ω| − t

T
)), (7)

where |Ω| is the size of the set Ω, T is the temperature,

and t is the informativeness threshold. Specifically, in our

experiments t = 3, T = 2.
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Let Ωo and Ωu be the sets of over-counting and under-

counting regions. Let p = |Ωo|
|Ωo|+|Ωu|

, the feedback consis-

tency value is defined based on negative entropy:

Fs(Ω) = 1 + p log p+ (1− p) log(1− p). (8)

Based on the estimated value of the feedback, the learn-

ing rate and the number of gradient steps will be scaled ac-

cordingly as follows: γ′ = γFC(Ω), N
′ = N

FC(Ω) , where

γ and N are the default values for the learning rate and the

number of gradient steps.

4. Experiments

4.1. Class-agnostic counting

4.1.1 Experiment settings

Datasets. We evaluate our approach on two challenging

class-agnostic counting benchmarks: FSC-147 [35] and

FSCD-LVIS [31].

Class-agnostic visual counters. Our interactive framework

is applicable to many different class-agnostic counters, and

we experiment with FamNet [35], SAFECount [51], and

BMNet+ [41] in this paper.

Evaluation metrics. We use Mean Absolute Error (MAE)

and Root Mean Squared Error (RMSE) as performance met-

rics, which are widely used for evaluating visual counting

performance [49, 35, 33, 41, 51, 26, 31].

User feedback simulation. To simulate user feedback, we

randomly select a displayed region and provide the counting

range for that region. We repeat each experiment five times

with different random seeds (5, 10, 15, 20, 25) and report

the average and standard error.

Count limit and pre-defined ranges. According to [45],

people can quickly and correctly estimate the number

of objects without one-to-one counting if the number

of objects is less or equal to four. Therefore, we set

the count limit C to 4 and the pre-defined ranges to

{(−∞, 0], (0, 1], (1, 2], (2, 3], (3, 4], (4,∞)}.

Implementation details. We insert the refinement module

after the first convolution layer in the regression head. For

faster computation, we first downsample the density map by

a factor of four, then perform the IPSE, and finally upsample

the density map segmentation result to its original size. We

adapt a FamNet with an Adam optimizer [15]. On FSC-147,

the default learning rate is 0.02 while the default number

of gradient steps is 10. On FSCD-LVIS, FamNet does not

converge as well, so the default learning rate and number of

gradient steps are set to 0.01 and 20, respectively.

MAE on FSC-147 test set RMSE on FSC-147 test set

MAE on FSCD-LVIS test set RMSE on FSCD-LVIS test set

Figure 7. The proposed framework can be used to improve the

performance of various visual counters. This shows the MAE and

RMSE values of FamNet, SAFECount, and BMNet+ on FSC-147

and FSCD-LVIS test data, as the number of feedback iterations is

increased from zero (without any adaption) to five.

4.1.2 Experiment results

The proposed interactive framework can be used to improve

the performance of various types of visual counters, includ-

ing FamNet [35], SAFECount [51], and BMNet+ [41]. As

can be seen from Fig. 7, the benefits are consistently ob-

served in multiple experiments and metrics (three visual

counters, two datasets, and two performance metrics). Sig-

nificant error reduction is already achieved even after one

feedback iteration, as also shown in Fig. 8. After five itera-

tions, the amount of error reduction is huge, with an average

value of 30%.

The proposed framework requires minimal user input,

but it should not be viewed as a competitor to few-shot

counting methods. Rather, it is an interactive frame-

work that offers complementary benefits to few-shot meth-

ods. Notably, most class-agnostic visual counters, including

FamNet, SAFECount, and BMNet+, are few-shot methods

that can count with just a few exemplars. As shown ear-

lier, the proposed framework enhances the performance of

these counters. However, there is another approach to im-

prove these counters, which is to provide more exemplars.

Rather than using these visual counters in our interactive

framework, we could offer them additional exemplars. As

our framework requires two mouse clicks for each iteration

and drawing a bounding box also requires the same effort,

we compare the performance of our framework with five it-

erations to the performance of visual counters with five ad-

ditional exemplars, and the results are shown in Table 1. As

shown, our framework produces greater improvement with

the same level of user effort. This may be due to several rea-

sons: (1) supplying extra exemplars does not immediately

highlight prediction errors, resulting in a weaker supervi-
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Before interaction. Predict: 42.5, GT: 17 After one interaction. Predict: 23.0, GT: 17

Figure 8. Qualitative results of our approach for test images in FSC-147 with FamNet as the visual counter. The brighter region is the

selected region, and the red dot is the approximate location of each region generated by peak selection and non-maximum suppression on

each region. The selected region is highlighted in this example, and the input range is (−∞, 0], since the object of interest is cake. With

one single interaction, our method can improve the counting result locally and globally. More qualitative results and a demo video are

in our supplementary.

FSC-147 Test set FSCD-LVIS Test set

MAE RMSE MAE RMSE

FamNet [35] 22.08 99.54 41.26 57.87

+ 5 exemplars 21.52 ↓2% 98.10 ↓1% 40.36 ↓2% 57.85 ↓0%

+ our framework 11.75 ↓47% 75.37 ↓24% 21.18 ↓49% 34.13 ↓41%

SAFECount [51] 13.56 91.31 15.45 28.73

+ 5 exemplars 13.01 ↓4% 94.22 ↑3% 14.83 ↓4% 28.01 ↓2%

+ our framework 9.42 ↓31% 80.69 ↓12% 10.45 ↓32% 18.42 ↓36%

BMNet+ [41] 14.62 91.83 17.49 29.76

+ 5 exemplars 14.40 ↓2% 91.56 ↓0% 17.27 ↓1% 29.60 ↓1%

+ our framework 9.51 ↓35% 84.66 ↓8% 13.43 ↓23% 22.39 ↓25%

Table 1. Comparing the performance of the proposed interactive

framework with five feedback iterations to a few-shot baseline

approach that uses the base counters with 5 additional exemplars.

sion signal; (2) an exemplar provides information for only

one object, less informative than a region containing mul-

tiple objects; (3) most class-agnostic counting methods are

trained with a predefined number of exemplars (e.g., three),

so the model may not be able to fully utilize the additional

exemplars to improve the performance.

One technical contribution of our method is the inno-

vative segmentation algorithm. Table 2 compares this al-

gorithm with four segmentation methods: MSER [2], K-

means, Watershed, and DBSCAN. For K-means and DB-

SCAN, we use the spatial coordinate and the density value

as the feature to perform clustering for segmentation. For

K-means, K is set to min(Su,max(Sl,
Sum(D)

C
)), where

Su and Sl are the pre-defined upper bound and lower bound,

Sum(D) is the summed density, and C is the count limit.

For these density map segmentation baselines, we also use

our feature refinement adaptation scheme to update the vi-

sual counter. As shown in Table 2, our proposed algorithm

surpasses the other methods by a wide margin. Fig. 8 shows

some qualitative results.

4.1.3 Ablation study

We perform some experiments to evaluate the contribution

of different components, including the refinement module,

FSC-147 Test set FSCD-LVIS Test set

MAE RMSE MAE RMSE

Initial error 22.08 99.54 41.26 57.87

MSER [2] 16.46±0.13 86.06±3.28 30.61±0.37 44.57±0.77

Watershed 18.95±0.09 74.08±4.66 27.35±0.25 43.21±0.79

K-means 15.32±0.23 86.49±2.43 32.70±0.04 47.80±0.09

DBSCAN 19.69±0.24 78.26±8.08 41.26±0.00 57.87±0.00

IPSE (proposed) 11.75±0.12 75.37±5.21 21.18±0.28 34.13±0.88

Table 2. Results of different segmentation methods under the same

adaptation scheme with five feedback iterations, when FamNet

is the base visual counter. Each experiment is repeated five times,

and the mean and standard error are reported.

Before interaction Channel-wise only Spatial-wise only

Figure 9. Channel-wise contributes more to the improvement than

spatial-wise refinement since channel-wise refinement corrects

global errors, while spatial-wise focuses on local errors.

the adaptation loss, and the setting of user feedback simu-

lation. All ablation studies are conducted on the FSC-147

validation set.

Refinement module. The results of the ablation study for

the refinement module are shown in Table 3. Both the

channel-wise and spatial-wise refinement steps are impor-

tant. The channel-wise refinement contributes more to the

improvement than the spatial-wise refinement step. This

is perhaps because the spatial-wise refinement refines lo-

cally while the channel-wise refinement refines globally, as

shown in Fig. 9. Also, the order of these two refinement

steps has little effect on the final result.

Adaptation loss. Table 4 shows the ablation study on the

adaptation loss. Both the Local Loss LL(Ω) and the Global

Loss LG(Ω) contribute to the reduction in MAE and RMSE.

The confidence scaling is less important.
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FamNet SAFECount

Refinement Component MAE RMSE MAE RMSE

Spatial 21.63 67.84 13.90 10.67

Channel 13.72 52.99 9.46 13.01

Spatial + Channel 12.84 45.85 9.98 36.15

Channel + Spatial 12.79 47.21 9.29 33.83

Table 3. Analyzing the contribution of the spatial and refinement

components of the refinement module. The result is on FSC-147

validation set with FamNet and SAFECount as the visual counter.

Local Loss LL(Ω) � � � �

Global Loss LG(Ω) � � � �

Confidence scaling � � � �

MAE 15.41±0.29 14.21±0.17 13.25±0.21 12.79±0.16

RMSE 55.72±1.57 52.94±1.56 48.44±1.69 47.21±2.05

Table 4. Ablation on the adaptation loss, the result is on FSC-147

validation set with FamNet as the visual counter.

FamNet SAFECount

Refinement Component MAE RMSE MAE RMSE

LocalCorrection 20.74 64.58 13.01 49.15

AllParamAdapt 17.07 61.61 9.98 36.15

Proposed 12.79 47.21 9.29 33.83

Table 5. Analyzing the effectiveness of our adaptation scheme.

Adaptation scheme. Table 5 shows the ablation study on

the adaptation scheme. LocalCorrection is the method that

only corrects the prediction of the selected region, and will

not adapt the visual counter. AllParamAdapt is the method

that updates all the parameters in the regression head.

User feedback simulation. To further assess the efficiency

and efficacy of various region selection strategies, we con-

sider two methods that may offer advantages over random

selection used in previous experiments. These two strate-

gies are: 1) prioritizing background regions containing no

objects, and 2) selecting regions with largest errors. The

comparison of these region selection strategies is presented

in Table 6. The error-based approach emerges as the most

successful, whereas prioritizing background regions has a

detrimental impact on performance. Concerning time effi-

ciency, random selection is the quickest, followed by back-

ground prioritization, with error-based selection being the

slowest due to the need for error estimation for each region.

In the primary experiment, we set interactions at five,

given consecutively. To validate this five-interaction ap-

proach, we conducted extra trials on the FSC-147 dataset

with varying interaction counts. Results are shown

in Fig. 10, revealing continued performance improvement

beyond five interactions, though at a slower rate.

We also compared consecutive and non-consecutive in-

Region Selection Strategy MAE RMSE

Background Prior 14.02 55.31

Error Based 10.61 46.85

Random Selection 12.79 47.21

Table 6. Result on different region selection strategies with Fam-

Net on FSC-147 validation set.

FamNet SAFECount

MAE RMSE MAE RMSE

Consecutive 12.79 47.21 9.29 33.83

Non Consecutive 16.87 54.42 12.36 46.97

Table 7. Comparison of consecutive and non-consecutive interac-

tions, the result is on the FSC-147 validation set.

Figure 10. MAE with varying numbers of interactions on the

FSC-147 validation set.

teractions to confirm the importance of sequential engage-

ment. Table 7 outlines these results, indicating better perfor-

mance with sequential interactions. However, this approach

increases time consumption due to added segmentation and

adaptation time.

4.2. Class-specific counting

Our interactive counting framework has primarily fo-

cused on class-agnostic counters, with its foundation being

the correlation between the exemplar objects and the image.

However, it is natural to wonder if this framework can be ex-

tended to class-specific visual counters. The main concern

is that the user feedback collected in this manner may be too

weak for class-specific counters that are trained on hundreds

of thousands or even millions of annotated objects. In this

section, we report our experiments on the crowd-counting

and car-counting task, where we have found that our method

can be used to reduce the errors of a crowd counter if the

counting ranges for the user feedback are adjusted.

Specifically, we apply our framework to DM-Count [46]

for crowd counting on two crowd-counting benchmarks:

ShanghaiTech [52] and UCF-QNRF [11]. We set the count-

ing limit to 50, and the range interval to 10, so the counting

ranges are {[−∞, 0], (0, 10], . . . , (40 50], (50 ∞)}. We in-

sert the refinement module after the first convolution layer.

We adapt the DM-Count with 20 gradient steps with a learn-

ing rate of 5 × 10−4. We compare with the other baseline
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ShanghaiTech A UCF-QNRF

MAE RMSE MAE RMSE

Initial error 59.60 95.56 85.65 148.35

MSER [2] 57.90±0.32 94.84±0.50 81.38±0.58 142.73±0.93

Watershed 58.84±0.71 90.17±2.06 82.78±0.46 144.70±0.39

K-means 48.20±0.75 79.23±2.46 73.29±1.77 131.37±3.98

DBSCAN 56.99±0.21 92.73±0.28 80.62±0.93 142.29±1.66

LocalCorrection 43.86±0.26 74.76±0.84 78.27±0.23 135.07±0.53

AllParamAdapt 31.03±0.33 59.47±0.96 62.30±2.81 123.03±7.52

Proposed 33.85±0.78 57.50±1.94 58.13±1.04 102.32±2.63

Table 8. Results of interactive adaptation methods for a crowd-

counting network (DM-Count) using five feedback iterations.

Initial Error Five Interactions

MAE RMSE MAE RMSE

FamNet 18.34 35.77 13.91 20.14

SAFECount 4.91 6.32 4.16 5.91

Table 9. Result on CARPK with FamNet and SAFECount using

five feedback iterations.

GT:553.0, Pred:615.3 GT:553.0, Pred:534.5

Figure 11. Qualitative results of our approach for test images in

ShanghaiTech A with DM-Count as the visual counter. The left

figure is before interaction, and the right is after one interaction.

The selected region is highlighted, and the input range is (20, 30].

methods, and the feedback simulation is identical to those

reported in Sec. 4.1. The quantitative results are shown

in Table 8, and the qualitative results are shown in Fig. 11.

Our approach reduces the MAE and RMSE by approxi-

mately 40% and 30% on ShanghaiTech A, and approxi-

mately 30% and 25% on UCF-QNRF. For car counting,

we apply our framework to FamNet and SAFECount on

CARPK [8]. The results are shown in Table 9. The MAE

decreased more than 15% on CARPK.

4.3. User study

To assess the feasibility of the proposed interactive

counting framework, we conducted a user study with eight

participants. We selected 20 images with high counting er-

rors from the FSC-147 dataset and used FamNet as the vi-

sual counter. Each participant was allowed a maximum of

five iterations for each image, but they could terminate the

process if they felt the prediction was accurate enough. The

average number of iterations for one image is 3.08, and the

variance is 0.41. Additionally, we carried out an experi-

Figure 12. Per-iteration statistics. The visualization time (includ-

ing segmentation time) and the adaptation time are both less than

one second, sufficiently fast for interactive systems.

#Feedback Iterations MAE RMSE

Initial error 93.41 125.57

Real User (avg. 3.08 iters) 45.11± 2.63 ↓52% 90.64± 2.68 ↓28%

Simulated feedback (3 iters) 59.97± 3.34 ↓ 34% 110.67± 5.96 ↓12%

Simulated feedback (5 iters) 43.86± 3.02 ↓ 52% 92.93± 2.90 ↓26%

Table 10. Comparison between real user’s feedback and the simu-

lated feedback used in our quantitative experiments.

ment involving simulated user feedback on the same set of

images, to compare the results with those obtained from real

user feedback. As shown in Table 10, the users were able

to improve the performance of the counter using our frame-

work, demonstrating its potential for practical usage. More-

over, the benefits achieved from real user feedback were

comparable to those obtained from simulated feedback, in-

dicating that many of our analyses using simulated feedback

can be extrapolated to real-world scenarios.

The user study was conducted on an RTX3080 machine,

and several time statistics of a single iteration are presented

in Fig. 12. It took less than a second to segment any density

image and display it. The average time for a user to select a

region and specify a range was four seconds, and the adap-

tation time for a single iteration was less than one second.

All operations are sufficiently fast for interactive systems.

5. Conclusions

We have proposed an interactive framework primarily

for class-agnostic counting, but can also be extended to

class-specific counting. It uses a novel method for den-

sity map segmentation to generate an intuitive display for

the user, enabling them to visualize the results and pro-

vide feedback. Additionally, we have developed an adap-

tation loss and a refinement module to efficiently and effec-

tively update the visual counter with the user’s feedback.

Experiments on two class-agnostic counting datasets and

two crowd-counting benchmarks with four different visual

counters demonstrate the effectiveness and general applica-

bility of our framework.
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