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Introduction: Pretreatment positron emission tomography (PET) with 2-deoxy-2-[18F]fluoro-D-glucose 
(FDG) and magnetic resonance spectroscopy (MRS) may identify biomarkers for predicting remission 
(absence of depression). Yet, no such image-based biomarkers have achieved clinical validity. The purpose 
of this study was to identify biomarkers of remission using machine learning (ML) with pretreatment 
FDG-PET/MRS neuroimaging, to reduce patient suffering and economic burden from ineffective trials.
Methods: This study used simultaneous PET/MRS neuroimaging from a double-blind, placebo-controlled, 
randomized antidepressant trial on 60 participants with major depressive disorder (MDD) before 
initiating treatment. After eight weeks of treatment, those with ≤ 7 on 17-item Hamilton Depression 
Rating Scale were designated a priori as remitters (free of depression, 37%). Metabolic rate of glucose 
uptake (metabolism) from 22 brain regions were acquired from PET. Concentrations (mM) of glutamine 
and glutamate and gamma-aminobutyric acid (GABA) in anterior cingulate cortex were quantified 
from MRS. The data were randomly split into 67% train and cross-validation (n = 40), and 33% test 
(n = 20) sets. The imaging features, along with age, sex, handedness, and treatment assignment (selective 
serotonin reuptake inhibitor or SSRI vs. placebo) were entered into the eXtreme Gradient Boosting 
(XGBoost) classifier for training.
Results: In test data, the model showed 62% sensitivity, 92% specificity, and 77% weighted accuracy. 
Pretreatment metabolism of left hippocampus from PET was the most predictive of remission.
Conclusions: The pretreatment neuroimaging takes around 60 minutes but has potential to prevent weeks 
of failed treatment trials. This study effectively addresses common issues for neuroimaging analysis, such 
as small sample size, high dimensionality, and class imbalance.
© 2022 The Author(s). Published by Elsevier Masson SAS. This is an open access article under the CC BY 

license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

There is an urgent need for reliable prediction of potential 
antidepressant failure in treatment of major depressive disorder 
(MDD). Pretreatment electroencephalogram (EEG) has predicted
antidepressant efficacy with performance considerable for clinical 
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utility [1]. EEG electrodes are placed on the surface of the brain 
to obtain functional measures, leading to lower spatial resolution 
compared to molecular neuroimaging, where the source of signal 
may not be apparent [2]. Molecular imaging modalities, such as 
positron emission tomography (PET) with 2-deoxy-2-[18F]fluoro-D-
glucose (FDG) and proton magnetic resonance spectroscopy (1H-
MRS or MRS) have been useful for early assessment and risk strat-
ification in patients with neurological, oncological and cardiovas-
cular disorders [3]. Yet, they have not been proved clinically useful 
due to lack of accuracy [4].

FDG-PET is a sensitive indicator of cerebral function, leading to 
its extensive use for assessing response to the most widely used 
first-line MDD treatment, selective serotonin reuptake inhibitor 
ess article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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(SSRI) [5]. However, these prior studies do not agree on the pre-
dictive region/measure and their prediction could not be replicated 
using conventional statistics [6].

Glutamine (Gln) is the precursor to the excitatory neuro-
transmitter, glutamate (Glu) and inhibitory neurotransmitter, γ -
aminobutyric acid (GABA), and all three are essential amino acids 
for brain metabolism [7]. Prior magnetic resonance spectroscopy 
(MRS) studies showed that higher pretreatment Glu in the ante-
rior cingulate cortex (ACC) [8] can predict better response, but 
other MRS studies showed no predictive potential for antidepres-
sant response using Glu [9,10], GABA [9–11], or Glx (Gln/Glu) [12], 
adding to the lack of consensus on biomarkers of MDD treatment. 
These prior inconsistent findings using single imaging modalities 
with fewer functional features and conventional statistical models 
have motivated the use of machine learning (ML) with multimodal 
neuroimaging (both PET and MRS measures) for better prediction 
accuracy [13].

The purpose of this study was to identify biomarkers to pre-
dict remission (absence of depression) after eight weeks of treat-
ment using pretreatment neuroimaging measures from i) PET and 
ii) MRS with a widely popular (due to superior performance) su-
pervised, gradient tree boosting ensemble algorithm, eXtreme Gra-
dient Boosting (XGBoost), which is a fast, scalable, and explainable 
artificial intelligence (AI) classifier with strong regularization [14]. 
XGBoost allows the adjustment of multiple hyperparameters to 
avoid overfitting and automatically ranks the most predictive fea-
tures that can be used as biomarkers for remission. This article 
will have the following contribution regarding predictive biomark-
ers for antidepressant treatment.

• This study provides a novel instance of the development 
of a comprehensive machine learning model by integrating 
pretreatment brain functional measures from simultaneous 
PET/MRS in one framework.

• The pretreatment simultaneous PET/MRS used in the study 
takes around 60 minutes and has the potential to prevent 
weeks of failed treatment trials.

• Applying predictive measures from neuroimaging can reduce 
delay to effective treatment, patient suffering and economic 
burden, and enhance long-term functional outcomes.

• The findings may assist clinicians with treatment selection and 
shed light on the neurobiology of remission.

2. Material and methods

2.1. Study cohort

This study involved the analysis of simultaneously acquired 
PET/MRS neuroimaging data from a randomized, placebo-con-
trolled, double-blind, single-site SSRI (Escitalopram) trial on 60 
participants with MDD before initiating treatment. The study de-
sign and rationale for the data set have been previously described 
[6,10]. 43 regional measures of metabolic rate of glucose (MRGlu, 
mg/(min*100 mL)) from FDG-PET across multiple brain regions 
[6], and concentrations (mM) of Glx (Glu+Gln, a composite peak 
formed by Glu and Gln), GABA and the ratio of Glx to GABA 
(Glx/GABA)) in the ACC from MRS [10] were quantified as de-
scribed in prior publications. After eight weeks of treatment, those 
with ≤ 7 on the 17-item Hamilton Depression Rating Scale were 
designated a priori as remitters (free of depression).

2.2. Machine learning analysis

The ML model development with hyperparameters is illustrated 
in Fig. 1. The data partition was performed by random split-
ting into 67% train and cross-validation (n = 40), and 33% test 
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(n = 20) sets, stratified by outcome (remitters vs. non-remitters) 
and treatment assignment (SSRI vs. placebo), to ensure compara-
ble distribution in each data set. There is no established power 
calculation for XGBoost, so the conventional ML practice of eval-
uating the fitted model on validation set was used. The hyper-
parameter, scale_pos_weight [sum(negative instances)/sum(positive 
instances)] = (non-remitters/remitters) from the train set assigned 
greater weight to prediction of remitters. OneClassSVM identified 
and removed outliers from the train set. Synthetic Minority Over-
sampling Technique (SMOTE) oversampled the remitters class [15].

The hyperparameters for subsampling, number of trees, and 
depth of tree were optimized using GridSearchCV with 3 repeti-
tions of stratified 10-fold cross-validation (preferred for depression 
research [16,17]). The 50 input features including the 46 imaging 
(43 PET and 3 MRS) measures, and information on age, sex, hand-
edness, and treatment assignment were entered into XGBoost for 
training with optimized hyperparameters to predict remitters vs. 
non-remitters. The model performance was evaluated on the test 
data using confusion matrix (Fig. 2). Statistical and machine learn-
ing analyses were performed using STATA/SE 13.0 (StataCorp LLC, 
College Station, TX) and Python 3.9.0 (Python Software Foundation, 
Beaverton, OR).

3. Results

3.1. Study cohort

The study consisted of 60 participants with an age range of 
18 to 64 years (mean ± standard deviation: 30 ± 14 years). 37 
(62%) were females, 30 (50%) were placed on SSRI and 51 (85%) 
were right-handed. After eight weeks of treatment, 22 participants 
remitted (37% remitters) and 38 participants did not (63% non-
remitters). There was no significant difference between the non-
remitters and remitters groups in the study sample in terms of 
age, sex, handedness, or treatment assignment.

3.2. Machine learning analysis

In the training set (n = 40), there were 14 remitters (35%) with 
5 on SSRI and 9 on placebo, and 26 (65%) non-remitters with 15 
on SSRI and 11 on placebo (scale_pos_weight = 1.86). The most 
predictive neuroimaging features based on “gain” (according to 
their contribution to the fitted model) are shown in Fig. 2. The 
cross-validated training and testing Receiver Operating Character-
istic (ROC) Area under the Curves are shown in Fig. 3.

Supplemental Table 1 and Table 1 below show the performance 
of the fitted model on the unseen test data (n = 20) consisting of 
8 remitters (40%) with 3 on SSRI and 5 on placebo, and 12 (60%) 
non-remitters with 7 on SSRI and 5 on placebo.

4. Discussion

4.1. Novelty

This study was the first effort to build a comprehensive pre-
dictive model using simultaneous PET/MRS data from randomized 
clinical trial for prediction of remission. This was also the first 
time a gradient boosting decision-tree-based algorithm was used 
for this purpose. In this novel architecture, the XGBoost hyperpa-
rameters were utilized following oversampling and outlier removal, 
which resulted in the current model’s weighted accuracy (77%) 
comparable to previous studies on the prediction of antidepressant 
treatment outcome with much larger sample size [17–20].
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Fig. 1. XGBoost model development and evaluation.
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Table 1
The performance metrics of the fitted model on test data.

Performance 
Metrics

Recall/Sensitivity/
True Positive Rate

False Negative 
Rate

Specificity/True 
Negative Rate

False Positive 
Rate

Weighted 
Accuracy

Precision/Positive 
Predictive Value

Negative 
Predictive 
Value

f1-Score Sample 
Size

Overall 62% 38% 92% 8% 77% 83% 79% 0.71 20

Stratified by Treatment Assignment (SSRI vs. Placebo)
SSRI 67% 33% 86% 14% 76% 67% 86% 0.67 10
Placebo 60% 40% 100% 0% 80% 100% 71% 0.75 10

Stratified by Sex (Female vs. Male)
Female 50% 50% 100% 0% 75% 100% 75% 0.67 10
Male 75% 25% 83% 17% 79% 75% 83% 0.75 10
Fig. 2. The most predictive imaging features from the XGBoost model. The fea-
tures are as follows: metabolism estimated by the metabolic rate of glucose (MRGlu, 
mg/(min*100 mL)) of left hippocampus, left entorhinal cortex, left insula, left thala-
mus and GABA (γ -aminobutyric acid) concentration of anterior cingulate cortex. F 
score: relative contribution of the feature to the prediction model.

Fig. 3. XGBoost receiver operating characteristic area under the curve.

4.2. Generalizability

The splitting in the current study ensured an adequate test set 
(as opposed to the alternative practice of 80/20 or 90/10 train/test 
split) to protect against performance misestimation in MDD re-
search [21]. This model’s generalizability is further strengthened 
through Stratified Cross Validation which is particularly useful for 
analyzing small data sets with unbalanced classes, as seen in our 
data set with the remitters and non-remitters class. This technique 
allows similar proportion of different classes in each fold to ensure 
all strata of the data is well represented.
4

4.3. Regularization

Instead of feature reduction, the current model optimized regu-
larization hyperparameters that ensures higher accuracy and better 
uncertainty assessment [22]. These XGBoost regularization hyper-
parameters, a.k.a. penalty terms alpha (L1, LASSO Regression) and 
lambda (L2, Ridge Regression), shrink the coefficients of less rel-
evant features toward 0 [23]. Using this technique, this model 
achieved accuracy higher than a previous model with 59% accuracy 
that used feature reduction to select 25 most predictive variables 
for remission after 12 weeks of SSRI treatment from 164 patient-
reportable variables [18]. Including more features also protects the 
predictive model performance from being affected by influential 
data points [19].

4.4. Performance

The true positive rate and true negative rate for classification in 
the held-out test data are reasonably high compared to the negli-
gible values of false positive rate and false negative rate, attesting 
the acceptable performance of the model. At least 100 number 
of trees were used following convention when searching for the 
optimal number of trees, however the Receiver Operating Charac-
teristic Area Under the Curve indicates that having a lower number 
of trees (∼ 70) might have given slightly better performance.

4.5. Limitations

To address limitations related to small sample size in neu-
roimaging research, two most common data augmentation tech-
niques for image classification including generative adversarial net-
works and unity game engine can be explored in future. However, 
this will require finding the optimal data augmentation strategy 
and developing evaluation systems to ensure quality of augmented 
data sets, while accounting for the computational cost for slower 
convergence.

4.6. Potential biomarkers

Even though there is a scarcity of predictive analytics using 
biomarkers with machine learning in neuropsychiatry, the insights 
from successful machine learning applications in neurological dis-
orders such as stroke may be useful, considering the bidirectional-
ity of stroke and depression [24]. The current model has been com-
pared to predictive analytics using biomarkers from other modali-
ties in Table 2. One such potential biomarker could be electromyo-
graphy (EMG), since motor activity can be lower in depression 
[25–29], and increase with depression improvement [25,30,31]. 
The tree-based algorithm, random forest with real-time signals 
from thighs and calves of 287 participants has shown predictive 
accuracy > 90% for stroke [32]. Furthermore, electroencephalogra-
phy (EEG) has been used for predicting stroke with Classification 
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Table 2
A comparative table on the advantages and disadvantages of the proposed model.

Study Advantages Disadvantages

Hussain et al., 2020 [35] Cost-effective for using EMG to address motor activity changes 
with antidepressant response

Accuracy lower than the current study using neural network 
model that requires relatively large sample

Yu et al., 2022 [32] 90% prediction accuracy with random forest Lack of insight from neurobiology if only using EMG signals, but 
useful for multimodal analysis

Hussain et al., 2020 [33] Portable EEG device for data collection, comparison of different 
algorithms

Removal of features before training the algorithm may lead to 
loss of information

Hussain et al., 2021 [34] Wireless EEG devices used for data collection Expertise will be required for EEG data interpretation and 
tree-based algorithms showed 70% accuracy

, 
and Regression Trees (C&RT) algorithms with 89% accuracy [33]. 
With tree-based models such as C5.0 and random forest, EEG data 
has shown only around 70% accuracy for predicting stroke [34]. 
Pretreatment EEG measures have been useful for predicting an-
tidepressant efficacy with > 87% accuracy using a mixture of factor 
analysis (MFA) classifier [1]. However, the biosignals received from 
EEG electrodes placed on the surface of the brain are less precise 
for locating the source of the signal as compared to PET/MRS used 
in the study [2]. Nonetheless, adding these cost-effective modali-
ties to molecular neuroimaging may help develop a more compre-
hensive predictive model with improved sensitivity for predicting 
antidepressant response.

5. Conclusions

To our knowledge, this was the first effort to develop a gradi-
ent tree boosting classifier by integrating pretreatment multimodal 
molecular neuroimaging with easily interpretable brain functional 
measures in one framework, with accuracy comparable to previous 
predictive models. This study provides information on effectively 
addressing common issues related to neuroimaging analysis, such 
as small sample size, high dimensionality, and class imbalance. 
More importantly, the pretreatment neuroimaging takes around 60 
minutes and has the potential to prevent weeks of failed treatment 
trials.
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