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Abstract

Graphics Interchange Format (GIF) is a highly portable
graphics format that is ubiquitous on the Internet. De-
spite their small sizes, GIF images often contain undesir-
able visual artifacts such as flat color regions, false con-
tours, color shift, and dotted patterns. In this paper, we
propose GIF2Video, the first learning-based method for en-
hancing the visual quality of GIFs in the wild. We focus
on the challenging task of GIF restoration by recovering
information lost in the three steps of GIF creation: frame
sampling, color quantization, and color dithering. We first
propose a novel CNN architecture for color dequantization.
It is built upon a compositional architecture for multi-step
color correction, with a comprehensive loss function de-
signed to handle large quantization errors. We then adapt
the SuperSlomo network for temporal interpolation of GIF
frames. We introduce two large datasets, namely GIF-Faces
and GIF-Moments, for both training and evaluation. Ex-
perimental results show that our method can significantly
improve the visual quality of GIFs, and outperforms direct
baseline and state-of-the-art approaches.

1. Introduction

GIFs [1] are everywhere, being created and consumed
by millions of Internet users every day on the Internet. The
widespread of GIFs can be attributed to its high portability
and small file sizes. However, due to heavy quantization
in the creation process, GIFs often have much worse visual
quality than their original source videos. Creating an ani-
mated GIF from a video involves three major steps: frame
sampling, color quantization, and optional color dithering.
Frame sampling introduces jerky motion, while color quan-
tization and color dithering create flat color regions, false
contours, color shift, and dotted patterns, as shown in Fig. 1.

In this paper, we propose GIF2Video, the first learning-
based method for enhancing the visual quality of GIFs. Our
algorithm consists of two components. First, it performs
color dequantization for each frame of the animated gif
sequence, removing the artifacts introduced by both color
quantization and color dithering. Second, it increases the
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Figure 1. Color quantization and color dithering. Two major
steps in the creation of a GIF image. These are lossy compression
processes that result in undesirable visual artifacts. Our approach
is able to remove these artifacts and produce a much more natural
image.

temporal resolution of the image sequence by using a mod-
ified SuperSlomo [20] network for temporal interpolation.

The main effort of this work is to develop a method for
color dequantization, i.e., removing the visual artifacts in-
troduced by heavy color quantization. Color quantization is
a lossy compression process that remaps original pixel col-
ors to a limited set of entries in a small color palette. This
process introduces quantization artifacts, similar to those
observed when the bit depth of an image is reduced. For
example, when the image bit depth is reduced from 48-bit
to 24-bit, the size of the color palette shrinks from 2.8×1014

colors to 1.7× 107 colors, leading to a small amount of ar-
tifacts. The color quantization process for GIF, however,
is far more aggressive with a typical palette of 256 dis-
tinct colors or less. Our task is to perform dequantization
from a tiny color palette (e.g., 256 or 32 colors), and it is
much more challenging than traditional bit depth enhance-
ment [15, 25, 38].

Of course, recovering all original pixel colors from the
quantized image is nearly impossible, thus our goal is to
render a plausible version of what the original image might
look like. The idea is to collect training data and train a
ConvNet [16, 23, 29, 34, 44] to map a quantized image to
its original version. It is however difficult to obtain a good
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dequantization network for a wide range of GIF images.
To this end, we propose two novel techniques to improve
the performance of the dequantization network. Firstly,
we pose dequantization as an optimization problem, and
we propose Compositional Color Dequantization Network
(CCDNet), a novel network architecture for iterative color
dequantization. Similar to the iterative Lucas-Kanade algo-
rithm [28], this iterative procedure alleviates the problems
associated with severe color quantization. Secondly, during
training, we consider reconstruction loss and generative ad-
versarial loss [10, 19, 32] on both pixel colors and image
gradients. This turns out to be far more effective than a loss
function defined on the color values only.

Another contribution of the paper is the creation of two
large datasets: GIF-Faces and GIF-Moments. Both datasets
contain animated GIFs and their corresponding high-quality
videos. GIF-Faces is face-centric whereas GIF-Moments
is more generic and diverse. Experiments on these two
datasets demonstrate that our method can significantly en-
hance the visual quality of GIFs and reduce all types of ar-
tifacts. Comparatively, Our method outperforms its direct
baselines as well as existing methods such as False Contour
Detection & Removal [15] and Pix2Pix [19].

2. Related Work

False Contour Detection and Removal. Smooth areas of
images and video frames should not contain color edges,
but false contours are often visible in those areas after color
bit-depth reduction or video codec encoding. Several false
contour detection and decontouring methods [2, 5, 7, 15, 21,
24, 42] have been proposed to address this problem. Among
them, False Contour Detection and Removal (FCDR) [15]
is the most recent state-of-the-art approach. It first locates
the precise positions of the false contours and then applies
dedicated operations to suppress them. However, the color
quantization artifacts in GIFs are far more severe, and GIF
color dequantization requires more than removing minor
false contours produced by bit-depth reduction.

Video Interpolation. Classical video interpolation meth-
ods rely on cross-frame motion estimation and occlusion
reasoning [3, 4, 14, 18]. However, motion boundaries and
severe occlusions are still challenging for existing optical
flow estimation methods [6, 9]. Moreover, the flow com-
putation, occlusion reasoning, and frame interpolation are
separated steps that are not properly coupled. Drawing in-
spiration from the success of deep learning in high-level vi-
sion tasks [12, 22, 36], many deep models have been pro-
posed for single-frame interpolation [26, 27, 30, 31] and
multi-frame interpolation [20]. SuperSlomo [20] is a re-
cently proposed state-of-the-art method for variable-length
multi-frame interpolation approach. We adapt this method
for GIF frame interpolation to enhance the temporal resolu-

tion of the input GIFs.

3. GIF Generation and Artifacts
The three main steps of creating a GIF from a video are:

(1) frame sampling, (2) color quantization, and (3) color
dithering. Frame sampling reduces the file size of the ob-
tained GIF, but it also lowers the temporal resolution of the
video content. In this section, we will provide more details
about the color quantization and color dithering processes
and the resulting visual artifacts as seen in Figure 1.

3.1. GIF Color Quantization

The GIF color quantization process takes an input im-
age I ∈ RH×W×3 and a color palette C ∈ RN×3 of N
distinct colors, and produces a color-quantized GIF image
G. The quantization is computed for each pixel, thus G has
the same width and height as the input image. Gi,j at pixel
(i, j) is simply set to the color in the palette C closest to
the input color Ii,j , i.e., Gi,j = argminc ∈ C

∥∥Ii,j − c∥∥2

2
.

The color palette C could be optimized with a clustering al-
gorithm to minimize the total quantization error‖I −G‖22.
Different clustering algorithms are used in practice, but Me-
dian Cut [13] is the most popular one due to its computa-
tional efficiency.

Most of the visual artifacts in GIFs are produced by the
color quantization process with a tiny color palette (N =
256, 32, ...). As illustrated in Figure 1, the three most no-
ticeable types of artifacts are (1) flat regions, (2) false con-
tours, and (3) color shift. We notice a GIF image has a lot
of connected components in which the color values are the
same, which will be referred to as “flat regions”. Flat re-
gions are created because neighboring pixels with similar
colors are quantized into the same color bin in the palette.
False contours also emerge at the boundaries between flat
regions with close color values. This is because the con-
tinuity of the color space has been broken and the color
change cannot be gradual. We also notice the color shift
between the input image and the GIF is larger for certain
small regions such as the lips of the baby in Figure 1. This
is because the color palette does not spend budget on these
small regions even though they have unique, distinct colors.

3.2. GIF Color Dithering

Color quantization with a small color palette yields sub-
stantial quantization error and artifacts. Color dithering is
a technique that can be used to hide quantization error and
alleviate large-scale visual patterns such as false contours in
GIFs. The most popular color dithering approach is Floyd-
Steinberg dithering [8]. It diffuses the quantization error
from every pixel to its neighboring pixels in a feedback
process. The dithered GIF has the same exact small color
palette. However, it appears to have more colors. The idea



is to use a neighborhood of mixed colors to visually approx-
imate a color that is not in the color palette.

Color dithering produces its own visual artifacts, which
are noise-like dotted patterns. These dotted patterns are
apparent when one pays attention to local regions. This
type of artifact is somewhat easier to remove, because the
dithered GIFs preserve more color information with the
help of neighboring pixels using the error-diffusion algo-
rithm than the non-dithered GIFs. It is worth noting that,
even with color dithering, GIFs still contain flat regions,
false contours, and shifted colors.

4. Our Approach
Our method converts a sequence of GIF frames into a

video that has a substantially higher visual quality. There
are two main steps: color dequantization and frame interpo-
lation. For color dequantization, we develop a new compo-
sitional ConvNet, inspired by the iterative optimization pro-
cedure of the Lucas-Kanade algorithm [28]. This network
is trained by combining reconstruction loss and generative
adversarial loss on both the color values and the image gra-
dient vectors. After performing color dequantization, we
apply an improved video frame interpolation method to in-
crease the temporal resolution of the output video.

4.1. Color Dequantization

Let G = fC(Î) denote the color quantization function,
where G and Î are the GIF image and the original input im-
age respectively, and C is the color palette used for quantiza-
tion. The goal of color dequantization is to recover the orig-
inal image given the GIF image G and the color palette C,
i.e., I = f−1

C (G). However, the quantization function fC
is a many-to-one mapping, so color dequantization is an ill-
posed problem. Our proposed approach embeds the quan-
tization function fC itself into the compositional network,
which provides valuable information to guide the learning
and inference of the inverse function.

4.1.1 Compositional Architecture

Given the color quantized GIF imageG and the color palette
C, we seek image I that is close to the ground truth image
Î , and at the same time satisfies the color quantization con-
straint fC(I) = G. This can be formulated as an optimiza-
tion problem, minimizing the reconstruction error between
I and Î as well as between fC(I) and G = fC(Î), i.e.,

min
I

∥∥∥I − Î∥∥∥2

2
+ λ

∥∥fC(I)−G
∥∥2

2
. (1)

The first loss term is the reconstruction error between the
recovered image and the ground truth image, which can be
directly computed based on the output of the neural network
and the target ground truth image. However, the second
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Figure 2. Architecture of the proposed CCDNet. Given the cur-
rent image estimation It, we first compute its color quantified im-
ageGt using the same color palette of input GIFG. A UNet mod-
ule then takes (It, G,Gt, G−Gt) as input and outputs ∆I , which
will be added to the current image estimation. This process can be
iteratively applied during training and test time.

loss term
∥∥fC(I)−G

∥∥2

2
cannot be directly used as a proper

loss for I because the derivative of the quantization function
with respect to the input image, ∂fC(I)

∂I , is 0 almost every-
where. This is because the quantization process uses a tiny
color palette.

We propose to use Lucas-Kanade to iteratively optimize
for the second loss term. In each iteration, we compute an
update for the recovered image to further minimize the loss:

min
∆I

∥∥fC(I + ∆I)−G
∥∥2

2
, (2)

where ∆I is the update to the current estimation of the
ground truth image I . The Lucas-Kanade algorithm as-
sumes fC(I + ∆I) is a linear function of ∆I for small ∆I ,
and it can be well approximated by the first order Taylor se-
ries expansion, i.e., fC(I+∆I) ≈ fC(I)+ ∂fC(I)

∂I ∆I . Thus,
solving Equation (2) can be approximated by solving:

min
∆I

∥∥∥∥fC(I) +
∂fC(I)

∂I
∆I −G

∥∥∥∥2

2

. (3)

The above is a quadratic program with respect to ∆I , and
there is a closed-form solution for the optimal update:

∆I =

(
∂fC(I)

∂I

)+

(G− fC(I)), (4)

where + denotes the pseudo-inverse operator. The Lucas-
Kanade algorithm iterates between computing the above up-
date value and updating the parameters: I = I + ∆I .

Equation (4) suggests the update parameter ∆I is a sim-
ple linear function of the difference between the two GIF
images. In practice, however, the true relationship between
the quantization function and the input image is seldom lin-
ear. In this case, the linear approximation given by Taylor
series expansion is not tight, and a simple linear model to
compute the optimal update might not have enough capac-
ity to fit the data. Instead, we propose to replace the linear
function by a deep ConvNet. Specifically, we propose to use



the U-Net architecture [34] to estimate the optimal update
∆I . Equation 4 becomes:

∆I = g(I,G, fC(I), G− fC(I)), (5)

where g denotes the deep ConvNet that we need to learn.
Following the iterative optimization scheme of the Lucas-
Kanade algorithm, we alternate between computing the up-
date direction and updating the de-quantized image:

∆I = g(It, G,Gt, G−Gt),

It+1 ← It + ∆I
(6)

where Gt = fC(I
t). This leads to the proposed Com-

positional Color Dequantization Network (CCDNet). The
compositional architecture of the CCDNet is illustrated in
Figure 2. Let It be the current estimation of the ground
truth image, we first apply fC (the same color quantization
function used to generate G) to It to obtain Gt. Ideally Gt

should be identical to G. However if there is difference be-
tween the two quantified image, the difference G−Gt will
provide valuable information for estimating ∆I as shown in
Equation 4. Therefore, we concatenate (It, G,Gt, G−Gt)
and apply network g again to compute ∆I , which is subse-
quently used to update the estimated image I . This process
can be iteratively applied for multiple steps.

The CCDNet can be trained by unfolding the architec-
ture multiple times, as illustrated in Figure 2. Suppose a
CCDNet is unfolded by k times, we refer to the correspond-
ing model as CCDNet-k. Note that the same U-Net module
is shared across all unfolding steps except for the first step.
Reusing the same U-Net module dramatically reduces the
number of model parameters compared to an alternative ap-
proach where the U-Net parameters at different stages are
not shared. We allow the U-Net at the first unfolding step
to have separate parameters from the rest because it expects
different inputs (It and Gt are undefined for t = 0).

For a color-dithered GIF, the exact quantization func-
tion fC is unknown, due to the missing information about
the error diffusion step. Different GIF creation software
programs use different error diffusion algorithms, and in-
formation about the algorithm is not stored in a GIF file.
For color-dithered GIFs, we propose not to compute Gt

and G − Gt in CCDNet. Fortunately, color-dithered and
non-dithered GIFs have different local patterns, and they
can easily recognized by a simple classifier. We propose to
train two separate CCDNets for the color-dithered and non-
dithered GIFs, and use a trained classifier to route an input
GIF to the corresponding network.

4.1.2 Color Dequantization Loss

Let Gi be the input GIF image to the CCDNet and Ii the
corresponding output. We want to train a CCDNet so that
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Figure 3. Color Dequantization Loss. The proposed loss in Equa-
tion 7 measures the differences between the estimated image I and
the groundtruth image Î based on both the color values and the
gradient values. We can also train CCDNet using the conditional
GAN framework to encourage even more realistic image outputs.

Ii is as close to the original image Îi as much as possible.
We propose to use the loss function described in Equation
(7) to measure the discrepancy between these two images.

Lcolor
recon(Ii, Îi) + Lgrad

recon(Ii, Îi) + λadvLboth
adv (Ii, Îi). (7)

This loss function measures the differences between Ii and
Îi based on both the color values and the gradient values. To
get sharper image estimation, we use L1 norm to compute
the reconstruction loss Lcolor

recon and Lgrad
recon:

Lcolor
recon =

∥∥∥Ii − Îi∥∥∥
1
, and Lgrad

recon =
∥∥∥∇Ii −∇Îi∥∥∥

1
. (8)

We can also optimize the CCDNet using the conditional
GAN framework, to encourage the outputs of the network to
have the same distribution as the original ground truth im-
ages. This can be done by adding an adversarial loss func-
tion defined on both the color and gradient values:

Lboth
adv = logD(Gi, Îi,∇Îi) + log(1−D(Gi, Ii,∇Ii)),

whereD is the discriminator function for distinguishing be-
tween the set of ground truth images {Îi} and the set of es-
timated images {Ii}. λadv is set to 0.01 or 0, depending on
whether the adversarial loss is enabled. Experiments show
it is critical to include the losses computed on the image gra-
dient values. Compared to the original images, GIF images
have drastically different gradient signatures (due to flat re-
gions, false contours, dotted patterns), so it is much more
effective to use additional losses on the image gradients.

4.2. Temporal Interpolation

We adapt the recently proposed SuperSlomo [20] net-
work to reverse the process of frame sampling and increase
the temporal resolution of GIFs. SuperSlomo is designed
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Figure 4. Overview of the GIF2Video pipeline. Network A per-
forms color dequantization on two consecutive input GIF frames
G0 and G1; Network B estimates the bidirectional flow maps be-
tween them; Network C receives the outputs from A and B, and
produces the interpolated frames It’s for t ∈ (0, 1). We use the
proposed CCDNet2 as Network A and the modified SuperSlomo
as Network B and C.

for variable-length multiple-frame interpolation. Given two
consecutive frames at time steps t = 0 and t = 1, Super-
Slomo in one step can interpolate frames anywhere between
t = 0 and t = 1. This is more efficient than methods where
only the middle frame t = 0.5 is produced. More details
about SuperSlomo can be found in [20].

We implement SuperSlomo and adapt it to our task. Fig-
ure 4 depicts the entire GIF2Video pipeline, with the adap-
tation is shown in (B) and (C). This algorithm has three ma-
jor components. Network A performs color dequantization
and outputs the estimated ground truth images I0 and I1.
Network B estimates the bidirectional flow maps F0→1 and
F1→0 between the two input frames. Network C receives
the outputs of network A and B, and it produced interpo-
lated frames It’s for t ∈ (0, 1). We use the proposed CCD-
Net as network A, while network B and C are both U-Net
modules from [20]. Note that network B estimates the op-
tical flow directly from the input GIF images, instead of us-
ing the outputs of network A. This allows networks A and
B to run in parallel. Experiments show this parallel model
performs similarly to the alternative sequential model.

5. Datasets

With methods presented in Section 3, we can convert any
video frame to a GIF image. This allows us to train the
CCDNet with a large amount of training image pairs. As
a byproduct, we introduce two GIF-Video datasets: GIF-
Faces and GIF-Moments. The former is designed to be
face-centric, while the latter is more generic and built on
real GIFs shared by Internet users. Figure 5 shows some
GIF frames (non-dithered) of the two datasets. Images
in the first row are from the GIF-Faces dataset, and they
also cover parts of the upper-body with diverse background
scenes. The second row shows images from the GIF-
Moments dataset. They contain diverse content, covering
a wide range of scenes including sports, movie, and anima-

Figure 5. Example GIF frames from GIF-Faces and GIF-
Moments. First row: GIF-Faces (face-centric); Second row: GIF-
Moments (generic GIFs shared by Internet users).

tion. Details about these two datasets are provided below.

5.1. GIF-Faces

A large portion of online GIFs are face-centric, and they
contain noticeable artifacts on face regions such as cheeks
and lips. Given the popularity of face-centric GIFs, there
are strong motivations for optimizing the network on faces.
The GIF-Faces dataset was designed for such a purpose.

We first extracted a large number of face-centric video
clips from the FaceForensics dataset [35]. Most of the faces
in FaceForensics have near-frontal poses and neutral ex-
pression changes across frames. Given a video from Face-
Forensics, we first detected human faces on every frame,
then computed a minimal square region which covers all
the detected faces. We further expanded this square region
by a factor of 1.5 to increase the coverage of the scene.

A total of 987 high-quality face-centric video clips were
extracted from the FaceForensics dataset. The frames of
these videos were resized to have 256p×256p resolution
and the temporal resolution was unaltered. We used 883
videos for training and 104 for evaluation. There are around
500 frames on average in each video. The corresponding
GIF frames (both dithered and non-dithered) were com-
puted from these face-centric videos with the color palette
size set to 32. We use 32 as the default color palette size, to
make the color dequantization task as challenging as pos-
sible, yet not unreasonable. To deal with GIFs of differ-
ent palette sizes, we can simply read their palette sizes and
route them to appropriate models trained on similar levels
of color quantization.

5.2. GIF-Moments

We also curated GIF-Moments, a dataset of generic GIFs
shared by Internet users. Specifically, Gygli et al. [11]
crawled popular GIF-sharing websites and collected 100K
GIFs and their corresponding original videos. For each
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GIF clip, their dataset provides the corresponding YouTube
video ID and the start frame and end frame. These video
moments are generic and diverse, covering a wide range of
video categories and topics such as sports, movie, and ani-
mation. We first downloaded all the candidate videos from
YouTube in their highest resolution, and temporally cropped
the videos using the annotated start and end frames. We
only kept videos of high visual quality with sufficient spa-
tial and temporal resolution: the width and height must be
at least 360p, the temporal resolution is no less than 20fps,
and the total number of frames has to be more than 40.

In the end, we had a collection of 71,575 video clips,
with a total of 12 million frames. We use 85%, 5%, and
10% of the videos for training, validation, and evaluation
respectively. Similar to GIF-Faces, we computed the corre-
sponding GIF frames (both dithered and non-dithered) with
the color palette size set to 32.

6. Experiments
In our experiments, PSNR (Peak Signal to Noise Ra-

tio) and SSIM (Structural Similarity Index) are used as
evaluation metrics. PSNR is defined via the root mean
squared error (RMSE) between the estimated images and
the ground truth images. More specifically, PSNR =
20 log10

MAX
RMSE . Roughly speaking, 1dB, 2dB, and 3dB

improvement on the PSNR are equivalent to 10%, 20%, and
30% RMSE reduction in the image color space respectively.
SSIM is a perceptual metric that quantifies image quality.
We first compute PSNR and SSIM for each frame and aver-
age them within each video, and finally average them across
all videos in the test set.

6.1. GIF Color Dequantization

6.1.1 Dichotomy of GIF Color Dithering Mode

The color dithering step is optional in the GIF generation
process. It is up to the creation tools or the end users to
decide whether or not to perform color dithering after color

quantization. We observe that color-dithered GIFs are more
popular than the non-dithered ones on the Internet. Color-
dithering is preferred because it can reduce the noticeability
of large visual artifacts such as false contours in GIFs. How-
ever, non-dithered GIFs are also widely shared. They also
exhibit more artifacts and are more challenging for the task
of GIF color dequantization.

Should we learn a single CCDNet or two separate CCD-
Nets for the color-dithered and the non-dithered GIFs? The
latter approach is better, as suggested by Figure 6. This fig-
ure shows the results of an experiment on the GIF-Faces
dataset, where we train a CCDNet1 model with λadv =
0.01. From Figure 6, we observe that learning a single
CCDNet with both dithered and non-dithered GIFs used as
training data reduces the GIF color dequantization perfor-
mance, measured by PSNR and SSIM. We also observe that
it is easier to restore color values for the dithered GIFs. The
reason is that dithered GIFs preserve more color informa-
tion than non-dithered ones with the help of neighboring
pixels using error-diffusion algorithms.

The benefits of having separate CCDNets for color-
dithered and non-dithered GIFs is clear. However, at test
time, the color-dithering mode of a GIF image is not stored
in the file. Fortunately, the color-dithered and non-dithered
GIFs exhibit very different local patterns especially on the
gradient space. We therefore can train a classifier to infer
whether an input GIF is dithered or not. We trained a simple
classifier with only five Conv layers on the GIF-Faces train-
ing set. It achieves 100% and 98.6% accuracy on the GIF-
Faces and GIF-Moments test sets respectively. The model
is a CNN with layers: C(9, 64) → NL → C(64, 128) →
NL → C(128, 256) → NL → C(512, 1) → GAP .
C(m,n) represents a Conv layer withm input channels and
n output channels. NL stands for Non-Linearity, which
is one BatchNorm followed by one LeakyReLU (negative
slope: 0.2). GAP is short for Global Average Pooling. The
input is a GIF frame with its gradient maps.

6.1.2 Ablation Study on Networks & Losses

We perform extensive ablation study and quantitative eval-
uation on the GIF-Faces dataset. From these experiments,
we draw several conclusions below.

U-Net is an effective building block for CCDNet. Func-
tion g in Equation (6) denotes a deep neural network for
computing the iterative update. There are many candidate
network architectures that can be used for g. We experi-
ment with three models that have been successfully used
for other tasks that are similar to color dequantization: U-
Net [34], DRRN [37], and GLCIC [17]. The U-Net archi-
tecture allows multi-level information to shortcut across the
network and is widely used for the task of image segmen-
tation and image-to-image translation [19]. DRRN (Deep



# Method GIF-Faces
Non-dithered Dithered

1 DRRN-1 30.52/0.874 -
2 GLCIC-1 30.71/0.883 -
3 UNet-1 32.23/0.907 33.72/0.940

4 UNet-1 (no grad loss) 31.20/0.884 32.68/0.927
5 UNet-1 (no adv loss) 32.83/0.918 33.90/0.944

6 UNet-2 32.65/0.911 34.31/0.943
7 UNet-3 32.85/0.917 34.43/0.945

8 UNet-2 (no adv loss) 34.05/0.928 35.63/0.956
9 UNet-3 (no adv loss) 33.75/0.927 34.59/0.950

10 Pix2Pix [19] 31.41/0.895 32.80/0.925
11 FCDR [15] 31.51/0.878 -
12 Gaussian (σ = 0.5) 31.36/0.876 31.20/0.873
13 Gaussian (σ = 1.0) 29.26/0.797 29.75/0.815

14 GIFs (palette: 32) 30.99/0.868 28.21/0.746

Table 1. Quantitative Results of GIF Color Dequantization on
GIF-Faces. Row 1-9 are the results of CCDNet with different set-
tings. UNet-k stands for CCDNet-k with UNet as backbone. Row
10-13 are the results of several existing methods. The performance
is measured by PSNR and SSIM (higher is better).

Recursive Residual Network) is a state-of-the-art network
for single image super-resolution. It can substantially re-
duce the amount of model parameters by applying residual
learning in both global and local manners. GLCIC (Glob-
ally and Locally Consistent Image Completion) is proposed
for the task of image and video inpainting [41]. The mid-
layers of GLCIC are dilated Conv layers [43], allowing to
compute each output pixel with a much larger input area
without increasing the amount of model parameters.

The results are shown in Table 1 (Row 1-3) and Figure
7 (a). As can be observed, using U-Net as the basic mod-
ule for CCDNet is significantly better than using DRRN or
GLCIC. We believe that DRRN’s capability of recovering
colors from severely quantized GIFs is limited by its small
parameter size. And GLCIC is generally bad at predict-
ing image within regions of high-frequency textures (e.g.,
stripes on clothes, text on background).

It is critical to include the loss defined on the gradient
values. Row 3 of Table 1 shows the color dequantization
performance achieved by training CCDNet1 with all loss
terms, whereas Row 4 shows the performance when the loss
on the gradient values is excluded. More specifically, to
disable the loss of the gradient values, we discard the gra-
dient reconstruction loss Lgrad

recon and stop using ∇I as in-
put channels to the adversarial discriminatorD. Comparing
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Figure 7. Ablation study of CCDNet on GIF-Faces dataset. (a)
U-Net is a more effective building block for CCDNet than others.
(b) It is critical to include the loss defined on the gradient values,
and using adversarial loss yields more realistic images. (c, d) It is
beneficial to unfold CCDNet by multiple steps.

Sample GIF-Faces GIF-Moments

Rate GIF GIF2Video GIF GIF2Video

1/1 30.99/0.868 34.05/0.928 33.71/0.902 36.10/0.948
1/2 30.02/0.857 33.27/0.921 29.05/0.859 31.92/0.918
1/4 29.01/0.842 32.08/0.908 26.16/0.812 28.38/0.865
1/8 27.41/0.815 30.20/0.884 23.29/0.751 24.95/0.800

Table 2. Results of temporal GIF frame interpolation. The vi-
sual quality of created GIFs quickly deteriorates as the tempo-
ral downsampling factor increases from 1 to 8. The proposed
GIF2Video improves the PSNR of recovered videos by 3dB on
GIF-Faces dataset, that is equivalent to 30% root-mean-square-
error reduction on the pixel color values.

Row 3 and 4 (also see Figure7(b)), we observe a signifi-
cant quantitative performance drop after disabling the im-
age gradient-based losses. But more importantly, we find
that without the gradient-based losses, the network fails to
reduce the artifacts such as flat regions and false contours.
The reason can be seen from Figure 3: the difference be-
tween I and Î is more apparent in the gradient space than in
the original color space. Because the artifacts exhibited in
GIFs have drastically different gradient signatures from the
ground truth images. For example, the flat regions in GIFs
have zero image gradient while the dotted patterns in GIFs
exhibit noise-like gradient patterns.

Using adversarial loss yields more realistic images.
Comparing Row 3 and 5 of Table 1 and also considering
Figure7(b), we observe that after removing the adversar-
ial loss Lboth

adv , the quantitative performance measured by
PSNR/SSIM actually improves. This is not surprising, as
it is aligned with many previous studies using adversarial
learning. The adversarial loss is designed to make the out-
put images more realistic, which is sometimes not perfectly



GIF Pix2Pix CCDNet, no grad CCDNet, no adv CCDNet, all loss GT

Figure 8. Qualitative Results of GIF Color Dequantization on
GIF-Faces. Pix2Pix and CCDNet trained without image gradient-
based losses cannot remove quantization artifacts such as flat re-
gions and false contours very well. Training CCDNet with adver-
sarial loss yields more realistic and colorful images (see the color
of the skin and the lips). Best viewed on a digital device.

aligned with the goal of improving quantitative measures
such as PSNR or SSIM. Looking at qualitative results, we
find that the adversarial loss is indeed helpful to make the
output images more realistic. We also performed a small
scale user study involving five subjects. We displayed a pair
of images produced by the two CCDNet2 (with and without
Ladv) in randomized order. The subjects chose which is
more realistic to them. The three choices and the percent-
age being chosen are as follows. Use Ladv: 53%; No Ladv:
12%; Not Sure: 35%.

It is beneficial to unfold CCDNet by multiple steps and
embed the quantization process into the CCDNet. As
illustrated in Figure 2, the proposed CCDNet is a compo-
sitional architecture that can be unfolded by multiple steps.
Empirically, it is beneficial to do so, as can be seen from
Figure 7(c) and (d). We observe that with more unfold-
ing steps, the CCDNet can estimate the ground truth im-
age more accurately especially around the object bound-
aries. We also investigate if it is effective to embed the
GIF color quantization process into the CCDNet. In Equa-
tion 4, 5 and 6, we derive that the difference image between
the input GIF and the corresponding GIF of the current es-
timation, i.e., G − Gt = G − fC(I

t), provides valuable
information and guidance on how to update the current es-
timation. If we remove Gt and G−Gt from the input chan-
nels to the U-Net basic module, the color dequantization
performance of CCDNet2 will decrease significantly. For
CCDNet2 trained without Ladv , PSNR/SSIM drops from
34.05/0.956 to 33.40/0.923. For CCDNet2 trained with
Ladv , PSNR/SSIM drops from 32.65/0.911 to 32.48/0.904.

6.1.3 Comparison to Other Methods

Table 1 Row 10-13 report the color dequantization perfor-
mance of several other methods on GIF-Faces dataset. We
first consider applying Gaussian Smoothing with different
kernel sizes (Row 12, 13). As expected, the color dequan-
tization performance of this naive approach is really poor.
We then implement FCDR (False Contour Detection & Re-
moval [15]), a recently proposed state-of-the-art method for
image bit-depth superresolution. It can alleviate mild color
quantization artifacts introduced by image bit-depth reduc-
tion. However, the color quantization used in GIF genera-
tion is far more aggressive than that in image bit-depth re-
duction. FCDR cannot handle severe GIF artifacts, as listed
in Row 11. We also tested Pix2Pix [19], an adversarial
network designed for image-to-image translation tasks. It
performs similarly to our CCDNet1 trained without image
gradient-based losses.

6.2. Temporal GIF Frame Interpolation

Table 2 shows the performance of the proposed
GIF2Video algorithm on non-dithered GIF-Faces and GIF-
Moments datasets. The performance is measured by
PSNR/SSIM (higher is better). For this experiment, we use
CCDNet2 trained without the adversarial loss for color de-
quantization. As can be observed, the visual quality of cre-
ated GIFs quickly deteriorates as the temporal downsam-
pling factor increases from 1 to 8. For a large downsam-
pling factor, the visual quality of GIF-Moments is worse
than that of GIF-Faces. This is because the GIF-Moments
dataset contains more dynamic content and larger motions.
With the proposed GIF2Video algorithm, we are able to im-
prove the PSNR of recovered videos by 3dB on GIF-Faces
dataset, that is equivalent to 30% root-mean-square-error re-
duction in the image color space.

7. Conclusions

This paper presents GIF2Video, the first learning-based
method for enhancing the visual quality of GIFs in the wild.
The main tasks of GIF2Video are color dequantization and
frame interpolation. For the first task, we propose a novel
compositional network architecture CCDNet and a compre-
hensive loss for training it. For the second task, we adapt
SuperSlomo for variable-length multi-frame interpolation
to enhance the temporal resolution of input GIFs. Exper-
iments show our method can dramatically enhance the vi-
sual quality of input GIFs and significantly reduce quanti-
zation artifacts. We hope our method could inspire more
solutions to the task of reconstructing video from GIF, such
as based on the idea of viewing image sequences as a 3D
volume [39, 40], or applying recurrent neural networks to
enhance the inter-frame consistency [33].
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