

Stony Brook University

Contributions

- A state-of-the-art Hand Detector
- Two large scale annotated hand datasets
- An attention method for object detection

Goal

- To improve the hand detection performance of OpenPose and Mask-RCNN on unconstrained images with large variation in appearance of hands (close-up shots, occlusions, motion blur)
- OpenPose:

Mask-RCNN:

Ours:

Quantitative Comparison:

Method	AP
DPM (Girshik et al., CVPR 2015)	36.8%
ST-CNN (Jaderberg et al., NIPS 2015)	40.6%
RCNN (Girshik et al., CVPR 2014)	42.3%
Context + Skin (Mittal et al., BMVC 2011)	48.2%
RCNN + Skin (Roy et al., ICCV 2017)	49.5%
FasterRCNN (Ren et al., NIPS 2015)	55.7%
Rotation Network (Deng et al., TIP 2018)	58.1%
Hand Keypoint (Simon et al., CVPR 2017)	68.6%
Hand-CNN (proposed)	78.8 %

Contextual Attention for Hand Detection in the Wild

Supreeth Narasimhaswamy*, Zhengwei Wei*, Yang Wang, Justin Zhang, and Minh Hoai Department of Computer Science, Stony Brook University

Contextual Attention

We propose a method to incorporate contextual cues during the detection process. This is based on two types of non-local contextual pooling: (1) feature similarity (2) spatial relationships between semantically related entities.

Given a 3D feature map $\mathbf{X} \,\in\, \mathbb{R}^{h imes w imes m}$ our method computes a contextual feature map $\mathbf{Y} \in \mathbb{R}^{h imes w imes m}$ such that

similarity context

semantics context

The contextual attention module can be inserted in detection networks and the parameters of the attention module can be learned together with the other parameters of the detector end-to-end.

Orientation

- We extend Mask-RCNN to include an additional network branch to predict hand orientation
- Orientation branch shares weights with other branches, so it does not incur significant computational expenses
- **Orientation Loss:**

$$L_{ori}(\theta, \theta^*) = |arctan2(sin(\theta - \theta^*), cos(\theta - \theta^*))|$$

Total Loss:

$$L = L_{RPN} + L_{BRN} + L_{mask} + \lambda L_{ord}$$

Datasets

- TV-Hand:
 - Image frames extracted from video clips of ActionThread dataset, and contains 8.5K images with 9.5K hands.
- COCO-Hand:
 - Images from a subset of Microsoft COCO dataset, and has around 26K images with 45K hands.

Name	Scope	# images	
EgoHands	Google glasses	4,800	
Handseg	Color gloves	210,000	
NYUHands	Three subjects	6,736	
WorkingHands	Three subjects	7,905	Ma
ColorHandPose	Specific poses	43,986	S
HandNet	Ten subjects	212,928	
GTEA	Four subjects	663	
Oxford-Hand	Unconstrained	2686	
TV-Hand	Unconstrained	9498	
COCO-Hand-S	Unconstrained	4534	S
COCO-Hand	Unconstrained	26499	S

Quantitative Results

Benefits of Context:

Method	Oxford-Hand	l TV-Hand
MaskRCNN	69.9%	59.9%
Hand-CNN	73.0%	60.3%
Hand-CNN w/o semantic context	71.4%	59.4%
Hand-CNN w/o similarity context	70.8%	59.6%

Benefits of Data:

	Test Data	
Train Data	Oxford-Hand	TV-Hand
TV-Hand	62.5%	55.4%
TV-Hand + COCO-Hand-S	69.9%	59.9%
TV-Hand + COCO-Hand	76.7%	63.5%

Precision Recall, Orientation Performance:

	Predie	Prediction error in angle		
Test Data	$\leq 10^{\circ}$	$\leq 20^{\circ}$	$\leq 30^{\circ}$	
Oxford-Hand TV-Hand	41.26% 37.65%	64.49% 60.09%	75.97% 73.50%	

Qualitative Results

Ian.+Syn

Semia Semiauto

Failure Cases

Acknowledgements. This work was partially supported by the VinAI research and NSF IIS-1763981. The authors Code, would also like to thank Tomas Simon for his suggestion about the COCO dataset and Rakshit Gautam for his contribution to the data annotation process.

