Topnet: A Network-Aware top(1)

Antonis Theocharides, Demetres Antoniades, Michalis Polychronakis, Elias Athanasopoulos,

and Evangelos P. Markatos — Foundation for Research and Technology; Hellas, Greece!

ABSTRACT

System administrators regularly use the top utility for understanding the resource consumption of
the processes running on UNIX computers. Top provides an accurate and real-time display of the
computing and memory capacity of the system among the running processes, but it provides no
information about the network traffic sent and received by the processes running on the system.

Although we’ve seen a proliferation of network monitoring tools that help system ad-
ministrators understand the traffic flowing through their networks, most of these tools have been
designed for network deployment and can not easily, if at all, provide real-time attribution of
network resources to individual processes running on end hosts.

In this paper, we describe the design and implementation of Topnet, an extension of the top
UNIX utility that provides a process-centric approach to traffic monitoring. Topnet presents users
with an intuitive real-time attribution of network resources to individual processes. Our evaluation
suggests that Topnet through (i) the familiar user interface of top and (ii) a reasonable performance
overhead, provides an accurate way to attribute network traffic to individual processes, enabling
users to have a more comprehensive process-aware understanding of network resource con-

sumption in their systems.

Introduction

The UNIX top utility [34] is used daily by users
and system administrators for real time monitoring of
system and process information. Top provides a con-
tinuously updated breakdown of system resources
such as CPU and memory of the running processes, as
well as process-specific information such as the state,
priority, size, total CPU time, and so on. However, top
does not provide any information about how the net-
work resources of the system are utilized by the differ-
ent processes. Although there exist several system
utilities that display information about the network
configuration, connection state, or statistics per net-
work interface, currently there is no convenient way to
attribute the system’s network traffic to the individual
processes that send or receive it.

With the proliferation of network services and
systems, it is increasingly difficult for users to keep
track of which applications communicate through the
network, when this is happening, and how much traf-
fic each application sends and receives. For example,
besides the operating system, popular applications
such as browsers, media players, and productivity
suites, among many others, communicate with remote
servers for automatic updates. In many cases the user
is unaware of this activity. Similarly, the network
activity of peer-to-peer software like file sharing or
video conferencing applications is not always directly
related to the user’s actions and thus the exact network
behavior is unclear to the end user.

Consider, for example, a Voice-over-IP (VoIP)
application, such as Skype. Even when the user is not

1The authors are also with the University of Crete.

directly using the application, Skype may still con-
sume processor and network resources to relay other
users’ traffic and keep the overlay network well con-
nected. Thus, in the presence of such applications gen-
erating network traffic in the background, administra-
tors would like to be able (i) to understand when such
traffic is generated, and (ii) to pinpoint the processes
that are responsible for the generation of this traffic.

In this paper, we present the design and imple-
mentation of Topnet, an extension of the top UNIX
utility that introduces a process-centric approach to
network traffic monitoring. Topnet provides users with
a simple and intuitive real-time attribution of the sys-
tem’s incoming and outgoing network traffic to the
running processes in additional columns of the famil-
iar console output of top. By treating incoming and
outgoing traffic as additional process properties, the
user can instantly spot the running processes with cur-
rent network activity, and by sorting according to the
relevant column, identify which applications send or
receive most of the traffic.

Our work suggests that Topnet through (i) a
familiar top user interface and (ii) a reasonable perfor-
mance overhead, provides an accurate way to attribute
network traffic to individual processes, enabling users
to have a better understanding of the consumption of
resources in their systems.

The contributions of this paper are:

* We provide a process-centric approach to pro-
cessor, memory, and network resource monitor-
ing, that is implemented completely in user-
level without requiring any kernel modifica-
tions as previous approaches do.

22nd Large Installation System Administration Conference (LISA ’08) 145

Topnet: A Network-Aware top(1)

* We demonstrate the feasibility of our approach
by providing an open source implementation of
Topnet.

® We evaluate Topnet and show that it provides
high measurement accuracy at a reasonable
computational cost for most of the expected
operation range.

Related Work

In this section we present related efforts. We start
with exploring modern home networks and the arising
need for better administration, even by the end user
and then we proceed in more complex tasks like moni-
toring and classifying aggregated network traffic. We
finally, present visualization techniques for similar
applications to Topnet.

Home Networks

The evolution of home networks and the com-
plexity they inhabit lately has driven the community to
seek algorithms and technologies for a better admini-
stration of a host by the end user. Broadband technolo-
gies and their characteristics have been studied by
Dischinger, et al. [19]. According to this study, broad-
band technologies that appear often in home networks
experience high jitter rates, affecting the expected per-
formance.

Papagiannaki, et al. [42], has shown how small
configuration changes can affect the network perfor-
mance of hosts connected in a wireless media of a
home environment. In this context, it is vital for a user
to have a tool that will assist her in inspecting the net-
work health of a running host as per process network
utilization is concerned. Indeed, this need is profound;
lately there have been proposed standards [4] for per
application network statistics to be included in modern
operating systems. This effort will further assist the
development of applications that collect and present
per process network accounting information.

Network Monitoring Systems

Over the past few years, there has been an
increasing interest in passive network monitoring sys-
tems and tools. Indeed, several infrastructures are
available for deployment by system and network
administrators in order to monitor the traffic usage of
their networks by parsing either raw network packets,
SNMP data, or network flow data.

For example, MRTG [41] is a popular tool for
monitoring SNMP network devices and visualizing
network usage. FlowScan [43] and commercial sys-
tems including Cisco Network Analysis Module Soft-
ware [12] and IBM Aurora [25] present traffic usage
patterns using Netflow exported data, and classify
traffic using mainly the IANA port number list.2 Auto-
Focus [20] aims at identifying important network con-
sumption by clustering flows of similar or same inter-
est, i.e., a large number of small network flows by a

Znttp://www.iana.org/assignments/port-numbers

Theocharides, et al.

single web server that will not be positioned at the top
flows if considered one by one.

Although these systems are widely deployed,
they aim to provide a “bird’s eye view” of the net-
work traffic, informing system administrators of the
overall status of their network and alerting them of
major traffic events. On the contrary, Topnet focuses
on the traffic usage not of entire networks, but of indi-
vidual applications running on specified end host
computers, and thus present a functionality comple-
mentary to these systems.

We consider, though, atop [1] to be the tool most
like Topnet in terms of operation. atop provides a com-
plete set of process resource statistics (RAM, CPU,
storage, network, etc.). However, Topnet differentiates
from atop in two basic ways. First, atop needs kernel
modifications and thus has deployment complications,
whereas Topnet uses widely used libraries for packet
capturing in user-space, and second, Topnet is built
over a well known and trusted framework that is well
established in the community: the classic UNIX top
tool.

Network Packet Capturing Systems

To provide a better understanding of network
traffic, some systems enable administrators to capture
(and subsequently process) all traffic which passes
through a router (or computer). The popular libpcap
[37] packet monitoring library provides a portable
Application Programming Interface (API) for user-
level packet capture. The libpcap interface supports a
filtering mechanism based on the BSD Packet Filter
[36], which allows for selective packet capture based
on packet header fields. The Linux Socket Filter [27]
offers similar functionality with BPF, while xPF [28]
and FFPF [10] provide a richer programming environ-
ment for network monitoring at the packet filter level.
Iftop [47] is a libpcap-based application that reports the
bandwidth usage of a network interface by displaying
a breakdown of the network traffic according to the
active network flows.

To improve the functionality of monitoring sen-
sors, beyond the naive capturing of network packets,
FLAME [7] allows users to directly install custom
modules on the monitoring system, similarly in princi-
ple to Management-by-Delegation models [23]. Wind-
mill [35] is an extensible network probe environment
which allows loading of “experiments” on the probe
for analyzing protocol performance.

To provide intelligent packet capturing and so-
phisticated packet processing in a single system, in our
earlier work, we designed and implemented MAPI
[44, 46] an Application Programming Interface for
network monitoring. MAPI captures packets passing
through a monitoring link and provides mechanisms to
build custom applications for network monitoring.
Hughes in [24] presented qcap: a library for capturing
and decoding live traffic streams in network level. The

146 22nd Large Installation System Administration Conference (LISA ’08)

Theocharides, et al.

library provides the functionality for developing net-
work monitoring applications able to decompose the
flows up to the layer 7 protocol.

Although packet-capturing systems may provide
a global view of network traffic and of the IP
addresses which generate/consume the observed traf-
fic, they are usually fined-tuned for deployment at net-
work nodes and not at end hosts. Thus, these systems
provide little, if any, information on the end user
applications which generate the traffic in question. In
contrast, our approach, Topnet, targeted for deploy-
ment at end hosts, aims to help end users as well as
system administrators understand the individual appli-
cations which are responsible for the network traffic
generated from (or destined to) a particular computer.

Traffic Classification Tools

To improve the understanding of the types of
applications which generate a particular amount of
traffic in the network, several packet- or flow-captur-
ing systems are equipped with traffic-classification
tools. These tools are able to attribute network traffic
to classes of applications that generated this traffic,
such as peer-to-peer systems, web browsing, and IP
telephony.

The first generation of traffic classification tools
attributed traffic to applications based on the TANA
port number list, associating, for example, all traffic
destined to (or originated from) port 80 with web
browsing, all traffic destined to port 25 with email,
and so on [43]. However, in the wake of elusive peer-
to-peer applications that use dynamic ports, the accu-
racy of this port-based approach was quickly shown to
be inaccurate [39, 30]. As a result, recent approaches
use deep packet inspection and application signatures
for attributing traffic flows to the corresponding appli-
cations [29, 45].

NetADHICT [26] provides a hierarchical decom-
position of traffic, based on similar patterns both in
header and payload level, yet the labeling of the nodes
derived from the application is left for the administra-
tor. Another application that can classify network traf-
fic by packet inspection is ntop [17, 18]: an extended
network monitoring tool for displaying the top users of
a network. It uses a plugin architecture for deploying
decoders that will assign the network flows to the
applications that generated them. Finally, Appmon [8]
is an open-source passive network monitoring applica-
tion that applies deep packet inspection and searches
the network packets for specific application signatures.

Although highly accurate, methods based on
deep packet inspection suffer from two major draw-
backs: (i) they have high computational costs, and (ii)
they are ineffective in the presence of encryption. To
overcome these deficiencies, recent approaches try to
identify the applications that generate the traffic by not
looking at the packet payload, but only at the transport
layer [31, 13] or at the statistical characteristics of the

Topnet: A Network-Aware top(1)

network flow, like packet sizes and round-trip times
[9, 50, 15, 14]. A different approach presented by
Karagianis, et al. tries to classify traffic by characteriz-
ing the behavior of the host generating this traffic [32].

Although the previously described traffic-classi-
fication tools have been widely used, they have been
developed for deployment at network nodes and may
not appropriate for host-level use. Although the moti-
vated user could run such a tool, e.g., Appmon [8], for
monitoring a single host, it will still suffer from sev-
eral drawbacks:

e Appmon will not be able to categorize en-

crypted traffic.

* Appmon has no notion of user-level applica-
tions. That is, Appmon reports how much ftp
traffic is generated by an IP address, but does
not know which process generated the traffic.
Appmon can not distinguish between similar
applications. For example, if the ftp traffic is
generated by two or more ftp clients, Appmon
will not be able to report the ftp traffic gener-
ated by each one of the clients.

On the contrary, Topnet provides all the above
functionality with the same “look and feel” of the
familiar top UNIX application.

Visualization

Work has also been done in visualization of net-
work data with the goal to provide the administrator
with an easily understandable picture of the network.
VisFlowConnect [49], NVisionIP [33] and PortVis
[38] are all tools providing connection level visualiza-
tion of the network hosts in order to identify suspi-
cious network usage though they lack host level infor-
mation that would be able to identify the exact process
responsible for the suspicious traffic. Topnet can tie up
loose ends by providing the user of these tools with
the real source of the traffic and enable her to decide
for the proper administration actions to be taken.

Personal firewall tools like ZoneAlarm [11] and
Objective Development’s Little Snitch [40] provide
the user with sufficient information about the network
usage experienced by running applications. But these
tools are limited to a single operating system, and
explicitly target the user of the machine and are of lit-
tle to zero use for the administrator.

Fink, et al. implemented HoNe, a host-network
visualization tool for packet-process correlation [22,
21]. Their tool is based on a loadable kernel module
and the netfilter packet filtering framework [5]. HoNe
focuses on visualizing the number of network connec-
tions a machine has and the corresponding applica-
tions for that connections. It mainly targets security
analysis, through visualizing the process of an intru-
sion attempt, malware download and operation, in a
connection level. Although HoNe shares some aspects
with Topnet, our approach has several advantages
including:

22nd Large Installation System Administration Conference (LISA ’08) 147

Topnet: A Network-Aware top(1)

® HoNe needs kernel modifications while Topnet
is completely implemented in user level.

® Topnet provides the simple and familiar “look
and feel” of the fop UNIX utility.

¢ Although HoNe does not provide any perfor-
mance analysis, based on its description we
believe that Topnet is faster and scales to larger
network speeds more easily.

To summarize, we believe that Topnet fills a
clearly identified gap in host-level network traffic
monitoring. Topnet capitalizes on popular network
level traffic monitoring (libpcap) and a proven resource
monitoring system (top). Topnet provides an easy-to-
use tool which helps users and administrators under-
stand the traffic generated by the applications running
on their computers.

Application Description

Implementation

Our implementation goal was to provide a tool
that will be as efficient as possible, provide the maxi-
mum functionality and would be easily installed on
any system. Thus we decided to build our tool based
on existing, widely used system tools. We used the top
UNIX utility as an interface, since it is widely used for
system monitoring and easily understandable. More
precisely, we used the Linux version of top. The
choice of Linux was made for convenience, since we
had easy access to a Linux based testbed. As we point
out in the Future Work Section, we plan to port Topnet
to various flavors of UNIX.

Although top provides comprehensive monitoring
of the computing and memory resources consumed by
the running processes, it lacks information about the
network usage of the processes. To provide this func-
tionality, we needed (i) a way to read the incoming and
outgoing packets and (ii) a way to correlate the network
traffic flows with the process responsible for them.

To read the packets from the network and corre-
late them with the process responsible for send-
ing/receiving them, we used the widely available libp-
cap and netstat tools. Both tools are available for both
UNIX-like and Windows systems and are widely
deployed and used. Using libpcap, we implemented a
simple sniffer that reads packets from the network
interface. The sniffer is implemented as part of top’s
source code. At initialization, it tries to find the default
network interface of the machine and next starts read-
ing all the packets coming to and going from that
interface. For each network flow, our application
keeps an entry in a hash table where the correlation
and statistics take place.

When a new packet is received by libpcap, Topnet
first looks if the flow it belongs to has already been at-
tributed to a process. If so, the statistics of the flow are
updated and the application moves on to the next
packet. If the flow has not been assigned to a process

Theocharides, et al.

yet, we make a call to the netstat function to correlate
the newly observed flow with the corresponding
process. netstat reads various network-related struc-
tures and outputs results about active sockets, network
protocol traffic statistics, remote endpoints and routing
information. We use part of the netstat functionality to
retrieve the list of active network sockets on the system.
Having that information, we can assign the newly
observed network flow to the process responsible for it.

Fink, et al. [21] argue that netstat would not be a
complete solution since it will fail to track short-lived
flows due to the fact that it polls the kernel with a user
specified rate. Due to polling, a short-lived flow may
not be captured by netstat in case it is created and
destroyed between two consecutive polling periods. In
contrast to netstat, we address with this limitation by
reading the relevant data from the kernel whenever
Topnet encounters a new packet belonging to a non-
correlated flow. This allows us to track the new flow
as soon as its first packet arrives, before the flow is
terminated, even if the flow is short-lived.

Periodically, every five minutes, the application
performs a full pass of the hash table in order to clean
invalid entries. We consider a flow entry to be invalid
if it neither received nor transmitted any data for a
period of 60 seconds. This way, the hash table con-
tains only the active flows of the machine and mini-
mizes the memory overhead of the application.

Features

The Topnet default window (see Figure 1b) is
almost identical to the window of the top utility (see
Figure la), with the addition of two more columns
next to the existing columns. The first column shows
the incoming traffic rate for each process, while the
second shows the outgoing traffic rate. The default
values are in Kbps per second. We should note here,
that Topnet reports traffic from a process perspective.
That is, it counts only the payload bytes (layer 4) of
each packets. Though, since it does not reassemble
flows, bytes belonging to retransmissions are also
going to be reported.

Also in the general statistics header, the upper
lines in the Topnet interface, we added a line that
reports the traffic speed of the default interface of the
monitored machine. Figure 1b shows the default inter-
face of Topnet. As we can see Topnet informs its user
for the rate of the network consuming process. In this
figure we have a wget process downloading a file, and
a BitTorrent client with an active BitTorrent down-
load.

Figure 2 presents the Topnet window in more
detail. Here we show only the processes that use the
network. In the top two rows of the per-process uti-
lization part we see the three applications that make
use of the network during the time the screenshot was
taken. These three processes are operating three file
transfers, an HTTP download using wget, an active

148 22nd Large Installation System Administration Conference (LISA ’08)

Theocharides, et al.

v danton@floyd: ~/topnet/cvs/new/topnet/top-3.7beta2

file Edit View Terminal Tabs Help

top - 17:37:07 up 54 days, 1:12, 12 users, load average: 0.10, 0.09, 0.08 =
[Tasks: 123 total, 2 running, 121 sleeping, © stopped, © zombie
Cpu(s): 1.9%us, 1.7%sy, 0.0%ni, 92.2%id, 3.9%wa, 0.1%hi, 0.2%si, 0.6%st

Mem: 515088k total, 509416k used, 5672k free, 540k buffers
Swap: 1510068k total, 144k used, 1509924k free, 233836k cached
PID USER NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
32179 root 15 © 20464 8756 2828 S 1.8 1.7 0:31.86 btdownloadcurse
132180 root 15 © 5240 1684 1392 S 1.0 0.3 0:18.67 wget
32199 root 15 © 2240 1084 660 S 0.7 0.2 0:06.50 sniffer
1806 root 10 -5 e © 05 6.1 0.6 0:09.00 kjournald
10384 root 15 0]] S 6.1 0.0 0:09.22 pdflush
113 root 1 -5]] S 0.0 0.0 0:18.61 kswapde
13692 danton 18 © 145m 48m 20m S 0.0 9.6 0:24.92 firefox-bin
1 root 15 © 2036 640 548 S 6.0 0.1 0:01.10 init
2 root 20 -5 6 © 05 0.0 0.6 0:00.00 kthreadd
3 root RT -5 e © 05 0.0 0.6 0:00.00 migration/0
4 root 39 19]] S 0.0 0.0 0:00.12 ksoftirqd/e
5 root RT -5 (] (] 0S 6.0 0.0 0:00.00 watchdog/e
6 root 10 -5 L]] @S 0.0 0.0 0:00.44 events/0
7 root 10 -5 0] S 0.0 0.0 0:00.00 khelper
25 root 10 -5 ®© © 05 0.0 0.6 0:01.30 kblockd/e
26 root 20 -5 e © 05 0.0 0.0 0:00.00 kacpid
27 root 20 -5 0] S 0.0 0.0 0:00.00 kacpi notify

v danton@floyd: ~/topnet/cvs/new/topnet

Fle Edit View Terminal Tabs Help

last pid: 32294; load avg: 0.10, ©.09, ©.68;
123 processes: 1 running, 122 sleeping

CPU states: 1.9% user, 0.6% nice, 1.8% system, 92.4% idle, 3.9% iowait
Kernel: 1557 ctxsw, 688 intr

Memory: 497M used, 6288K free, 546K buffers, 228M cached

wap: 144K used, 1475M free

Interface :ethe Total download: 8.16 (Mbit/s) Total upload: 341.99 (Kbit/s)]

up 54+01:12:41 17:37:07 |=|

PID USERNAME THR PRI NICE SIZE RES STATE TIME CPU COMMAND DL 8
32179 root 1 © 26M 8756K sleep 0:31 1.86% btdownloadcurse |958.66K|341.99K'
32186 root 115 © 5240K 1684K sleep 0:18 1.03% wget 7.23M| ©.60
32199 root 115 © 2240K 1084K sleep 0:06 ©.73% sniffer 0.00 0.00
10384 root 115 © 0K OKsleep 0:09 0.07% pdflush 0.00 | 0.00

1866 root 1 18 5 0K 0K sleep 0:09 0.67% kjournald 0.00 0.00
13692 danton 7 18 © 146M 48M sleep 0:24 0.03% firefox-bin 0.00 0.00

113 root 1 16 -5 0K OKsleep 6:18 6.03% kswapde 0.00 | 0.00
5680 root 115 6 146M 12M sleep s 0.00% Xorg 0.00 0.00
5778 danton 115 6 21M 13M sleep : 0.00% metacity 0.00 0.00

5784 danton 115 © 35M 20M sleep ©:12 0.00% gnome-panel 0.00 0.00
11446 root 115 © 6K OKsleep 0:10 0.00% pdflush 0.00 | 0.00

938 root 1 13 -5 0K OKsleep 0:08 0.00% kjournald 0.00 | 6.00

5892 danton 2 15 (] 30M sleep 0:07 0.60% gnome-terminal 0.00 0.00

5777 danton 1 18 © 15M 4812K sleep 0:04 ©.00% gnome-screensav 0.00 0.00
2235 root 1 18 0 1764K 604K sleep 0:03 0.00% syslogd 0 | o0.00

(b) topnet
Figure 1: Screenshots of (a) the Linux top utility and
(b) the Topnet tool.

v danton@floyd: ~/topnet/cvs/new/topnet

File Edit View Terminal Tabs Help

last pid: 32183; load avg: 0.26, ©.11, ©.06;
121 processes: 4 running, 117 sleeping

up 54+00:39:15 17:03:41 [=

CPU states: 21.5% user, ©.0% nice, 10.8% system, 66.7% idle, 1.1% iowait
Kernel: 9734 ctxsw, 4107 intr

Memory: 497M used, 5996K free, 540K buffers, 227M cached

Swap: 144K used, 1475M free

Interface :ethe Total download: 6.67 (Mbit/s) Total upload: 88.24 (Mbit/s)

PID USERNAME THR PRI NICE SIZE RES STATE TIME CPU COMMAND DL uL
32180 root 115 © 5240K 1684K run 0:01 0.99% wget 5.51M 0.00
32179 root 115 © 19M 7432K sleep ©:09 ©.99% btdownloadcurse 538.26K 226.66K
32183 root 1 15 © 7284K 4484K sleep 0:01 18.90% ssh 33.00K 88.01M 2

Figure 2: The Topnet window showing the network
usage of three applications.

BitTorrent download, and an ssh file copy from
another machine.

To ease the use of Topnet and to make as much
information as possible available instantly, we added
some hot keys to Topnet’s user interface. Table 1
presents the keys we added and the effect they have on
the data presentation.

Hot keys can be used to highlight the applica-
tions with the most network activity. Pressing 7, ¢ and
R sort processes according to the inbound, outbound
or total traffic respectively. Using a, the user is able to
select information about just the processes which are
responsible for the network load of the machine.

Pressing F toggles the presentation of active net-
work flows per process. The displayed information
includes a list with the process’ active connections and
the network utilization for each connection. As an
example, Figure 3 presents the full information available

Topnet: A Network-Aware top(1)

by Topnet’s interface. For each process Topnet displays
the incoming, outgoing and total traffic rate per update
interval in the process line, as in the default case of run-
ning Topnet.

For each process with active network connec-
tions, Topnet displays these connections as well as the
traffic rate of each connection. In Figure 3 we see the
analysis for three network consuming process running
in a machine. Two of them (wget and ssh) have one
flow each, while the third one, a BitTorrent process,
has three active flows sharing its bandwidth.

Key Functionality
r Sort by download rate (receiving)
t
R
F

Sort by upload rate (transmitting)

Sort by total Rate
Toggle the display of network Flows per
process

a Show only processes with network load
(active)

D Dump processes traffic to tcpdump file
format

y Toggle the display of unknown network
flows

b Monitor a different interface

Table 1: Function keys and their functionality.

v danton@floyd: ~/topnet/cvs/new/topnet

File Edit View Terminal Tabs Help

llast pid: 417; load avg: 1.65, 0.37, 6.20;
124 processes: 1 running, 123 sleeping

CPU states: 20.8% user, 0.0% nice, 13.5% system, 25.0% idle, 40.6% iowait
Kernel: 10887 ctxsw, 4097 intr

Memory: 497M used, 5720K free, 1444K buffers, 221M cached

ISwap: 144K used, 1475M free

Interface :ethe Total download: 4.28 (Mbit/s) Total upload: 78.36 (Mbit/s)

up 54+03:25:20 19:49:46 B

PID USERNAME THR PRI NICE SIZE RES STATE TIME CPU COMMAND DL uL

417 root 115 0 7416K 4612K slee] 0:00 18.94% ssh 32.25K 77.66M

10.6.0.1:36739 - 1193.168.1.60:22

32179 root 115 © 224 11M sleep 5:07 5.98% btdownloadcurse 002.84K 652.14K
10.0.0.1:6881 - 192.168.1.60:1416

10.6.0.1:6881 - 192.168.1.60:2072
10.6.0.1:3849 - 192.168.1.60:2398

415 root 115 0 5244K 1684K sleep
160.6.6.1:4445 - 192.168.1.60:80

413 root 115 0 2236K 1084K sleep ©0:00 5.98% sniffer 0.00 0.00

416 root 1 18 0 4592K 1284K sleep 0:00 2.99% scp 0.00 0.00
11446 root 115] oK OK sleep ©:12 1.00% pdflush 0.00 0.00

5680 root 115 © 146M 12M sleep 1:46 0.00% Xorg 0.00 0.00
13692 danton 7 15 @ 146M 48M sleep 0:25 0.00% firefox-bin 0.00 0.00

113 root 1 10 5 oK 0K sleep 0:21 0.00% kswapdo 0.00 0.00

5778 danton 1 15 @ 21M 13M sleep 0:17 0.00% metacity 0.00 0.00 -

Figure 3: Topnet showing the list of active connec-
tions for three processes with network activity.

nuttcp sender nuttcp receiver

1 Gbps
/v = A
Topnet

Figure 4: The testbed used for the evaluation of Top-
net.

One of the most useful functions of Topnet is the
ability to log the traffic of a specific application to a
dump file for later use and analysis. This is done with
the D key followed by the specific process id of inter-
est. The raw packets are dumped in a file in the direc-
tory from which top was started with the PID and the
process name in the filename.

22nd Large Installation System Administration Conference (LISA ’08) 149

Topnet: A Network-Aware top(1)

Finally, using y one can have a view of the net-
work flows not known to belong to a specific process.
This case may be very useful when a user hides from
Topnet, for instance, by using an application that uses
raw sockets for communication. The Topnet utility, since
it is based in libpcap, can capture packets sent using raw
sockets. However, it is hard to map this traffic to a spe-
cific process. In order to cope with this issue, we group
all orphan traffic — all traffic that we can not assign to a
process — in a special Topnet window.

1000 —

900 —

800 —

700 —

600 —

500 -

400 —

300 —

200

Topnet Measured Bandwidth (Mbps)

100 —

O —T T T T T T T T T
0 100 200 300 400 500 600 700 800 900 1000
nuttcp Traffic Speed (Mbps)

€ ideal Topnet measurement

Figure 5: Topnet reported network consumption for
the artificial traffic created with nuttcp.

Evaluation

In this section we provide a twofold evaluation
of our application. First we show the accuracy of the
application using (i) artificial traffic in a controlled
testbed environment, and (ii) real world traffic from
two popular application protocols, HTTP and BitTor-
rent. Next, we present the resource overhead con-
sumed by Topnet.

Experimental Environment

For all the experiments presented in this section
we used a Dell 1420 computer equipped with a Dual
Xeon 2.8 MHz CPU and 512 Mbyte of memory. The
machine was connected to the network using a com-
modity Gigabit network interface.

Accuracy

The first and most important test for the applica-
tion was to evaluate its accuracy in measuring the net-
work load of a specific process. We first used artificial
traffic in a testbed environment and as a next step we
evaluated the accuracy using real world HTTP and
BitTorrent traffic. In all our experiments we experi-
enced zero packet loss with tcpdump, therefore those
measurements represent ground truth for comparison.

Theocharides, et al.

mi
S JJ -w,f/““-"\““"' | [.,.r*r}

[1
||

Bandwidth (Mbps)
3
|

T 1
0 100 200 300
Time (seconds)

wget Download rate

(a) wget vs. topnet

topnet Measured download

Bandwidth (Mbit/s)

0 100 200 200
Time (seconds)

topnet Measured download

(b) Inaccuracy
Figure 6: Topnet results while monitoring a web
download compared with the traffic reported by a
tcpdump running in parallel. Figure (a) shows the
actual traffic seen by both tcpdump and Topnet
during the lifetime of the experiment. Figure (b)
shows the difference between the two measure-
ments. With an average accuracy of 98.1%, in
most cases Topnet provides accurate results with

the exception of some short reporting periods.

Measuring Synthetically-Generated Traffic

For the testbed experiments we used two ma-
chines on a Gigabit network, exchanging traffic with
each other using nuttcp [3]. One machine was used as
the sender and the other as receiver. We ran Topnet on
the receiver machine and logged the measurement
results per second for the nuttcp receiver process. We
instrumented the nuttcp sender to send traffic to the
receiver in different rates, ranging from 1 Mbps to
about 870 Mbps. The complete testbed is depicted in
Figure 4.

Figure 5 presents the measured traffic load re-
ported by Topnet during the experiment. The x axis
presents the traffic send through nuttcp in Mbps, while
the y axis shows the traffic measured by Topnet. The
results are averages for the total of 10 runs for each
traffic speed and present the average traffic sent and
measured for the duration of each run. Figure 5 also
plots the y = x ideal curve. We see that Topnet has an
almost exact match with the ideal in all ranges of the
experiments. Our data suggest that there is less than
0.1% difference between the two curves.

150 22nd Large Installation System Administration Conference (LISA ’08)

Theocharides, et al.

§ I“"lu'.
s \ A .’_}*ﬂ'o,.' & "'\‘u".'rlt‘ 'l
e

Jal

10 - ek)

Bandwidth (Mbps)

.-d"“l .L
e I —

0 400 800 1200 1600 2000 2400 2800 3200
Time (seconds)

bittorrerd Download rate

(a) torrent vs. Topnet

topret Meazsred downboad

Bandwidth (Mbit's)

T T T T T T
0 400 B00 1200 1600 2000 2400 2800 3200
Time (seconds)

fopnet Measured downbad

(b) Inaccuracy

Figure 7: Topnet results while monitoring a BitTorrent
client compared with the traffic logged by tcpdump.
Figure (a) shows the actual inbound traffic mea-
sured by the two tool, Topnet manages to follow
the exact traffic rates of the BitTorrent download.
Figure (b) shows the differences from the two mea-
surements in more detail. Again, Topnet seems to
show only slight differences from the tcpdump traf-
fic, with the overall accuracy to be 98.8%.

Measuring HTTP and BitTorrent Clients

Since Topnet shows high accuracy on a con-
trolled environment with artificial traffic, the next step
was to evaluate the measurement accuracy using real
world traffic. We used two applications utilizing two
popular protocols: HTTP and BitTorrent.

For the evaluation with HTTP traffic we used the
well known wget application, a command-line web
HTTP GET application. We used tcpdump to log the
HTTP traffic exchanged by the machine during the
time of the experiment and compared it with the traffic
reported by Topnet. Topnet was instrumented to report
the per-application traffic every second.

We used wget to download a Linux distribution
ISO file3 Figure 6a presents the incoming traffic
reported by Topnet during the HTTP download in
comparison with the traffic reported by tcpdump. The
relative time for the whole duration of the download is
plotted on x axis, while the measured one-way traffic
(inbound) in Mbps is plotted on the y axis. Each point

3http:/ftp.belnet.be/mirror/ubuntu.com/releases/hardy/ubuntu-
8.04.1-desktop-i386.is0 .

Topnet: A Network-Aware top(1)

9 1k V""\‘W"A‘ i
I -t
s ya
g . /
s i
s 4]
2 57 7
° A
c A
© A
o 3 - ‘,/“-./‘
e
1 T T T T 1
0 50 100 150 200 250
Time (seconds)
1st bittorrent Download rate Topnet Measured bandwidth
(a) BitTorrent 1
40
35 .y
;g 30 "_‘,‘r'u""’"‘u.‘,,1""‘"\\,.,,“'.,.“,/
S 25 h
= I
5 24 /"
Z s f
s)
a 07
sd [/
I
0 T4 T T T T 1
0 50 100 150 200 250
Time (seconds)
2nd bittorrent Download rate Topnet Measured bandwidth
(b) Bittorrent 2
35
7w 30 4 s
5 M\(‘F N NV
=} I
!/ I
2 2 | ‘M“‘\' | ’w w 4’|*||
= | II
] I ‘
S 20 o I |
= !
g \ |
o 15 4
10 T T T T 1

0 50 100 150 200 250
Time (seconds)

wget Download rate
(c) Wget

Figure 8: Topnet reported traffic rates when monitor-
ing one wget and two BitTorrent downloads in
parallel. Both measurements for BitTorrent show
an average difference around 1% (1.05% for
client 1 and 0.43% for client 2). The wget mea-
surement shows a larger difference around 10%.

Topnet Measured bandwidth

gives the traffic for one second. The figure shows that
Topnet managed to accurately measure the traffic of
the download during its whole duration and also fol-
lows the changes experienced during the download.
Figure 6b plots the difference in the measurement
reported by each tool, as the inaccuracy of our tool. As
we see, Topnet experiences limited differences from
the tcpdump logged traffic. This differences can be
explained from slightly different times for reporting
the traffic.

For the next experiment we used the BitTorrent
client to download a Linux distribution through the
BitTorrent protocol.# We once again used tcpdump to

4http://cdimage.debian.org/debian-cd/4.0_r3/i386/bt-dvd/
debian-40r3-1386-DVD-1.iso.torrent

22nd Large Installation System Administration Conference (LISA ’08) 151

Topnet: A Network-Aware top(1)

m0-15 ‘f\n: b (A ‘[_';e a1l ﬂ
g o] val\p“w"\]u‘Mffv\fW\M‘MW

15:00 16:00 17:00 18:00 19:00 20:00 21:00 22:00 23:00 0:00
Time (in hours)
— mapid traffic Topnet measured Traffic
Figure 9: Topnet accuracy while monitoring a server
process for several hours. The overall difference

between Topnet and tcpdump is 1.73%.

32

28

24 —

20

16

12 4

topnet CPU Load (%)

8 -

4 -

0 T T T T T T T T T

1
0 100 200 300 400 500 600 700 800 900 1000
nuttcp Traffic Speed (Mbit/s)

Figure 10: Topnet CPU usage using artificial traffic
created with nuttcp. Topnet uses at most 31% of
the CPU while experiencing a full network loaded
machine with 900 Mbps of traffic.

report the downloaded traffic per second for the whole
duration of the data transfer.’ Figure 7a reports the
true traffic exchanged by a BitTorrent client while
downloading the file, as incoming traffic in bits per
second, in comparison with the traffic reported by
Topnet for the downloading process. We see that the
results reported by Topnet and the BitTorrent client are
very close. To better show the accuracy of Topnet we
plot the difference between the two applications for
each measurement second in Figure 7b. Topnet mea-
surements exhibit little differences from tcpdump-
based measurements, with the exception of a small
number of outliers. The differences can be explained
with the different timing that the two applications
have, due to manual start-up.

For the next experiment, we tried to simulate the
everyday network usage of a normal user. For instance,
the user might browse someweb pages while there may
be some active BitTorrent downloads in the background.
To simulate this case we concurrently employed an
HTTP download and two BitTorrent downloads for dif-
ferent files. The comparison is pictured in Figure 8.

5Dun'ng this experiment, access was limited only to the Bit-
Torrent client so as to avoid unexpected non-BitTorrent flows.

Theocharides, et al.

32
28
24
20
16

12 4

topnet CPU Load (%)

T T T T T T T
20 40 80 120 160 240 320 400

wget Traffic Speed (Mbit/s)
Figure 11: Topnet CPU load for several HTTP down-
loads, each at a different network speed.

18 4
16
14

topnet CPU Load (%)

° 2‘0 4‘0 8‘0 12‘0 1(‘50 21‘10 25‘36
BitTorrent Traffic Speed (Mbit/s)

Figure 12: Topnet CPU load for several BitTorrent
downloads, each at a different network speed.
Topnet uses less than 10% of the CPU while expe-
riencing download rates at 240 Mbps.

Topnet manages to report the traffic with high accu-
racy (differences are around 1%). Also in the case of
the wget download, where the traffic rate experiences
large changes between the measurement periods, 7op-
net follows these changes.
Comparison to Other Traffic Measurement Tools

To further evaluate the measurement accuracy of
Topnet we installed Topnet on a server and monitored
outgoing traffic for several hours. The server machine
was running mapid, a distributed monitoring daemon,
which allows users to run remote monitoring applica-
tions. That is, it provides the monitoring capabilities
and allows the user to get the information in which she
is interested. As an example, the user may ask from
the monitoring daemon to count all packets coming in
and out from a specific subnet, and periodically will
ask for the results. We used tcpdump to log all the traf-
fic coming in and out of the machine using mapid’s
port. At the same time we were running 7opnet on the
machine measuring the traffic for the specific process
number. The comparison of the two traffic measure-
ments is shown in Figure 9. Topnet, manages to follow
the traffic consumption experienced by the server
process. The figure shows one minute averages of the
traffic during a period of seven hours.

Performance Measurements

The second part of our evaluation identifies and
quantifies the performance overhead that Topnet in-
duces during the monitoring process.

152 22nd Large Installation System Administration Conference (LISA ’08)

Theocharides, et al.

The first performance measurement was done in
the testbed during the nuticp experiment presented in
the previous subsection. We used the systems’ top util-
ity to measure the CPU overhead induced by Topnet
during the different nuttcp traffic exchanges. The
results are presented in Figure 10. The x axis plots the
exchanged traffic rate in Mbps and the y axis shows
the average CPU percentage used by Topnet during
each measurement as a function of the traffic mea-
sured. We see that the CPU overhead of Topnet is
almost proportional to the traffic measured. This
should be expected as the main overhead of Topnet is
attributed to the libpcap library, which is being used to
read the packets from the network card. We observe,
however, that for low network traffic, i.e., under 200
Mbps, the CPU usage is below 10%.

To evaluate the performance of Topnet using real
world traffic, we once again used HTTP and BitTor-
rent traffic. As in earlier experiment, we used wget to
download the Linux ISO image mentioned earlier. To
understand the impact of network traffic on the perfor-
mance overhead of Topnet, we rate-limited wget to
download speeds ranging from 20 Mbps to 400 Mbps.
Figure 11 shows the CPU load used by Topnet for the
different download rates used by wget. As seen previ-
ously, the performance of Topnet is proportional to the
network traffic monitored, staying below 10% as long
as the traffic received is less than 200 Mbps.

We repeated the previous experiment using the
BitTorrent client, instead of wget. The results, shown
in Figure 12, follow the same pattern: i.e., the perfor-
mance overhead of Topnet is proportional to network
traffic observed.

Our experiments with a commodity PC suggest
that as long as the network traffic observed is rela-
tively low, i.e., up to a few tens Mbps, the perfor-
mance overhead of Topnet is usually below 5%, which
we consider acceptable for occasional use, given the
information it provides the administrator. We under-
stand though that under very heavy traffic, i.e., several
hundreds of Mbps, the performance penalty of Topnet
may become significant and the tool might experience
packet losses. Current trends, however, suggest that
this performance overhead, which is completely attrib-
uted to the overhead of the packet capture library,
tends to decrease with time, as more optimized ver-
sions of libpcap are being implemented and deployed
(PFring [16], pcap-mmap [48]). Using the aforemen-
tioned versions of libpcap, the overhead from copying
packets from system to user level decreases, and any
packet loss disappears. In our current case, since no
packet loss was experienced, running Topnet compiled
with pcap-mmap gave the same performance measure-
ments.

Memory Usage

As mentioned earlier, Topnet uses a hash table to
hold all active flows on the machine. During our

Topnet: A Network-Aware top(1)

experiments, where the number of active flows was
small, Topnet experienced memory overhead below
1%, in all cases.

Reporting Period

In all of our experiments we used 1 second as a
reporting period from Topnet. Changing the reporting
period to a larger number of seconds does not affect
the performance overhead of the application, since the
CPU utilization is due to libpcap, for reading packets
from the network and transferring them to the applica-
tion. Though, increasing the reporting period may
smooth the reported network measurement and reduce
any discrepancies observed.

Use Cases

In this section we discuss various real world sce-
narios in which Topmet’s usage could be beneficial.
This discussion unveils the strength of Topnet in every
day situations and incidents. We explore the use of
Topnet by three target groups: administrators, re-
searchers and end users. In every use case, we focus
on the convenience provided to the end user by Top-
net.

Administrators

Observing system performance is vital to the sys-
tem administrator. The classic UNIX top utility is
designed towards that direction, giving summaries for
CPU and memory consumption per process. Our
extended top, Topnet, broadens this model by adding
inspection for network resources consumption per
process. Understanding the network usage of an indi-
vidual process has become increasingly important, if
not more important than, as understanding CPU and
memory resource consumption.

A summary of network consumption per host,
something that most operating systems provide by
default, is not sufficient. There is a need for greater
per-process granularity. This is especially important
for tracking security threats like rootkits, trojan horses,
and other malware, which consume network resources
in a stealthy way, without altering the overall condi-
tion of the host as far as the network consumption is
concerned. More precisely, a malicious program that
performs IP/port scanning or communicates with other
members of a Botnet, may never be spotted by just
observing the total outbound traffic of a host, since the
traffic exported by the malicious program has a low
volume. However, this malicious program will have
active flow records in the Topnet utility and thus it will
be easily spotted by an administrator.

Researchers

System research, very often, involves the inspec-
tion and measurement of network capabilities of an
application. Sometimes, the researcher has to correlate
consumption in all available resources, namely CPU,
memory and network. The most well known tactic is

22nd Large Installation System Administration Conference (LISA ’08) 153

Topnet: A Network-Aware top(1)

to use multiple tools for the inspection of different
kind of resources. For example, the top UNIX utility
may be used for the inspection of CPU/memory
resources and an application trace collected with tcp-
dump, or another packet capturing tool, can be used to
inspect the network utilization experienced by the
application.

Topnet combines all above tasks to one program
able to monitor in real-time an application’s utilization
for all kind of resources. Thus, Topnet offers a conve-
nient way for the researcher to inspect in real-time the
behavior of an application and gives immediately an
indication of its resource consumption.

End Users

End users’ systems have drastically evolved and
become more sophisticated as far as the amount of
running applications and their complexity is con-
cerned. In addition, end users are frequently mobile,
utilizing wireless access media. As an example, exces-
sive bandwidth consumption might significantly re-
duce the lifetime of the battery of a user’s laptop. A
tool such as Topnet that can inform the user of such
events is considerably valuable.

We believe that the increased complexity of a
modern home machine (a desktop PC, or a laptop) has
driven the home user to cope with tasks that are usu-
ally performed by an administrator. The user, in a
sense, frequently becomes an administrator of her
own system. Thus, we propose Topnet as a convenient
tool for the quick inspection of the resource utilization
of a user’s machine. With increasing popularity of net-
working applications (Web surfing, IM, file-sharing,
etc.), inspecting the network activity per process sig-
nificantly changes the picture the user has about the
actual condition of her machine.

Communication Patterns

The cases above depict various classes of users
that receive benefit and convenience from the Topnet
tool. In contrast with traditional programs that experi-
ence network utilization upon user activity, modern
applications remain active even when the user is not
explicitly using them. This background behavior
causes significant network activity, without easily
being spotted by the user.

In Table 2 we list a few representative applica-
tions and their background behaviors, i.e., network
activity not explicitly initiated by the user. In all these
application profiles, Topnet can easily expose such
background network activity.

Future Work

Topnet fills a substational gap to current system
administration by monitoring network demands at the
process level. However, we believe that Topnet can be
further enhanced. In this Section we list some features
we plan to implement in following versions of the
tool.

Theocharides, et al.

Security Enhancements

As we have pointed out in Use Cases Section,
Topnet can be used for tracking security threats, like
rootkits, trojan horses and other malware. In such a
case, the administrator can inspect network consump-
tion, related to malicious activity rather than a legiti-
mate user application. We, consider this feature impor-
tant to expose security threats. Thus, we plan to imple-
ment an accounting feature in Topnet in order to give
system administrators the opportunity to get a better
global view of the monitored network.

We plan to have a Topnet mode that logs all net-
work activity per process to a file. Then, it would be
easy to create a script that collects all log files from
Topnet-enabled hosts running in the network and com-
bine the information to one file. This file can then be
processed for malicious activity. For example, some-
one can search, for the same process running in a
series of hosts, consuming constantly network re-
sources. If this process is not known, this observation
might indicate that the machines running the specific
process are suspicious for participating to a BotNet.

Application
BitTorrent
File Sharing

Background Behavior
A host becomes a seeder

Routing/Downloads/
Uploads are served

Peer-to-Peer
Web 2.0

A host becomes a relay

Polling in periodic
intervals for Server data

Social Utilities ~ Polling in periodic

intervals for Server data

Table 2: Application network profiles, when they are
not explicitly used.

In general, logging process network activity to a
file, and aggregating the information to a central
place, may substantially assist in spotting security
issues. Analyzing the collected information might not
be trivial, but we believe that there are some practical
heuristics that may be applied and reveal anomalous
host behavior.

Portability

Our implementation of Topnet is currently tested
on a number of Linux distributions. Though, in the
near future, we plan to port Topnet to various different
UNIX flavors, as well as Windows. Topnet is based on
two widely used tools. libpcap is available and sup-
ported on all UNIX flavors and also on Windows sys-
tems. The source code of netstat is available for Linux,
and the same information can be retrieved in Windows
using the GetTcpTable and GetUdpTable MSDN func-
tions.® We are currently exploring ways to achieve the
functionality given by netstat on other UNIX flavors,

Bhttp://msdn.microsoft.com/en-us/library/aa366071(VS.85).
aspx

154 22nd Large Installation System Administration Conference (LISA ’08)

Theocharides, et al.

using tools like Isof [6] and libproc [2], in order to make
Topnet more portable.

Kernel Space. The network has become a per-
petually used resource of every system. Our imple-
mentation aim was to achieve per-process network
monitoring on a host machine without changing the
OS kernel. However, we believe that this data should
be provided by the OS kernel, so that it would be com-
pletely accurate and more efficient and would also
allow for a new generation of monitoring tools with
the network as an inherently monitored resource.

Deployment. Finally, one of our major concerns
is the deployment of the tool in large scale networks,
that have different purposes. We plan to install the tool
in enterprise, research and academic networks. Each
different network class has specific properties. De-
ploying Topnet in such environments will give us a
better understanding of the tool’s potential usage. It
will also stress the utility in real environments that
exhibit realistic system and network load.

Conclusion

In this paper, we presented a process-centric
approach to network resource attribution for UNIX
computers. We described the design and implementa-
tion of Topnet, an extension of the familiar top utility.
While top focuses on process attributes like CPU and
memory usage, Topnet provides information about
network usage as well.

In contrast to prior approaches, we implemented
Topnet without needing any kernel modifications,
using only user-level functionality based on the libpcap
library. Our evaluation suggests that the performance
overhead incurred by Topnet is reasonable in most sit-
uations.

Overall, Topnet provides a familiar and accurate
way to attribute network traffic to individual pro-
cesses, enabling users to gain a process-centric view
of the network traffic in their systems.

Acknowledgments

This work was supported in part by the project
CyberScope, funded by the Greek Secretariat for Re-
search and Technology under contract number PENED
03ED440. Elias Athanasopoulos is also funded by the
Ph.D. Scholarship Program of Microsoft Research
Cambridge. We are grateful to our anonymous review-
ers for their thoughtful and valuable feedback. We also
want to thank our shepherd, Dave Plonka, for his col-
laboration in improving the paper.

Author Biographies

Antonis Theocharides received his Bachelor in
Computer Science from the University of Crete in
2008. He is continuing his studies at the University
College of London. He can be reached at atheo-
har@gmail.com .

Topnet: A Network-Aware top(1)

Demetres Antoniades received his M.Sc. and
B.Sc. degrees in Computer Science from the Univer-
sity of Crete, in 2005 and 2007 respectively. He is cur-
rently a Ph.D. candidate in Computer Science in the
same university. Since 2004, he is also with the Insti-
tute of Computer Science, FORTH, Crete, where he
currently works in the Distributed Computing Systems
Lab. His main research interests include network mon-
itoring and traffic classification.

Michalis Polychronakis is a Ph.D. candidate in
the Computer Science department at the University of
Crete, Greece. He received the M.Sc. and B.Sc.
degrees in Computer Science from the same university
in 2003 and 2005, respectively. Since 2002, he is also
with the Institute of Computer Science, FORTH,
Crete, where he currently works in the Distributed
Computing Systems Lab. His main research interests
include systems and network security, intrusion detec-
tion, and network monitoring.

Elias Athanasopoulos received a B.Sc. in Physics
from the University of Athens and an M.Sc. in Com-
puter Science from the University of Crete, in 2004
and 2006 respectively. He is currently a Ph.D. candi-
date in Computer Science with the University of
Crete. He has published in ACNS, CMS, EC2ND,
IWSEC and ISC. He is a Research Assistant with
FORTH and he has received a Ph.D. scholarship from
Microsoft Research (Cambridge) for the period 2008-
2011. He interned in Microsoft Research during the
summer of 2007.

Prof. Evangelos Markatos (markatos@ics.forth.
gr) received his diploma in Computer Engineering
from the University of Patras in 1988, and the M.S.
and Ph.D. degrees in Computer Science from the Uni-
versity of Rochester, NY in 1990 and 1993 respec-
tively. Since 1992, he is an associated Researcher at
the Institute of Computer Science of the Foundation
for Research and Technology — Hellas (ICS-FORTH)
where he is currently the founder and head of the Dis-
tributed Computing Systems Laboratory. He conducts
research in several areas including distributed and par-
allel systems, the World-Wide Web, Internet Systems
and Technologies, as well as Computer and Communi-
cation Systems Security. He is currently the project
manager of the LOBSTER and NoAH projects, both
funded in part by the European Union and focusing on
developing novel approaches to network monitoring
and network security. Since 1992, he has also been
affiliated with the Computer Science Department of
the University of Crete, where he is currently a full
Professor.

Since 2001 Professor Markatos has been the
head of the W3C (World Wide Web Consortium)
Office in Greece, one of only 17 such offices around
the world. Since 2005, he serves as a member of the
Permanent Stakeholders Group of ENISA, the Euro-
pean Network and Information Security Agency.

22nd Large Installation System Administration Conference (LISA ’08) 155

Topnet: A Network-Aware top(1)

Bibliography

[11ATOP — System & Process Monitor, http://www.
atcomputing.nl/Tools/atop/home.html .

[2] libproc, http://opensolaris.org/os/community/
observability/process/libproc/ .

[3] nuttcp Official site, http://www.lcp.nrl.navy.mil/
nuttep/ .

[4] RFC 4898 — TCP Extended Statistics MIB, http://
www.ietf.org/rfc/rfc4898.txt .

[5] The netfilter.org Project, http://www.netfilter.org .

[6] Abell, V., Isof — LiSt Open Files.

[7] Anagnostakis, K. G., S. Toannidis, S. Miltchev, J.
Ioannidis, M. B. Greenwald, and J. M. Smith,
“Efficient Packet Monitoring for Network Man-
agement,” Proceedings of the Eighth IFIP/IEEE
Network Operations and Management Sympo-
sium (NOMS), pp 423-436, April, 2002.

[8] Antoniades, D., M. Polychronakis, S. Antonatos, E.
P. Markatos, S. Ubik, and A. @slebg, “Appmon:
An Application for Accurate per Application Traf-
fic Characterization,” Proceedings of IST Broad-
band Europe 2006 Conference, December, 2006.

[9] Bernaille, L., I. Akodkenou, A. Soule, and K.
Salamatian, ““Traffic Classification on the Fly,”
ACM SIGCOMM Computer Communication Re-
view, Vol. 36, Num. 2, pp. 23-26, 2006.

[10] Bos, H., W. de Bruijn, M. Cristea, T. Nguyen, and
G. Portokalidis, “FFPF: Fairly Fast Packet Fil-
ters,” Proceedings of OSDI 04, 2004.

[11] Check Point Software Technologies Ltd.,
ZoneAlarm, http://www.zonealarm.com/store/
content/home.jsp .

[12] Cisco Systems, Cisco Network Analysis Module
Software, http://'www.cisco.com/en/US/products/sw/
cscowork/ps5401/index.html .

[13] Constantinou, F. and P. Mavrommatis, “Identify-
ing Known and Unknown Peer-to-Peer Traffic,”
Proc. of Fifth IEEE International Symposium on
Network Computing and Applications, pp. 93-
102, 2006.

[14] Crotti, M. and F. Gringoli, “Traffic Classification
Through Simple Statistical Fingerprinting,” ACM
SIGCOMM Computer Communication Review,
Vol. 37, Num. 1, pp. 5-16, 2007.

[15] Crotti, M., F. Gringoli, P. Pelosato, and L. Salgar-
elli, “A Statistical Approach to IP-level Classifi-
cation of Network Traffic,” ICC’06, IEEE Inter-
national Conference on Communications, 2006.

[16] Deri, L., PF_RING http://www.ntop.org/PF_RING.
html .

[17] Deri, L. and S. Suin, “Ntop: Beyond Ping and
Traceroute,” Proceedings Tenth IFIP/IEEE Work-
shop on Distributed Systems: Operations and
Management, pp. 271-283.

[18] Deri, L. and S. Suin, “Effective Traffic Measure-
ment Using ntop,” Communications Magazine,
IEEE, Vol. 38, Num. 5, pp. 138-143, 2000.

Theocharides, et al.

[19] Dischinger, M., A. Haeberlen, K. P. Gummadi, and
S. Saroiu, “Characterizing Residential Broadband
Networks,” IMC ’07: Proceedings of the Seventh
ACM SIGCOMM Conference on Internet Mea-
surement, pp. 43-56, 2007.

[20] Estan, C., S. Savage, and G. Varghese, ‘Auto-
matically Inferring Patterns of Resource Con-
sumption in Network Traffic,” Proceedings of the
2003 Conference on Applications, Technologies,
Architectures, and Protocols for Computer Com-
munications, pp. 137-148, 2003.

[21] Fink, G., V. Duggirala, R. Correa, and C. North,
“Bridging the Host-Network Divide: Survey, Tax-
onomy, and Solution,” Proceedings of the 20th
Conference on Large Installation System Admini-
stration Conference, pp. 247-262, 2006.

[22] Fink, G., P. Muessig, and C. North, “Visual Cor-
relation of Host Processes and Network Traffic,”
Visualization for Computer Security (VizSec),
2005.

[23] Goldszmidt, G. and Y. Yemini, “Distributed Man-
agement by Delegation,” Proceedings of the 15th
International Conference on Distributed Comput-
ing Systems (ICDCS), pp. 333-340, 1995.

[24] Hughes, E. and A. Somayaji, ‘“Towards Network
Awareness,” Proceedings of the 19th Large In-
stallation System Administration Conference (LISA
'05), pp. 113-124.

[251IBM, Aurora — Network Traffic Analysis and
Visualization, http://www.zurich.ibm.com/aurora .

[26] Inoue, H., D. Jansens, A. Hijazi, and A. So-
mayaji, “NetADHICT: A Tool for Understanding
Network Traffic,” Proceedings of the 21st Con-
ference on Large Installation System Administra-
tion, 2007.

[27] Insolvibile, G., “Kernel Korner: The Linux Sock-
et Filter: Sniffing Bytes Over the Network,” The
Linux Journal, p. 86, June, 2001.

[28] Ioannidis, S., K. G. Anagnostakis, J. loannidis,
and A. D. Keromytis, “xPF: Packet Filtering for
Low-Cost Network Monitoring,” Proceedings of
the IEEE Workshop on High-Performance Switch-
ing and Routing (HPSR), pp. 121-126, May, 2002.

[29] Karagiannis, T., A. Broido, N. Brownlee, K.
Claffy, and M. Faloutsos, “File-sharing in the
Internet: A Characterization of P2P Traffic in the
Backbone,” University of California, Riverside,
USA, Tech. Rep, 2003.

[30] Karagiannis, T., A. Broido, N. Brownlee, K.
Clafty, and M. Faloutsos, “Is P2P Dying or Just
Hiding,” IEEE Globecom, 2004.

[31] Karagiannis, T., A. Broido, and M. Faloutsos,
“Transport Layer Identification of P2P Traffic,”
Proceedings of the Fourth ACM SIGCOMM Con-
ference on Internet Measurement, pp. 121-134,
2004.

[32] Karagiannis, T., K. Papagiannaki, and M. Falout-
sos, “BLINC: Multilevel Traffic Classification in

156 22nd Large Installation System Administration Conference (LISA ’08)

Theocharides, et al.

the Dark,” ACM SIGCOMM Computer Commu-
nication Review, Vol. 35, Num. 4, pp. 229-240,
2005.

[33] Lakkaraju, K., W. Yurcik, and A. Lee, “NVi-
sionlP: Netflow Visualizations of System State
for Security Situational Awareness,” Proceedings
of the 2004 ACM Workshop on Visualization and
Data Mining for Computer Security, pp. 65-72,
2004.

[34] LeFebvre, W., “Kernel Mucking in top,” LISA
'94: Proceedings of the Eighth USENIX Confer-
ence on System Administration, pp. 47-56, 1993.

[35] Malan, G. R. and F. Jahanian, “An Extensible
Probe Architecture for Network Protocol Perfor-
mance Measurement,” Proceedings of the ACM
SIGCOMM 98 Conference on Applications, Tech-
nologies, Architectures, and Protocols for Com-
puter Communication, pp. 215-227, 1998.

[36] McCanne, S. and V. Jacobson, “The BSD Packet
Filter: A New Architecture for User-level Packet
Capture,” Proceedings of the Winter 1993 USENIX
Conference, pp. 259-270, January, 1993.

[37] McCanne, S., C. Leres, and V. Jacobson, libpcap,
Lawrence Berkeley Laboratory, Berkeley, CA,
http://www.tcpdump.org/.

[38] McPherson, J., K. Ma, P. Krystosk, T. Bartoletti,
and M. Christensen, “PortVis: A Tool for Port-
Based Detection of Security Events,” Proceed-
ings of the 2004 ACM Workshop on Visualization
and Data Mining for Computer Security, pp. 73-
81, 2004.

[39] Moore, A. and K. Papagiannaki, “Toward the
Accurate Identification of Network Applications,”
Proceedings: Passive And Active Network Mea-
surement.: Sixth International Workshop, PAM
2005, March 31-April 1, 2005.

[40] Objective Development Software GmbH, Little
Snitch 2, http://www.obdev.at/products/littlesnitch/
index.html .

[41] Oetiker, T., “MRTG — The Multi Router Traffic
Grapher,” Proceedings of the 12th USENIX Con-
ference on System Administration, pp. 141-148,
1998.

[42] Papagiannaki, K., M. D. Yarvis, and W. S. Con-
ner, “Experimental Characterization of Home
Wireless Networks and Design Implications,”
INFOCOM, 2006.

[43] Plonka, D., “Flowscan: A Network Traffic Flow
Reporting and Visualization Tool,” Proceedings
of the USENIX Fourteenth System Administration
Conference LISA X1V, 2000.

[44] Polychronakis, M., E. Markatos, K. Anagnos-
takis, and A. Oslebg, “Design of an Application
Programming Interface for IP Network Monitor-
ing,” Network Operations and Management Sym-
posium (NOMS 2004, IEEE/IFIP), pp. 483-496
2004.

Topnet: A Network-Aware top(1)

[45] Sen, S., O. Spatscheck, and D. Wang, ““Accurate,
Scalable In-Network Identification of P2P Traffic
Using Application Signatures,” Proceedings of
the 13th International Conference on World Wide
Web, pp. 512-521, 2004.

[46] Trimintzios, P., M. Polychronakis, A. Papado-
giannakis, M. Foukarakis, E. Markatos, and A.
Oslebe, “DIMAPI: An Application Programming
Interface for Distributed Network Monitoring,”
Proceedings of the Tenth IEEE/IFIP Network Op-
erations and Management Symposium (NOMS),
2006.

[47] Warren, P. and C. Lightfoot, iffop, http://www.ex-
parrot.com/pdw/iftop/ .

[48] Wood, P., MMAP libpcap, http://public.lanl.gov/
cpw/ .

[49] Yin, X., W. Yurcik, M. Treaster, Y. Li, and K.
Lakkaraju, “VisFlowConnect: Netflow Visualiza-
tions of Link Relationships for Security Situa-
tional Awareness,” Proceedings of the 2004 ACM
workshop on Visualization and Data Mining for
Computer Security, pp. 26-34, 2004.

[50] Zuev, D. and A. Moore, “Traffic Classification
Using a Statistical Approach,” Proccedings: Pas-
sive And Active Network Measurement.: Sixth
International Workshop, PAM 2005, March 31-
April 1, 2005, 2005.

22nd Large Installation System Administration Conference (LISA ’08) 157

