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Abstract—Software bill of materials (SBOMs) have become a
crucial component of large-scale vulnerability triage. Existing
SBOM approaches operate at the granularity of software
packages or binary executables, providing a very coarse and
context-agnostic view of a program’s dependencies. In turn, if a
third party component has a vulnerability, existing SBOM tools
will report it for remediation irrespectively of whether a given
dependent program is actually affected by that vulnerability
or not. Although determining the exact conditions under
which a vulnerability in a third-party component may affect a
dependent program remains a challenging problem, a first
robust approximation can be obtained by considering the
reachability of the vulnerable code from the parent program.

Based on this observation, the main goal of this work is to
assess the improvement that code reachability information can

offer in the precision of vulnerability triage for C/C++ programs.

To that end, we developed VPChecker, a system that i) captures
the dependencies of a program at the granularity of individual
functions, and ii) localizes CVEs in shared libraries to the
corresponding functions that contain the flaw. Using VPChecker,
we conducted a large-scale vulnerability assessment of the
Debian Linux ecosystem. The results of our cross-examination
of over 24,000 C/C++ binaries (shipped by more than 6,600
Debian packages) with 510 CVEs in shared libraries, show that
function-level reachability information reduces the number of
ELF binaries reported as affected by a particular CVE by 28%
on average, while reducing the number of CVEs reported as
affecting a particular ELF binary by 30%.

Index Terms—Vulnerability Triage, Code Reachability, Software
Supply Chain

1. Introduction

Vulnerability triage is the process of evaluating published
software vulnerabilities based on their severity and impact
in the context of a particular environment, such as an orga-
nization’s IT infrastructure. This process helps organizations
prioritize their remediation efforts according to the most
critical vulnerabilities, while at the same time minimizing
any potential disruptions due to patching going wrong.

Software bill of materials (SBOMs) have become a
crucial mechanism for effective vulnerability triage and
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software supply chain risk management. Essentially, SBOMs
provide a detailed inventory of all components, libraries, and
modules in a software product, along with their versions and
dependencies. Given the SBOMs of all deployed products and
a feed of vulnerabilities, such as the common vulnerabilities
and exposures (CVE) list, automated vulnerability assessment
tools identify what components must be patched across an
IT infrastructure to reduce the risk of exploitation.

Unfortunately, however, this approach has proved ineffec-
tive in practice [1]. The extremely large volume of existing
CVEs, the continuous discovery of new vulnerabilities, and
the sheer complexity of modern software, mean that the
probability of a given product being affected by several
CVEs at any given time is very high. Consequently, security
administrators are faced with daunting lists of vulnerabilities
that must be patched. Without any meaningful way to
prioritize them and come up with an actionable mitigation
strategy, many system administrators end up apprehensively
deciding to apply patches after long delays [2], [3], [4].

This problem is severely exacerbated by the coarse
granularity and context-agnostic nature of SBOMs, which are
oblivious to the particular characteristics of each dependency.
Existing SBOM approaches operate at the software package
or binary executable level, providing a very coarse view of
a program’s dependencies. Consequently, if a third party
component contains a vulnerability, existing vulnerability
triage tools will report it for remediation irrespectively of
whether a given program that depends on this component is
actually affected by this vulnerability.

Determining the exact conditions under which a vul-
nerability in a third-party component may affect a given
program in a certain environment is a challenging problem,
and depends on a variety of factors, including whether and
how untrusted input can reach the vulnerable component, the
hardware and operating system characteristics of the host,
and the presence of any exploit mitigations or other defense-
in-depth solutions. We observe, however, that a first robust
approximation can be obtained by considering solely the
reachability of the vulnerable (parts of) code from the parent
program. For example, a high-risk vulnerability in a shared
library may actually be irrelevant (and its remediation could
be safely deprioritized) if the vulnerable part of its code is
not reachable under any conditions by a dependent program—
in which case the vulnerability cannot be triggered in the



first place. As prior research on attack surface reduction has
shown [5], [6], [7], [8], [9], programs typically import and use
only a fraction of a shared library’s functions. Consequently,
a vulnerability in a shared library may not pose a risk to
a dependent program if there is no control flow path that
reaches the vulnerable code.

Based on this observation, our main contribution is
a large-scale assessment of the improvement that code
reachability information can offer in the precision of vulner-
ability triage for C/C++ programs. To that end, we devel-
oped VPChecker (Vulnerable Path Checker), a system that
1) captures the (direct and transitive) module dependencies
of a program at the granularity of individual functions,
by extracting and aggregating function call graphs; and
ii) localizes CVEs in shared libraries to the corresponding
functions that contain the flaw by automatically identifying
the relevant parts of code from public software patches.
Function call graphs and localized CVEs are then unified in
a supply chain knowledge graph, which enables rapid and
precise vulnerability triage at the function level.

We opted to implement VPChecker at the binary level
rather than the source code level for several reasons. Although
source code analysis offers more precise function call graphs
due to the availability of rich compiler-level semantics, it
is impractical at the scale of modern IT infrastructures.
The diversity of build systems, the multitude of source
code dependencies, and the need for recompilation for
accurate global call graph extraction, make source-level
analysis cumbersome. In fact, even open-source software
is mostly deployed in the form of binaries through each
OS distribution’s package manager for convenience and
scalability. Binary analysis facilitates the rapid generation of
the call graphs required for conducting a large-scale study as
ours (recompiling tens of thousands of binaries from scratch
is infeasible), and for performing effective vulnerability triage
across an entire organization’s IT infrastructure.

Using VPChecker, we conducted a large-scale vulner-
ability assessment of the Debian Linux ecosystem, by
analyzing more than 24,000 C/C++ ELF64 binaries shipped
by more than 6,600 Debian packages. Our results show that
function-level reachability information reduces significantly
the number of false positives, and provides a more precise
CVE impact assessment. Specifically, it reduces the average
number of ELF binaries (directly or transitively) affected by
a given CVE by 28%, and reduces the average number of
CVEs affecting a given ELF binary by 30%), i.e., roughly one
third of the CVEs reported for a given application are false
positives. Given the overapproximated—but sound—nature
of binary-level function call graph extraction, these numbers
represent a lower bound, and could be further improved
using more precise function call graph extraction techniques.

In summary, we make the following main contributions:

o We developed VPChecker, a system for rapid large-scale
vulnerability triage at the function level for 64-bit C/C++
binaries.

o We highlight the absence of function-level details in
current vulnerability feeds, and develop methods to au-

tomatically augment CVE reports with affected function
names using automated patch analysis.

o We conducted a large-scale vulnerability assessment of
Debian Linux using 24,076 dynamically linked C/C++
ELF64 binaries shipped by 6,632 Debian packages, and
510 CVEs in shared libraries.

Our implementation and data set are publicly available
through https://github.com/harshvp1621/VPChecker.

2. Background

Vulnerability Triage. Vulnerability triage prioritizes re-
mediation efforts for the most critical vulnerabilities. This
assessment is based on exploitability, the presence of mit-
igations, the sensitivity of the affected assets, and the
difficulty of implementing a fix. In practice, the process
of automated vulnerability triage begins with just scanning
dependencies for vulnerabilities. Most vulnerability scanners
take an application’s list of dependencies as input, and
cross-reference their properties (e.g., version strings and
checksums) against a database of known vulnerabilities [10],
[11], [12], [13]. Upon a successful match, the dependency
is flagged as vulnerable without conducting any further
analysis [14]. However, this overlooks the fact that not
all code present in a dependency will be executed by the
program. As a result, some vulnerabilities may never be
exploitable because they are simply unreachable under all
possible program executions.

Software Bills of Materials. The first step in vulnerability
triage is to identify all dependencies of the target software. To
facilitate comprehensive, machine-readable and interoperable
tracking of software components, the adoption of Software
Bills of Materials (SBOMs) has gained traction [15]. The
SBOM of a project can be defined as a structured way of
representing its inventory, which captures the hierarchical
relationships between all software dependencies used [16].

One of the recommended use cases for SBOMs is to
aid in vulnerability triage [17]. It is therefore desirable
for SBOMs to contain sufficient information not only to
aid in the automated identification of vulnerable software
components [18] but also to enable maintainers to analyze
the reachability—and subsequently the exploitability—of
vulnerabilities in their supply chain. Several vulnerability
scanning tools [10], [11], [19], [12] parse dependency meta-
data from SBOMs and cross-reference them with various
vulnerability databases to flag at-risk components. Often, one
or more dependencies may have an associated Vulnerability
Exploitability eXchange (VEX) [20] document that indicates
the status of a vulnerability—affected, not affected, fixed,
or under investigation—with respect to the component.
However, the vulnerability status alone does not provide
insight into how the vulnerable code interacts with the
dependent program. This information can only be obtained
through code analysis—a feature that SBOM scanning tools
in the wild currently lack, as they track dependencies only
at the package or binary level [13], [14].
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Figure 1: CDF of the total number of (direct and transitive)
shared-library dependencies per binary across 24,076 Debian
ELF binaries. About half of the binaries depend on 15 or
more libraries.

3. Motivation

Dependency Management. Languages such as Java, Node.js,
Python, and Rust have native package management infras-
tructures (Maven, npm, Pip, and Cargo, respectively) that
serve as central repositories for hosting, distributing, and
managing dependencies. In contrast, C/C++ projects lack a
unified package management infrastructure. Instead, they rely
on a diverse array of build systems to manage dependencies,
which often are not interoperable [21]. Previous works on
determining dependencies for C/C++ projects [21], [22] have
noted that the lack of a unified package manager is one of
the primary hindrances for performing large-scale empirical
studies on the supply chain of this ecosystem.

In case of Linux distributions, C/C++ software is typically
distributed in the form of compiled binaries bundled within
packages. Most of these binaries follow the ELF file format
and are dynamically linked to other ELF binaries (referred
to as shared libraries) [23]. It is important to note that each
package often contains multiple binaries. For example, the
1ibss13 Debian package ships six binaries [24]. However,
binaries in other packages that declare a dependency on
libss13 are unlikely to rely on all six binaries it provides.
More importantly, a vulnerability reported in the 1ibss13
package may not impact all of its included binaries. Unfor-
tunately, some popular SBOM generation tools [25], [26]
perform their dependency analysis just at the package level,
thereby missing critical interdependencies at the binary level.

This observation underscores the necessity of tracking
C/C++ dependencies at a granularity finer than the package
level. Figure 1 shows the number of dependencies across
the 24,076 64-bit ELF binaries in our dataset (15,827 main
executables and 8,249 shared libraries). As shown in Figure 1,
approximately half of the binaries depend on at least 15
dynamically linked libraries.

Vulnerability Scanning. Vulnerability scanners typically rely
on querying a database to check for known vulnerabilities in a
project’s software dependencies [13], [14]. Using the lens of
code reachability, we can assert that a project will only be at

risk from vulnerable code that is reachable [27]—rendering
any alerts reported due to unreachable vulnerabilities as
false positives. The number of false positives generated by
vulnerability scanners is exacerbated due to the dependency
explosion illustrated in Figure 1, which often leads to
vulnerability alert fatigue [28], [29].

Prior research in the Java ecosystem has demonstrated
that a significant number of vulnerability alerts are false
positives and can be filtered out by computing the reachability
of vulnerable function(s) from the program’s entry points.
This is typically done either through manual inspection of
API usage, or by constructing function call graphs using static
or dynamic analysis on Java source code and binaries [30],
[31], [27], [32].

To the best of our knowledge, a similar study has not been
conducted for C/C++ software, and is the main motivation for
our work. Conducting large-scale reachability analysis in this
ecosystem presents several challenges. First, as previously dis-
cussed, there is no unified package management infrastructure
for C/C++ code. Even within the sub-ecosystems of specific
Linux distributions, dependency metadata is maintained at a
very coarse granularity, i.e., at the package level, which is
insufficient for precisely triaging vulnerabilities.

Second, most C/C++ software is distributed in the form
of compiled (and often stripped) standalone binaries that
lack high-level semantic information such as function names,
type annotations, and class hierarchies. In general, precise
disassembly of C/C++ programs is undecidable [33], [34].
The ubiquitous use of function pointers, manual memory
management, and compiler optimizations makes recovering
control-flow information from C/C++ binaries even more
complex. In contrast, the Java ecosystem offers significant
advantages for static analysis: Java bytecode retains rich
type information, method signatures, and class hierarchies,
enabling the construction of call graphs with higher precision.
Furthermore, some studies move from bytecode to source
code to further improve call graph accuracy [35], [31].

Given these challenges, in this work, we conduct the first
large-scale function-level code reachability study on CVEs
reported for C/C++ binaries shipped by a popular Linux
distribution—Debian Sid [36]. Aware of the difficulties in
extracting precise call graphs from binaries, we adopt a
conservative method for call graph construction by prioritiz-
ing soundness. Our results show that, despite the inherent
overapproximation of the extracted call graphs, function-level
analysis significantly reduces the number of false positives.

4. Function-level CVE Triage

Challenge 1: Lack of Reachability Information in Existing
SBOMs. On Linux systems, popular SBOM-generation
tools query the OS package manager to retrieve a list of
installed packages and their dependencies [25], [26]. Since
this approach does not capture any dependencies on shared
libraries, some tools parse the dynamic section of ELF
binaries to identify dynamically linked libraries and generate
an ELF-level SBOM [37]. While more fine-grained than
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Figure 2: An exported function of a library has a “code footprint” that comprises all reachable code from its entry point (a).
VPChecker performs vulnerability triage at the function level, considering the footprints of each imported function from
external libraries, and thus it can deprioritize the remediation of vulnerabilities associated with unreachable code (b).

package-level analysis, ELF-level analysis still ignores what
parts of code from each shared library are actually reachable.

Shared libraries expose their functionality mainly through
a set of exported functions. In turn, programs explicitly
import each function they want to use from external libraries.
Extensive research on software debloating and attack surface
reduction [38], [5], [6], [39], [40], [41], [42], [43], [44],
[71, [81, [9], [45], [46], [47] has shown that in the vast
majority of cases, programs use only a fraction of a library’s
exported functions. Each exported function is a potential entry
point into the library and is associated with only a subset
of the library’s code, to which we refer as the function’s
code footprint, as illustrated in Figure 2(a). For a given
vulnerability in a library, if the footprints of the library’s
functions imported by a program do not overlap with the
vulnerable code, then the program cannot be affected by the
vulnerability, simply because the flaw is unreachable.

As shown in Figure 2(b), tracing the actual code footprint
of imported functions reveals vulnerabilities in third-party
dependencies that are unreachable, thereby allowing these
to be de-prioritized in favor of reachable vulnerabilities that
pose a more concrete risk. In this example, relying on coarse-
grained package-level or ELF-level reachability information
would report both vulnerabilities as equally critical, while
function-level reachability reports only CVE-1 as critical,
because CVE-2 is not actually reachable.

Challenge 2: Lack of Vulnerable Code Location Informa-
tion in CVE Records. Information about CVEs is publicly
available in the form of CVE records [48]. Various public
databases maintain these records, with those relevant to the
Debian supply chain obtainable from the CVE Program [49]
and the Debian Security Tracker [50].

The first challenge in CVE triaging for Debian binaries
is specific to its package management infrastructure. In the
Debian ecosystem, software is bundled into deb packages,
which are of two types: source and binary [51]. As indicated
by their names, source deb packages contain source code
files that can be compiled into one or more binary deb
packages. These binary packages include compiled executa-

bles and shared libraries. For instance, the binary packages
ffmpeg, libavfilter7, and libpostproc55 are all
compiled from the source package ffmpeg [52].

Vulnerabilities in Debian, however, are reported at the
level of source packages. Given that a source package can
result in several binary packages, it is likely that a CVE
reported in a source deb may only affect some—but not
all—of the binary deb packages that are compiled from the
problematic source code file(s). This discrepancy between
source and binary packages results in dubious vulnerability
reporting [22], as all binary packages originating from a
source package are flagged as vulnerable—even those that
do not contain the flaw. This is a limitation of many Linux
vulnerability scanning tools, as documented in the open-
source tool debsecan [53], which reports CVEs disclosed
for deb packages installed on Debian hosts.

The next challenge in CVE localization is the lack of an
explicit field in CVE records for specifying the names of
the vulnerable functions or the affected code locations. The
CVE Program mandates a minimum set of information to be
published in each record [54], including the affected product,
affected or fixed version(s), CVE ID, references (e.g., blog
posts or patches), the vulnerability type or root cause, and a
plain-English description. However, the mention of vulnera-
ble function names in this description is often incomplete
or entirely missing. In 2024, the CVE Program released a
new schema that introduces the programRout ines field
to address this gap [55], [56], but this field remains largely
unused, with only 105 of 65,000 CVEs reported between
2022-2024 populating it [57]. Other vulnerability reporting
standardization efforts, such as the OSV format [58], also
attempt to address this issue by including explicit fields for
vulnerable symbol names. However, this information is still
largely absent [59], especially for C/C++ vulnerabilities.

As a result, existing SBOM-based vulnerability triage
tools rely solely on component names and version strings
provided in CVE records [10], [11], [60]. The lack of
function-level details in C/C++ CVE records is thus a key
roadblock in determining whether imported code actually
overlaps with vulnerable code.
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5. VPChecker Architecture

We introduce Vulnerable Path Checker (VPChecker), a
tool that analyzes dynamically linked C/C++ binaries to
track their dependencies at the function level, and to identify
function-call paths that reach vulnerable functions associated
with CVEs in those dependencies. Using VPChecker, we
studied vulnerable code reachability on a large scale across
binaries shipped by deb packages in Debian Sid.

Figure 3 shows an overview of VPChecker, which
consists of two main parts: i) the extraction and aggregation
of function call graphs (FCG) from binaries shipped by deb
packages, and ii) the localization of CVEs to the correspond-
ing vulnerable function(s). The utility of combining FCGs
from all component binaries lies not only in identifying
the precise code footprint of all functions imported from
shared libraries used by a given binary, but also in providing
a bird’s-eye view from a library’s perspective—revealing
the impact of its exported functions and, by extension, its
internal code on the entire supply chain.

The CVE Localization pipeline then enables us to localize
CVE information to the actual vulnerable functions. This
is done by systematically scraping all publicly available
patch links available in CVE records, and heuristically
(and conservatively) extracting a list of functions that were
modified as part of the fix. For each CVE, we introduce a
CVE node into the unified graph and connect it via edges
to all functions modified across its patches. This allows
us to localize each modified function to the final compiled
binary that will ultimately run the vulnerable code—a crucial
mapping unavailable in any existing open-source vulnerability
database. Borrowing terminology from traditional supply
chain literature [61], we refer to our unified function-level
graph, annotated with vulnerability information, as Debian
Sid’s supply chain knowledge graph. As new CVE nodes
are added to the graph, only those programs with a direct
code path to a given CVE are considered at risk, regardless
of any higher-level dependencies.

5.1. Function-level Dependency Graphs

5.1.1. Source Code vs. Binary Analysis. Program analysis
can be performed either at the source or at the binary
level. Source-level analysis benefits from rich semantic
information, enabling higher precision. In contrast, binary-
level analysis faces significant challenges in recovering high-
level semantics, resulting in over-approximations for control
flow recovery, type inference, and related tasks [34].

For our purposes, a C/C++ program’s FCG can be ex-
tracted from either its source code (e.g., using a compilation
pass) or its binary executable (e.g., using binary analysis
tools). Although our focus is on the Linux ecosystem—where
all packages in major distributions are open-source—we
chose to not rely on source code-based FCG extraction for
the following reasons.

First, source-level analysis does not scale to the size
and complexity of modern IT infrastructures. Extracting
FCGs typically requires compiler-level tools (e.g., additional
compiler passes) [62]. Requiring administrators to retrieve
the code of all deployed software, configure the necessary
build tools and dependencies, and recompile all programs,
is unrealistic in terms of time, scale, effort, and required
expertise. The Debian Package Rebuild project [63], which
attempts to recompile the entire Debian archive using clang,
underscores the high computational cost of such efforts, and
the associated challenges, as many packages still fail to
build. Additionally, the diversity of build systems across
C/C++ packages (e.g., make, cmake, ninja) [64] further
complicates compiler-based call graph extraction, particularly
when linking source files to their correct binary targets [62].

Second, the vast majority of C/C++ open-source software
is deployed in the form of binaries distributed via package
management tools such as apt. This distribution model
offers unparalleled convenience and scalability compared to
having to compile each new or updated version of a program
from source. At the same time, vulnerability triage and
prioritization must be operational at scale, to offer meaningful



response to the ever-increasing number of vulnerabilities
being discovered and exploited in the wild.

For the above reasons, we focus on the generation of
FCGs directly from binaries, to enable the practical and
rapid construction of a function-level view of large software
supply chains. Another advantage of this approach is that
it is directly applicable to proprietary software, which may
still have dependencies on open-source libraries, although
its source code is not available.

5.1.2. Supply Chain Knowledge Graph. Given a program,
VPChecker extracts the FCG of each direct and transitive
ELF binary dependency and aggregates them into a unified
graph capturing all function-level interdependencies. Each
node represents a function, and directed edges denote caller—
callee relationships within and across different binaries.

The FCGs of all binaries in our dataset are aggregated
into a unified supply chain knowledge graph, stored in a
graph database. This knowledge graph includes two types
of nodes: i) function nodes, derived directly from the FCG;
and ii) bridge nodes, added for each binary that has at least
one indirect function call site. Each bridge node receives
an incoming edge from every function that includes at least
one indirect call site. Correspondingly, an outgoing edge is
added from the bridge node to every address-taken function
in the binary, conservatively connecting all indirect function
call sites to all potential indirect call targets.

For our experimental evaluation, we construct a separate
graph characterizing the Debian supply chain at the ELF
binary level. Each node in the ELF-level graph corresponds
to a binary in our dataset, and each directed edge represents
a dynamically-linked dependency between binaries. Hence,
for each node in the ELF-level graph, a simple breadth-
first search will return a list of all dynamically-linked
dependencies—effectively an ELF-level SBOM. In essence,
the nodes of the dependency tree derived from the ELF-level
graph of a binary correspond to the list of shared libraries
generated by the 1dd utility [65] on Linux-based systems.

5.2. CVE Localization

Due to the lack of explicit code location information in
CVE records, prior research in the area of large-scale analysis
of software vulnerabilities resorted to scraping patches from
the web pages pointed to by URLs typically found in the
references field of various CVE record formats [66], [67],
[68]. The links crucial for extracting the names of vulnerable
functions typically point to Git commits.

Figure 4 provides an overview of our CVE localization
pipeline. Stage (i) gathers relevant CVEs for each Debian
source package that ships at least one dynamic shared library.
In Stage (ii), we scrape the references listed in the NVD and
Debian Security Feed entries for each CVE, searching for
Git URLs that link directly to a commit. For some CVEs,
references may not directly include a Git commit link, but
may link to a bug hosting service such as Bugzilla [69]. For
such cases, we attempt to extract Git commit links from the
comments of the corresponding Bugzilla pages.
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Figure 4: CVE localization process for pinpointing the
functions that contain a given flaw.

Stage (iii) clones the repositories of the URLs extracted
from the identified Git commit links. We then parse the patch
files to identify the range of source code lines modified by
the patch (known as diff hunks) [70]. This is done using the
ctags [71] utility to record each function’s start and end
line numbers. Based on the line numbers indicated in the
patch files, we determine which function’s body encompasses
the change. If such a function is identified, we extract its
name and generate a tuple. The final output of this stage
is a list of tuples, each representing a CVE ID and the
corresponding affected function. Since a patch may modify
multiple functions across different files, we conservatively
consider the names of all altered functions as vulnerable,
and include all of them in the final list of tuples.

6. Implementation

We implemented our framework using Debian Sid
Docker [72] containers, to allow for clean installation (and
rollback) of packages and all their dependencies. Instal-
lation of each deb package is carried out using apt,
the default package manager for Debian, which installs
all direct and transitive dependencies of the target deb
package. Additionally, for each deb and its dependencies,
we explicitly install the associated debug packages, if avail-
able. Debug packages are usually hosted on a separate
repository from the one that hosts the release pack-
ages, and are typically named <package_name>-dbg
or <package_name—-dbgsym> [73].

For packages without a corresponding debug package
(2,831 out of 6,632 in our dataset), the analysis proceeds
without debug symbols. The absence of symbolic information
implies that the actual names of the infernal functions of a
binary are not available, in which case a unique identifier is
generated based on the function’s position in the binary.

6.1. Function Call Graph Extraction

6.1.1. Handling Indirect Function Calls. Edges in a
call graph represent either direct or indirect function calls.
Extracting the targets of direct calls is straightforward, but
precisely determining the possible targets of indirect calls



is challenging, because the high-level type information and
control-flow context needed to resolve these calls is lost
during compilation. Consequently, binary code analysis tools,
especially those in the area of retrofitting control flow
integrity at the binary level [74], [75] typically resort to
heuristics and approximations to infer a conservative set of
potential targets for a given indirect call site [76].

For our use case, which is determining the reachability
of vulnerable functions, the extracted call graph must be
sound. We prioritize soundness over precision, because a
vulnerability reachability analysis performed on a precise
but unsound call graph would miss some paths to vulnerable
functions—a costly oversight if severe vulnerabilities are
incorrectly reported as unreachable.

6.1.2. Binary Analysis Tool Selection. Given our soundness
requirements, we resorted to using the binary analysis tool
Sysfilter [41]. Starting with the main executable of a program,
Sysfilter analyzes the whole program along with its direct and
transitive dependencies, and resolves the origin of all function
nodes to their respective binaries, including any dynamically-
linked shared libraries. This differentiates functions native
to the binary from those imported from external modules.

Soundness for indirect call target resolution. We con-
sidered and evaluated several popular binary analysis tools
before settling on Sysfilter. Ghidra [77] does not support
indirect call target resolution and would therefore report
many address-taken functions as “uncalled,” an issue also
documented by Pang et al. [34]. Angr faces similar issues
with indirect call target resolution [34], [78], and its doc-
umentation states that its indirect jump resolvers cannot
be used for indirect call target resolution [79]. Research
prototypes such as BPA [78] support only 32-bit binaries;
TypeArmor [74] requires recompilation of all binaries using
the LLVM compiler; and BinPointer [80] scales poorly in
terms of runtime and memory overhead even on the SPEC
2016 binaries.

Sysfilter, on the other hand, identifies all address-taken
functions in a binary and, for each indirect call site, considers
all address-taken functions as potential targets. This approach
is sound but conservative, leading to overestimation of
a function’s code footprint. For vulnerability reachability
analysis, soundness is preferred over precision: missing
indirect call edges that are actually feasible could cause
critical vulnerabilities in dependencies to be overlooked.
In practice, our analysis in Section 7.4 suggests that this
overapproximation does not significantly affect the precision
of vulnerability triage. In any case, our results represent a
lower bound, and can only be improved if more precise call
graph extraction becomes available.

6.1.3. FCG Extraction. After installing a deb package and
all its dependencies, we run Sysfilter on all installed binaries
to obtain their FCG. For main executables, Sysfilter identifies
all entry points automatically. For shared libraries, we first
use readelf [81] to extract the list of exported functions,
which is then passed to Sysfilter as entry points for FCG

generation. To analyze the 6,632 packages of our dataset,
we split the list of deb files into 48 batches, and execute
this stage of the pipeline in parallel.

6.2. Creating The Knowledge Graph

The extracted FCGs are aggregated into an ArangoDB
graph database [82]. This aggregation captures function-level
dependencies across the supply chain, resulting in a knowl-
edge graph that enables graph traversal queries for assessing
the reachability of library functions across thousands of
binaries that depend on them. Each function node uses a
primary key in the format name@elf name@deb_name
to distinguish between functions with the same name in
different binaries and deb packages.

The next step is to annotate the vulnerable function nodes
based on the <CVE ID, vulnerable function name> tuples
generated by the CVE localization pipeline (Figure 3). Each
function name is looked up in the knowledge graph, and
upon a successful match, we add a node for the CVE and
create a directed edge from the CVE to each vulnerable
function. If no match is found for a function, we skip it and
proceed to the next tuple.

6.3. CVE Reachability Analysis

In the function-level knowledge graph, all nodes adjacent
to a CVE node correspond to vulnerable functions. To
determine the reachability of a given vulnerability, we use
common graph traversal techniques to identify paths leading
to vulnerable functions.

Specifically, to find all the binaries that are affected by a
given CVE, we designate each vulnerable function as a start
node, and run an INBOUND breadth-first search (a built-in
operation provided by ArangoDB [83]), which recursively
follows all incoming edges to a start node. Conversely, to
find all CVEs affecting a particular binary, we perform an
OUTBOUND breadth-first search operation by designating
each function in the binary as a start node. We then calculate
the total number of unique CVEs corresponding to the
vulnerable functions that were reached across all traversals.
These two operations compute the CVE Impact and CVE
Exposure metrics which we introduce in Section 7.1 as part
of our experimental evaluation.

7. Experimental Evaluation

CVE Dataset. The Debian Security Tracker [50] tracks over
36,000 CVEs across 3,581 deb sources. For our study, we
focus only on the CVEs reported from 2022 onwards for
deb sources that ship at least one library package. This is
because the goal of our reachability analysis is to identify
vulnerable functions in shared libraries that are actually used
as dependencies, rather than focusing on main executables.
While it is possible for a vulnerability in a main executable
to affect another executable that depends on its output or
execution behavior, such interactions cannot be captured by



a function call graph and are therefore beyond the scope of
our analysis. With this constraint, we started with an initial
pool of 2,180 CVEs reported for 338 deb sources.

Unfortunately, the lack of valid links to Git commits in
CVE records leaves out many CVEs. Going back to stage (ii)
in Figure 4, out of the 2,180 CVEs in our initial set, we had
to disregard 1,116 (51.2%) for which we could not obtain
any link to a patch, leaving us with 1,064 CVEs having at
least one publicly available patch. Without a direct link to
the patches that fix a given CVE, we cannot localize the
CVE to the corresponding vulnerable function(s).

After CVE localization is complete, we obtain a list of
vulnerable functions extracted from the patches of each CVE
in a given deb source package. However, as discussed in
Section 3, each source package often compiles into multiple
binary (.deb) packages. Consequently, the data present in
Debian CVE records is insufficient to determine exactly
which ELF64 binaries (shipped by a given deb package)
contain the vulnerable code. We bridge this gap by query-
ing the list of vulnerable function names in VPChecker’s
knowledge graph. This step further eliminates 554 CVEs:
63 CVEs where the vulnerable functions affected main
executables instead of libraries, and 491 CVEs where the
patched functions were not present in our knowledge graph.

Manual inspection of patches for which we could not find
a corresponding function in our graph revealed that many of
these patches affected the testing infrastructure of a package,
and some were not security issues at all. Ultimately, our final
pool of vulnerabilities in shared libraries consists of 510
CVEs, affecting 1,541 functions across 150 shared libraries.
About half of the CVEs require patching of more than one
function. Detailed statistics are provided in Appendix A.

ELF64 Binaries. We collected dynamically linked ELF64
main executables and shared libraries from the Debian
Sid repositories. Sid is the official Debian development
distribution, and hence all its packages are built from the
latest upstream version of their respective source code [36].
Sid’s repositories provide debug symbols [73] for most
packages which aid static binary analysis tools in extracting
symbolic information, producing call graphs with accurate
function names. These factors led us to choose Debian Sid
for our study.

The Sid repository contains over 70,000 Debian packages.
Since we aim to measure the impact of vulnerable third-party
shared libraries on the Debian supply chain, we focused on
binaries from packages that depend on at least one vulnerable
library. We found 6,632 such dependent deb packages, and
successfully extracted the FCGs from a total of 24,076 ELF64
binaries (8,249 shared libraries and 15,827 main executables).
Note that we restrict our study to only dynamically-linked
ELF64 executables compiled from C/C++ code, ignoring all
other binary file formats.

7.1. Metrics

Baseline: For our baseline, we consider SBOM tools that
identify dynamically linked dependencies at the ELF binary
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Figure 5: CDF of the percentage reduction in the number

of ELF binaries reported as affected by a given CVE when

using function-level information, as a percentage of all CVEs

in our dataset. For 62 CVEs (20%), 40% or more of the

binaries are falsely deemed vulnerable by ELF-level SBOMs.

level. We construct an ELF-level knowledge graph (Sec-
tion 5.1.2) that captures the dynamically linked dependencies
of all 24,076 binaries, allowing us to model the core
functionality of ELF-level SBOM generation tools [84] for
our comparisons.

CVE Impact: Given a CVE, the number of ELF binaries
that have at least one path reaching any of the vulnerable
function nodes affected by the CVE.

This metric is calculated per CVE over both knowledge
graphs as follows. At the ELF level, if an ELF binary includes
in its dependency chain a library that is affected by the given
CVE, then it is counted. At the function level, an ELF binary
is counted if it contains at least one function that has a path
to one of the vulnerable functions affected by the CVE.
CVE Exposure: Given an ELF binary, the number of CVEs
that have at least one vulnerable function node lying on a
path starting from the target binary.

This metric is calculated per ELF binary over both
knowledge graphs as follows. At the ELF level, every CVE
associated with a direct or transitive dependency of the target
binary is counted. At the function level, every CVE associated
with at least one vulnerable function that is reachable from
the target binary is counted. To quantitatively measure the
difference in these two metrics between the ELF and function
levels, we calculate the percentage reduction in CVE Impact
and CVE Exposure obtained by function-level reachability
information when compared to ELF-level information.

7.2. CVE Impact Analysis

We measure the number of ELF binaries reported as
affected by a given CVE using both ELF-level and function-
level reachability information, and report the reduction in
the number of false positives, i.e., the number of binaries
unnecessarily deemed vulnerable by ELF-level analysis. To
identify actual third-party shared libraries (and distinguish
them from application-specific shared libraries that are not
used by other packages), we measure CVE Impact for only
those libraries on which at least 10 different ELF binaries
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Figure 6: CDF of the percentage reduction in the number
of CVEs reported as affecting a given ELF binary when
using function-level information, as a percentage of all ELF
binaries in our dataset. For about half of the binaries, legacy
ELF-level SBOMs falsely report twice or more CVEs as
relevant, while in reality they are harmless.

depend (we chose this threshold based on our observation that
most application-specific libraries are required by fewer than
10 binaries). Figure 5 shows the percentage reduction in the
CVE Impact score at the function level, as a cumulative
percentage of all CVEs reported for third-party shared
libraries.

For about 50% of the CVEs, the reduction in the number
of vulnerable binaries is 20% or higher, i.e., 20% or more
of the binaries are unnecessarily deemed vulnerable by ELF-
level SBOM tools. For 35 CVEs (11%), there is no reduction.
Overall, we observe an average of 28% reduction in CVE
Impact scores for the CVEs in our dataset.

In practice, the CVE Impact metric is a useful indicator
for identifying and prioritizing the remediation of critical
vulnerabilities that affect the largest number of software
packages deployed in an organization. Note that percentage
reduction will never reach 100% because a shared library
affected by a CVE will always be reported as vulnerable
by both function-level and ELF-level analysis. The actual
number of affected binaries varies significantly depending
on the location of the vulnerable code and the popularity of
the vulnerable shared library. We provide detailed data on
the top-50 CVEs with the highest ELF-level CVE Impact in
Table 3 in the appendix.

7.3. CVE Exposure Analysis

For each ELF binary in our dataset, we measure how
many CVEs are reachable according to the ELF-level and
function-level knowledge graphs, and plot the percentage
reduction in Figure 6. Out of 24,076 binaries, 12,265 (50.9%)
have a reduction of 50% or higher in the number of
CVE:s that are actually reachable, i.e., ELF-level reachability
analysis falsely reports rwice or more CVEs as relevant
compared to function-level analysis.

For 4,222 binaries (17.5%), function-level information
offers no reduction in the number of reachable vulnerabilities.
For 2,012 binaries (8.3%), there is exactly a 50 percent

reduction (vertical line in the middle of the plot). For 5,221
binaries, the only vulnerable library in their dependency tree
is 1ibc.so. 6. VPChecker reports that out of seven CVEs
in 1ibc, only three are reachable from these binaries at a
function level, bringing their percentage reduction to 57%.
For 3,189 binaries (13%), there is a 100% reduction in the
number of reachable CVEs.

To summarize, the average reduction in CVE Exposure
for 24,076 binaries is 30%, and for 82% of the binaries,
we observe that at least one CVE is unreachable. These
results suggest that VPChecker offers quite a significant
improvement in the accuracy of vulnerability triage for
individual programs, reducing considerably the number of
CVEs that should be prioritized for remediation. Despite
1) the extensive overapproximation of our indirect call target
resolution analysis, and ii) the limited set of CVEs for which
we could localize their vulnerable functions, these results
suggest that VPChecker still significantly reduces the number
of false positives reported by ELF-level analysis, which is
particularly important for large organizations that need to
triage thousands of different deployed binaries and CVEs.

7.4. VPChecker Accuracy

As discussed in Section 6.1.1, extracting a call graph with
precise indirect call target resolution from compiled C/C++
binaries is a challenging task. VPChecker uses Sysfilter [41]
for static binary analysis, which overapproximates the set of
address-taken functions reachable from an indirect call site.
This overapproximation affects the vulnerability assertions
made by VPChecker, i.e., VPChecker may report a CVE as
reachable while it is actually not. To evaluate the extent of
this discrepancy, we performed some additional experiments
with a subset of binaries for which we extract a more precise
call graph at the compiler level.

Compiler-level call graph. To extract more precise call
graphs, several works first recompile programs to obtain their
intermediate representation (IR), and then match indirect call
sites with potential targets by extracting function signatures
at both ends using various LLVM passes [75], [85], [86],
[87]. We use the LLVM pass proposed by Lin et al. [75], who
evaluate their technique on over 1,300 C/C++ binaries. The
resulting compiler-level call graph serves as our ground truth.
The standard Debian compilation process uses a GCC-based
toolchain [88]. However, constructing our compiler-level
call graph requires recompiling binaries using the LLVM
toolchain. Recompiling thousands of packages from the
Debian archive is not only computationally intensive [63],
but also requires extensive manual intervention to resolve
build issues introduced by the different tools—making this
effort infeasible at scale. To keep the effort manageable, we
perform our compiler-level analysis on the nine libraries with
the highest number of reported CVEs in our dataset.

7.4.1. False Positives. We consider it a false positive when
VPChecker reports a vulnerable function as reachable, but
the same function is actually unreachable in a more precise



TABLE 1: Impact of call-graph soundness and precision on CVE reachability within the nine most vulnerable shared libraries.
Sysfilter produces a sound but over-approximated call graph. LLVM IR generates a more precise graph through indirect
callsite—callee signature matching. Angr’s graph is unsound due to its inability to resolve indirect calls. Replacing Sysfilter
with LLVM IR does not reduce reachable CVEs but does lower the number of vulnerable exported functions. In contrast,
Angr’s unsound graph misses both vulnerable exported functions and reachable CVEs due to missing indirect-call edges.

Sysfilter LLVM Angr

Total Vuln. CVEs Vuln. CVEs Vuln. CVEs
Library Functions Exported  Exported Reached AICT Exported Reached AICT Exported Reached
libexpat.so.1 294 69 19 14 2.12 17 14 0.48 7 11
libXpm.so.4 97 34 16 6 0.82 16 6 0.36 16 6
libtiff.s0.6 699 193 107 21 2.32 80 21 1.0 44 14
libcurl.so.4 2811 88 69 28 0.95 68 28 0.44 16 19
libr_core.s0.5.9.2 2424 759 295 7 4.06 191 7 3.89 136 4
libgnutls.s0.30 2820 1312 931 6 0.54 910 6 0.19 71 4
libxml2.s0.2 2171 1398 915 9 0.47 907 9 0.15 517 9
libnetsnmpmibs.s0.40 2050 1717 135 6 4.49 132 6 2.59 7 5
libcrypto.so.3 9422 4003 2675 25 5.17 2661 25 2.55 2367 21

version of the call graph (e.g., extracted at the compiler level).
It is important to note that the use of a more precise call graph
does not affect the reachability of all vulnerable functions.
For instance, out of 1,541 vulnerable functions identified
by our CVE Localization pipeline (Section 7 CVE Dataset),
556 are exported and hence directly called by dependents,
leaving no ambiguity about their reachability from direct
dependents. The remaining 985 are internal functions of the
150 shared libraries, out of which 815 internal functions
are reported as reachable from any indirect call site in their
respective shared library. Consequently, these are the only
functions (52.9%) that would benefit from a more precise
call graph, i.e., for the remaining 47.1% of the vulnerable
functions, the conservative analysis of VPChecker cannot
result in false positives.

Impact of call graph precision on false positives. Intuitively,
the compiler-level call graph may have fewer entry points
leading to a vulnerable function when compared to its
overapproximated binary-level counterpart. To assess the
impact of this overapproximation, we measured the number
of reachable CVEs when using the compiler-level and binary-
level call graphs. We expect that the more accurate compiler-
level call graph will result in fewer CVEs being reachable
from a library’s entry points (i.e., all its exported functions).
The results of our analysis are presented in Table 1.

A common metric for estimating the overapproximation
of indirect call target resolution is the Average Indirect Call
Targets (AICT) score [80], [78], [76]. For a given binary, the
AICT score is calculated as the ratio of the total number
of potential indirect call targets to the total number of
indirect call sites. As shown in the “AICT” columns for
Sysfilter and LLVM in Table 1, the call graph extracted at
the compiler level is clearly more accurate, as it has a lower
AICT score for all nine binaries. Strikingly, this increased
precision does not lead to any reduction in the number of
reachable CVEs, as evident by the “CVESs reached” columns.
However, we do observe a slight reduction in the number
of exported functions that can reach a vulnerable function

within the same library. This reduction stems from replacing
Sysfilter’s over-approximation of indirect-call edges, where
instead of assuming every indirect call site can target every
address-taken function, targets are restricted to address-taken
functions whose signatures match the call site.
Considering the example of 1ibcrypto.so. 3, from
the results of Table 1 we observe that switching to the
compiler-level call graph reduces the number of vulnerable
exported functions (the subset of exported functions that
have at least one path to a function containing a CVE) by
just 14 (from 2,675 to 2,661). Further inspection of these
14 functions reveals that 13 of them are never called by
any of the 24,075 binaries in our dataset, and only one
of them is called by three binaries. This implies that for
libcrypto.so. 3, switching to the more precise compiler-
level call graph would reduce the number of reported CVEs
for just three out of the 24,076 programs. We observe
similar results for the other eight binaries, and report our
detailed findings in Appendix B. Consequently, for the 116
CVEs across these 9 shared libraries, switching to a more
precise call graph will not offer any significant advantage
for vulnerability triage, which means that VPChecker’s less
precise binary-level operation results in a negligible number
of falsely reported CVEs—always much lower compared to
existing ELF-level tools, as discussed in Sections 7.2 and 7.3.

7.4.2. False Negatives. We consider as a false negative any
case in which VPChecker reports a vulnerable function as not
reachable, if the same function is actually reachable in the
compiler-level call graph. We did not observe any such case
in our experiments, because the call graph generated by Sys-
filter is complete [41], i.e., it never excludes any function that
may be executed by the program, under any possible input.
This includes asynchronous programming, signal handlers,
and other callback functions, all of which are address-taken
and will thus be included in the (overapproximated) call
graph. We thus claim that the output of VPChecker will not
result in any false negatives for a given binary and all its
dynamically linked dependencies.



The only possibility for false negatives in our current
implementation would stem from programs that load dynamic
shared objects using dlopen, which is typically used for
loading plugins or external modules at runtime. Given a
binary, statically determining the particular shared libraries
it may load using dlopen remains a challenge. To avoid
such false negatives, VPChecker falls back to package-level
analysis for binaries that contain a call to dlopen.

The corresponding Debian package of a given program
explicitly declares all its library dependencies, including
those loaded using dlopen. If the program uses dlopen
to load a shared library that is not dynamically linked, it
will still be included in the package (e.g., Apache’s loadable
modules). When VPChecker statically identifies the presence
of dlopen in a binary, it reports all CVEs present in the non-
dynamically linked shared libraries included in the binary’s
Debian package, thereby performing no worse than existing
package-level vulnerability scanners. In our dataset, we found
only 1,153 (4% of all) binaries making a call to dlopen.

7.4.3. Using Unsound Call Graph. To evaluate the impact
of using an unsound call graph for VPChecker, we replaced
Sysfilter—the underlying call-graph tool—with Angr [89],
a popular binary analysis framework. We used Angr’s
static call graph extraction algorithm CFGFast and set the
option resolve_indirect_Jjumps as true [90]. Note
that although Angr supports indirect jump resolution, the
resolver does not support indirect call target resolution [79],
hence the graph it produces is unsound due to missing edges
corresponding to potential indirect function calls. We run
Angr on the same nine most vulnerable libraries and compare
the results with the ground truth call graph obtained from
LLVM bitcode.

We show our results in Table 1 (two right-most columns).
Note that we leave out AICT for Angr since CFGFast
does not give us any approximation of indirect call targets.
For seven out of nine libraries, Angr falsely reports many
CVEs as unreachable. For example, in 1ibcrypto, Angr
fails to report four CVEs as reachable. One of the missed
CVEs is CVE-2024-4603 [91], which required patching
the function ossl_dsa_check_priv_key, which
in turn is directly called by dsa_validate [92].
However, dsa_validate is an  address-taken
function that appears in the function pointer array
ossl_dsa_keymgmt_functions [92]. Because Angr
does not resolve indirect calls, it misses the edge to
dsa_validate, and CVE-2024-4603 is falsely reported
as unreachable.

8. Discussions and Limitations

Call Graphs for C/C++ Binary SBOMs. Our results demon-
strate that even a highly conservative function call graph
generator for C/C++ binaries can serve as an effective starting
point for identifying unreachable CVEs (false positives) in
the dependencies of many binaries. We recommend that
package maintainers generate SBOMs for each binary they
distribute and embed the corresponding FCG as SBOM

metadata, since FCGs can be generated more precisely at
the source or IR level. At the same time, we show that in
practice—particularly for widely used and complex libraries—
a conservative call graph generated at the binary level using
an off-the-shelf static analysis tool can be nearly as effective
for vulnerability triage (Section 7.4). Therefore, system
administrators can immediately begin leveraging FCG-based
analysis to monitor their applications’ code reachability to
vulnerable functions in third-party dependencies.

Call Graph Precision. The primary challenge in increasing
the accuracy of our code reachability analysis lies in improv-
ing the precision of binary-level indirect call target resolution.
While tools such as TypeArmor [74], TypeSqueezer [76],
BPA [78], and BinPointer [80] incorporate advanced heuris-
tics for improving AICT numbers in COTS binaries, their
evaluations have primarily been limited to the SPEC binaries.
In our future work, we plan to assess the suitability of these
techniques for large-scale, ecosystem-wide binary analysis—
which is the focus of our study.

A limitation stemming from the difficulty of resolving
indirect call targets is that our knowledge graph does not
account for cross-module (cross-binary) indirect function
calls. The FCG generated by Sysfilter enumerates all address-
taken functions within the scope of the program analysis.
However, it is possible that some address-taken functions
may be potential targets of cross-module indirect calls. While
we conservatively assume that address-taken functions may
only be targets of indirect calls originating from call sites
within the same binary, it remains difficult to determine
which external binary in the analysis scope (if any) may
have taken a function’s address. Nevertheless, such cases are
rare in our dataset—functions that could potentially serve as
targets of cross-module indirect calls comprise only 0.3% of
all functions in our graph. In future iterations, a reasonable
first approximation could be to propagate reachability only
to those binaries within the scope of the program analysis
that directly import symbols from the binary containing the
address-taken function under consideration.

CVE Localization. Our CVE localization pipeline treats
the list of patches linked to a CVE record as the ground
truth for identifying the precise set of vulnerable functions.
However, in practice, not all functions modified in a patch
are actually vulnerable, which can cause the pipeline to
overestimate vulnerable functions in some cases. For instance,
GitHub/GitLab allow multiple commits in a single pull/merge
request. Maintainers sometimes fix several CVEs in one
request, which is linked into the record of each patched CVE.
Consider five libexpat CVEs (CVE-2022-22822 through
CVE-2022-22827), caused by flaws in five different functions,
all fixed in a single pull request [93]. When our pipeline
processes these five CVE records, we encounter the same
patch that fixes five functions for each CVE, creating an
impression that each CVE was caused by all five functions.
This yields false positives for dependents that call only one
vulnerable function and realistically are at risk from only
one CVE, but instead get flagged for four additional CVEs.



This depends on maintainer practices, and is uncommon in
our dataset: across all Git references, we observe only 47
pull requests linked as fixes to 61 CVEs, out of more than
500 CVEs and thousands of commits. Additionally, patches
modifying inline functions or structure definitions introduce
identifiers that do not appear as symbols in the final binary
because they are inlined during compilation.

9. Related Work

Function-level Reachability. The Java and JavaScript ecosys-
tems have witnessed extensive work showcasing the ef-
fectiveness of using function-level reachability information
to reduce false positives originating from unreachable vul-
nerabilities. Zapata et al. [30] manually inspected over 60
npm projects and found that 73% of them were safe from
vulnerable dependencies because the vulnerable function was
never called. Nielsen et al. [94] used function call graphs for
npm applications and found that security warnings could be
reduced by up to 81% when reporting vulnerabilities using
a function-level dependency tree.

Plate et al. [32] and Ponta et al. [95] used dynamic and
static analysis to determine the reachability of vulnerable
code in Java-based projects. Wu et al. [96] published an
empirical study measuring the reachability of CVEs in
the Maven ecosystem. Building on this work, Zhang et
al. introduced VAScanner [35] to improve the process of
extracting vulnerable function names from CVE patches,
and conducted another reachability study that demonstrated
the effectiveness of function-level vulnerability reachability
analysis in the Maven ecosystem.

Our work is the first to apply large-scale reachability
analysis to the C/C++ ecosystem. Despite the inherent
challenges in constructing precise FCGs, we demonstrate
that conservative overapproximations yield results that are
precise enough to motivate a shift toward function-level
vulnerability triaging for C/C++ binaries. The closest related
effort in a compiled language ecosystem was conducted in
Rust. Prizi [97], is a framework that built function-level
knowledge graph for the Rust supply chain, relying on the
recompilation of all Rust packages and extracting FCGs from
their LLVM IR. However, Pridzi was not used to perform
any CVE reachability analysis.

SBOMs for Compiled Binaries. Since compiled binaries
lack much of the information that is crucial for dependency
identification, a few studies have attempted to embed addi-
tional metadata in a separate section of the file [98], [99],
[100]. Automatic Bill of Materials (ABOM) [100] rethinks
binary-level SBOM construction by computing the hashes
of source code files and embedding them into a compressed
data structure that is included as a separate section in the
binary. However, the mapping from the binary files to source
files remains too coarse for a function-level study.

Vulnerability Scanning Tools for C/C++ Binaries. There
are several open-source [101], [102] and proprietary [103],
[104] vulnerability scanning tools for C/C++ binaries. These

tools employ static binary analysis techniques to identify
patterns and code signatures in target binaries. For example,
cve-bin-tool [101] by Intel extracts ASCIT strings from
the target binary, which include the program name and release
version. These are then used to look up the corresponding
entries in the NVD feed. The cwe_checker tool uses
Ghidra [77] to search for vulnerable code patterns. However,
these tools do not uncover dynamic library dependencies
and operate solely on the target binary. Syft [84] reads the
dynamic section in ELF header, which contains only the
direct dependencies of a binary. Observing a gap in accurately
identifying all dependencies of a binary and integrating them
with vulnerability information, we attempt to plug this by
constructing an ecosystem-wide, function-level knowledge
graph annotated with vulnerability data.

CVE Mining and Parsing Patches. Several studies have ex-
amined vulnerabilities and their patches on a large scale [68],
[67], [66], [105]. Li et al. [66] and VOFinder [68] employ
a heuristic approach using the ctags utility to extract the
names of modified functions from patch files. We adopt a
similar approach to identify the functions impacted by a CVE.
Fan et al. [105] mined code and vulnerability data associated
with 348 C/C++ repositories from Github, and created Big-
Vul, a dataset curated by extracting vulnerability-related code
changes from repository-specific CVEs that were reported
until 2019. Our CVE dataset is more recent (2022-2024)
and is specifically curated for the Debian ecosystem - which
inherently lacks explicit mention of vulnerable function
information and mapping of CVEs to compiled binaries.

10. Conclusion

We show that the precision and actionable usefulness of
vulnerability triage can be significantly improved by taking
into account the context in which a vulnerable dependency
is used in terms of code reachability. Our results show that
code reachability information reduces the number of binaries
reported as affected by a given CVE by 28%, while reducing
the number of different CVEs reported as affecting a given
ELF binary by 30%. These findings underscore the value of
fine-grained dependency analysis for improving the precision
of vulnerability triage, and provide strong motivation for
enhancing existing SBOM formats to support dependencies
modeled at the level of function call graphs.

As part of our future work, we plan to incorporate more
precise indirect call target identification approaches, and
improve our CVE localization process by exploring more
comprehensive textual analysis techniques for the description
fields of existing CVE records to identify and extract the
relevant patches.
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Appendix

1. Functions modified by CVE Patches

As discussed in Section 7, our final pool of vulnerabilities
in shared libraries consists of 510 CVEs, affecting 1,541
functions across 150 shared libraries. As shown in the CDF
of Figure 7, about half of the CVEs require patching of more
than one function.
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Figure 7: Number of affected (vulnerable) functions per CVE,
as identified from the corresponding patches. About half of
the CVEs involve flaws in more than one function.

2. Impact of call graph overapproximation

In Table 2, we report the reduction in the number
of vulnerable entry points for the nine most vulnerable
(containing the highest number of CVEs) shared libraries in
our dataset. Eight out of the nine libraries have a reduction
in the number of vulnerable entry points (exported functions
having a path to a vulnerable function within the same library)
when using the more precise LLVM call graph. However,
the last column shows that almost all these extra functions
are not imported at all by any of the 24,076 binaries in our
dataset. This indicates that a more precise call graph would
not result in any meaningful reduction in the number of
reported CVEs for most of the binaries that import at least
one function from these nine shared libraries.

3. CVE Impact Scores

Table 3 presents the raw CVE Impact scores measured at
the ELF level and at the function level. For the sake of brevity,
we list only the top-50 CVEs that have the maximum impact
at the ELF level, and we include only one representative
vulnerable function per CVE.
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TABLE 2: Reduction in the number of vulnerable entry points for the nine libraries with the most CVEs in our dataset
when using a compiler-level call graph (G), compared to the overapproximated binary-level call graph (O). As shown in the
rightmost column, for 8 out of the 9 libraries, the vast majority of the extra functions included in the binary-level call graph
(i.e., the set O — (7) are not imported by any binary in our dataset.

Vuln. Exported

Vuln. Exported

Library Name

Extra Functions

# of Uncalled Functions

Binary (O) LLVM (G) O —-G) in (O — G)
libexpat.so.1 19 17 2 2
libXpm.so.4 16 16 0 -
libtiff.s0.6 107 80 27 14
libcurl.so.4 69 68 1 1
libr_core.s0.5.9.2 295 191 104 104
libgnutls.s0.30 931 910 21 15
libxml2.s0.2 915 907 8 8
libnetsnmpmibs.s0.40 135 132 3 3
liberypto.so.3 2675 2661 14 13

TABLE 3: Detailed CVE impact results for the top-50 CVEs with the highest impact at the ELF level.

CVE-ID Function ELF Binary Deb Package ELF-level  Function-level

Reach Reach
CVE-2022-39046 __vsyslog_internal libc.so.6 libc6_2.38-13 24076 12135
CVE-2022-37434 inflate libz.so.1 z1liblg_1:1.3.dfsg%2Breallyl.3.1-1 11461 10199
CVE-2022-1587 jit_compile libpcre2-8.s0.0 libpcre2-8-0_10.42-4%2Bbl 5866 2567
CVE-2023-32611 g_variant_serialise 1ibglib-2.0.s50.0 1ibglib2.0-0t64_2.80.3-1 5049 4672
CVE-2023-2603 _libcap_strdup libcap.so.2 libcap2_1:2.66-5 4483 32
CVE-2023-43787 XCreateImage 1ibX1l.s0.6 1ibx11-6_2:1.8.7-1%2Bbl 4302 2839
CVE-2022-27404 sfnt_init_face libfreetype.so.6 libfreetype6_2.13.2+dfsg-1+b4 3768 3260
CVE-2023-0215 BIO_new_NDEF libcrypto.so.3 libssl3t64_3.2.2-1 3481 4
CVE-2023-2804 start_pass_dpost libjpeg.so0.62 libjpeg62-turbo_1:2.1.5-3 3447 3447
CVE-2022-40674 internalEntityProcessor libexpat.so.1l libexpatl_2.6.2-1 3379 2716
CVE-2022-42898 krb5_pac_parse libkrb5.s0.3 libkrb5-3_1.21.2-1 2486 11
CVE-2024-26458 gss_krb5int_make_seal_token_v3 libgssapi_krb5.s0.2 libgssapi-krb5-2_1.21.2-1 2406 2201
CVE-2024-0567 _gnutls_sort_clist libgnutls.so.30 libgnutls30t64_3.8.5-4 2146 1828
CVE-2024-2511 ssl_update_cache libssl.so.3 libssl3t64_3.2.2-1 1853 1387
CVE-2022-45873 source_disconnect libudev.so.1 libudevl_256.1-2 1842 1345
CVE-2022-44638 pixman_sample_floor_y libpixman-1.s0.0 libpixman-1-0_0.42.2-1+bl 1579 1360
CVE-2024-25062 xmlTextReaderRead libxml2.s0.2 libxml2_2.12.7%2Bdfsg-3 1496 242
CVE-2022-25310 fribidi_remove_bidi_marks libfribidi.so.0 1libfribidi0_1.0.13-3%2Bbl 1438 5
CVE-2024-28182 nghttp2_session_mem_recv2 libnghttp2.s0.14 libnghttp2-14_1.62.1-1 1324 1208
CVE-2023-48795 _libssh2_transport_send libssh2.so0.1 libssh2-1t64_1.11.0-5 1236 1057
CVE-2023-38039 Curl_pp_readresp libcurl-gnutls.so.4 libcurl3t64-gnutls_8.8.0-2 872 752
CVE-2023-1999 EncodeAlphalnternal libwebp.so.7 libwebp7_1.4.0-0.1 755 602
CVE-2023-29491 _nc_read_termtype libtinfo.s0.6 libtinfo6_6.5-2 729 729
CVE-2023-52356 TIFFReadRGBAStripExt libtiff.so0.6 1ibtiff6_4.5.1%2Bgit230720-4 663 73
CVE-2022-33065 mat4_read_header libsndfile.so.l libsndfilel_1.2.2-1+b2 486 182
CVE-2024-2236 rsa_decrypt libgcrypt.so.20 libgcrypt20_1.10.3-3 366 282
CVE-2022-47022 hwloc_linux_set_tid_cpubind libhwloc.so0.15 libhwlocl15_2.11.0-2 330 330
CVE-2024-25260 arm_machine_flag_name libdw.so.1l libdwlt64_0.191-1+bl 255 91
CVE-2023-38473 avahi_alternative_host_name libavahi-common.so.3 libavahi-common3_0.8-13%2Bb2 255 4
CVE-2023-43789 xpmNextWord libXpm.so.4 libxpm4_1:3.5.17-1+bl 211 162
CVE-2023-22745 Tss2_RC_Decode libtss2-rc.so0.0 libtss2-rc0t64_4.1.3-1 144 144
CVE-2022-36227 __archive_write_allocate_filter libarchive.so.13 libarchivel3t64_3.7.2-2.1 132 124
CVE-2023-41105 _Py_normpath libpython3.12.s50.1.0 libpython3.12t64_3.12.4-1 129 129
CVE-2024-35235 httpAddrListen libcups.so.2 libcups2t64_2.4.10-1 111 3
CVE-2022-33099 luaV_concat liblua5.1.s0.0 liblua5.1-0_5.1.5-9%2Bb2 93 88
CVE-2024-1013 SQLStatistics libodbc.so.2 libodbc2_2.3.12-1%2Bb2 81 70
CVE-2023-5217 vp8_change_config libvpx.so.9 libvpx9_1.14.1-1 80 67
CVE-2023-31147 ares_destroy libcares.so.2 libcares2_1.31.0-1 79 61
CVE-2023-50471 cJSON_SetValuestring libcjson.so.l libcjsonl_1.7.18-3 76 1
CVE-2024-31578 av_hwframe_ctx_init libavutil.so.58 libavutil58_7:6.1.1-4%2Bb4 76 60
CVE-2022-1475 g729_parse libavcodec.so.60 libavcodec60_7:6.1.1-4%2Bb4 72 59
CVE-2024-28836 mbedtls_ssl_session_reset_int libmbedtls.so.14 libmbedtlsl4t64_2.28.8-1 70 54
CVE-2022-1215 evdev_device_get_sysname libinput.so.10 libinputl0_1.26.0-1 63 39
CVE-2022-48468 parse_required_member libprotobuf-c.so.l libprotobuf-cl_1.4.1-1+b2 61 37
CVE-2022-28805 singlevar liblua5.3.s50.0 liblua5.3-0_5.3.6-2+b2 61 53
CVE-2023-2283 pki_verify data_signature libssh-gcrypt.so.4 libssh-gcrypt-4_0.10.6-3 60 40
CVE-2023-39976  _blackbox_vlogger libgb.so0.100 1ibgbl100_2.0.8-2 55 54
CVE-2022-48554 file_copystr libmagic.so.1l libmagiclt64_1:5.45-3 55 48
CVE-2022-3341 nut_read_header libavformat.so.60 libavformat60_7:6.1.1-4%2Bb4 50 38
CVE-2024-24806 uv__idna_toascii libuv.so.1l libuvlt64_1.48.0-5 50 9
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