
Safeslab: Mitigating Use-After-Free Vulnerabilities
via Memory Protection Keys

Marius Momeu∗
Technical University of Munich

Munich, Germany
marius.momeu@tum.de

Simon Schnückel
Technical University of Munich

Munich, Germany
simon.schnueckel@tum.de

Kai Angnis
Technical University of Munich

Munich, Germany
kai.angnis@tum.de

Michalis Polychronakis
Stony Brook University
Stony Brook, NY, USA

mikepo@cs.stonybrook.edu

Vasileios P. Kemerlis
Brown University
Providence, RI, USA
vpk@cs.brown.edu

ABSTRACT
Restricting dangling pointers from accessing freed memory is a
promising technique for mitigating use-after-free vulnerabilities
in memory-unsafe programming languages. However, existing so-
lutions suffer from high performance overheads, as they rely on
conventional page table manipulation to make dangling pointers
inaccessible. In this paper, we present Safeslab: a heap-hardening
extension that aims to mitigate use-after-free vulnerabilities via
a novel and efficient address aliasing approach. Safeslab assigns
multiple virtual aliases to each memory page in the system, and
manages their access rights via the recently introduced Memory
Protection Keys hardware extension, which is designed to provide
a fast alternative to page tables for memory management. This
allows Safeslab to drastically reduce the number of page table
modifications, while blocking dangling pointers efficiently. We in-
tegrated Safeslab into the Linux kernel, replacing its default heap
allocator (SLUB). The results of our experimental evaluation with
real-world benchmarks show that Safeslab incurs a negligible
runtime overhead of up to 4% and moderate memory waste.

CCS CONCEPTS
• Security and privacy → Operating systems security; Soft-
ware security engineering.

KEYWORDS
kernel hardening, heap protection, memory isolation, Intel MPK

ACM Reference Format:
Marius Momeu, Simon Schnückel, Kai Angnis, Michalis Polychronakis,
and Vasileios P. Kemerlis. 2024. Safeslab: Mitigating Use-After-Free Vul-
nerabilities via Memory Protection Keys. In Proceedings of the 2024 ACM
SIGSAC Conference on Computer and Communications Security (CCS ’24),
October 14–18, 2024, Salt Lake City, UT, USA. ACM, New York, NY, USA,
15 pages. https://doi.org/10.1145/3658644.3670279

∗Also with Brown University.

This work is licensed under a Creative Commons Attribution
International 4.0 License.

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0636-3/24/10.
https://doi.org/10.1145/3658644.3670279

1 INTRODUCTION
Temporal memory errors, such as use-after-free (UAF), remain one of
the most common exploitation instruments leveraged by attackers
to take over low-level systems software [115]. They are especially
prevalent in memory that is managed dynamically by heap alloca-
tors, which corresponds to a large portion of the address space that
applications use. Temporal memory errors are typically inflicted
in the presence of pointers that reference freed objects, so-called
dangling pointers, whose referenced memory is reused to host other
objects, potentially security-critical. While dangling pointers stem
from programming errors (e.g., race conditions), memory reuse is
a design construct adopted by many heap allocators to improve
performance and reduce memory consumption [33, 34, 47, 52, 65].

Several techniques have been proposed to mitigate temporal
memory bugs. Some mechanisms try to identify dangling pointers
in target programs via dynamic program analysis (e.g., fuzzing).
However, limitations such as incomplete code coverage [76], or the
absence of a sound definition for formalizing race conditions [112],
render fuzzing incomplete for finding all temporal memory errors.
A different line of research assumes that dangling pointers are
present in target programs, and aims to neutralize them. On one
hand, some mechanisms rely on augmenting memory pointers with
metadata (e.g., pointer tagging) to track a referenced object’s alloca-
tion status [21, 30, 50, 62, 117]. The additional per-pointer metadata,
however, coupled with the additional runtime checks performed
on every memory access, render pointer tagging unsuitable for
performance-critical software, such as an OS kernel. Hardware ex-
tensions for pointer tagging, such as ARM’s MTE, only provide
probabilistic security guarantees and can be circumvented [9].

On the other hand, many solutions track memory pointers as
they propagate at runtime, and either invalidate them once objects
get freed [66, 100, 113], or reuse them only after ensuring the ab-
sence of dangling copies [90]. Nevertheless, accurately tracking
the flow of all memory pointers throughout execution requires
instrumenting all instructions that operate on them, which has two
major limitations. First, identifying all instructions that operate on
pointers cannot be achieved accurately in un-typed programming
languages, such as C and assembly—pointers can be stored as inte-
gers, which is, in fact, a common practice used in the Linux kernel.
Second, tracking all operations performed on pointers at runtime
incurs a significant performance overhead [66, 90, 100, 113].

https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://orcid.org/0009-0009-3389-9837
https://orcid.org/0009-0002-0740-6495
https://orcid.org/0009-0006-1277-4646
https://orcid.org/0000-0002-3106-0343
https://orcid.org/0000-0002-6528-437X
https://doi.org/10.1145/3658644.3670279
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3658644.3670279

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Marius Momeu, Simon Schnückel, Kai Angnis, Michalis Polychronakis, & Vasileios P. Kemerlis

As an alternative, mitigation techniques based on avoiding the
reuse of pointers (or virtual addresses) have received increased
attention lately, as they are tailored towards performance. However,
despite being fast, they intrinsically suffer from exhaustion of physi-
cal and/or virtual memory. To tackle the former, existing techniques
unmap virtual addresses of freed pointers, and reuse their physical
memory for other virtual addresses (called aliases) [27, 39, 106].
However, (un)mapping virtual memory requires modifying entries
in the system’s page table (PT), which entails several memory ac-
cesses as well as flushing the modified entries from the TLB of
all CPUs (TLB shootdown), both of which incur a significant per-
formance slowdown. The latter is typically tackled by scanning
the program memory (and registers) similarly to a garbage col-
lector [11], and re-enabling freed virtual addresses for which no
dangling pointers are found [1, 39]. Nevertheless, existing tech-
niques require scanning memory too frequently which results in
high performance overhead, and simply ignore false positives which
may be abused by attackers to exhaust the resources of the system.

In this paper we present Safeslab, a heap hardening extension
that mitigates temporal memory errors efficiently in the presence
of dangling pointers. Safeslab’s key mitigation strategy is hybrid:
first, it temporarily quarantines freed memory objects, and second,
once the quarantine reaches a certain threshold, it reuses freed
memory with new (alias) virtual addresses, while disabling access
to the old ones. With Safeslab, dangling pointers either reference
quarantined objects, or invalid address aliases of reallocated objects,
rendering them ineffective for building exploitation primitives. To
achieve that, we propose a novel mechanism that enables Safeslab
to optimize two costly operations that lead to slowdowns in existing
solutions: (a) reducing the frequency of pointer scans for safely
recycling used aliases, and (b) quickly re-enabling quarantined
objects with new aliases while disabling old ones.

For (a), we introduce a novel memory layout abstraction, dubbed
temporal aliasing domains (TADs), which are pre-configured ranges
of virtual addresses that alias, i.e., they map the same physical
memory. Within the lifespan of a TAD, the physical memory freed
by Safeslab gets quarantined and not reused until the quarantine
hits a certain threshold. Only then, Safeslab switches to a new
TAD, which enables new aliases and disables the old ones, allowing
Safeslab to reuse the quarantined memory. As opposed to prior
work, which relies on slow PT manipulation for (de-)activating
aliases, we achieve (b) via theMemory Protection Keys (MPK) feature
of Intel CPUs [48], which allows Safeslab to control access rights
to virtual pages efficiently. Safeslab maintains a finite pool of
TADs (aliases), which could be depleted in the presence of many
object (de-)allocations. Instead, inactive TADs are recycled safely, by
only re-enabling addresses that have no dangling pointers. This is
achieved using a pointer scanner (similar to a garbage collector [11])
that examines the system’s memory and registers, and records
references to freed objects. We deactivate dangling pointers found
by the scanner (including false positives) by disabling their PT
mappings, which allows Safeslab to reuse their physical memory
with other aliases, thus avoiding memory exhaustion. Most existing
heap hardening solutions target user-space applications [1, 34, 39,
90–92, 106, 117], while significantly fewer case studies have been
carried on heap allocators used in kernel space [21, 46, 47, 50].

Nevertheless, new CVEs that target temporal memory bugs, and
new heap exploitation mechanisms, are constantly being discovered
in OS kernels [19, 20, 26, 88, 89], while several public exploits exist
for kernel vulnerabilities that target temporal memory errors [2, 8,
15, 36–38, 51, 53, 63, 64, 67, 80, 85, 86, 96, 98, 103, 116]. We aim to fill
this gap with our work, and provide a prototype and evaluation for
Safeslab that hardens SLUB, the default heap allocator in the Linux
kernel. Our research prototype is available as open-source software,
and can be used by the community for adopting and extending it.

In summary, we make the following main contributions:
• A novel heap hardening mechanism, called Safeslab, which
mitigates temporal memory errors in dynamic memory allo-
cators via isolated aliasing domains (TADs) and Intel MPK.

• A pointer scanning approach that allows Safeslab to safely
reuse memory pages without access for dangling references,
while also preventing exhaustion due to false positives.

• Implementation and evaluation of Safeslab for SLUB, the
default heap allocator in the Linux kernel.

2 BACKGROUND
2.1 Slab-based Allocation in Linux
The Linux kernel uses primarily two dynamic memory allocators
to manage in-kernel memory: a page allocator and an object allo-
cator. The former leverages the buddy system to satisfy memory
requests on a page granularity [60], while the latter leverages the
slab approach to facilitate efficient memory allocation on a sub-page
granularity [12]. The slab allocator uses the underlying page allo-
cator to reserve one or more physically-contiguous memory pages
to form object slabs that store objects of the same size (i.e., type).

SLUB caches freed objects in linked lists called freelists [12], stored
within the slabs themselves, and uses them to serve allocation re-
quests. Reallocating freed objects via freelists is one of the main
weaknesses abused by attackers to exploit UAF bugs in SLUB [74]
(and other performance-oriented allocators), which is why our solu-
tion replaces SLUB in the Linux kernel and avoids reallocating freed
objects. Additionally, Safeslab does not store any kind of metadata
within object slabs, since they can be corrupted by attackers in the
presence of spatial memory errors (this has been used to exploit
SLUB’s freelists [41, 63, 72, 77, 81, 104]).

SLUB uses a dedicated data structure (called the object cache) to
manage multiple object slabs (some per-CPU, others per-NUMA
node) for a specific object type [13]. The per-CPU slabs allow SLUB
to perform simultaneous memory (de-)allocations onto the same
object cache without holding a lock. Furthermore, the kernel stores
slab-specific information in the data structure struct page [13],
representing the physical pages that make up the slab [57]. These
are kept in the vmemmap [59] area of the kernel. Safeslab also uses
these structures to manage its slabs.

2.2 Memory Errors
Software written in memory- and type-unsafe languages, such as
C/C++/ASM, may generally encounter two types of memory errors
on heap-allocated objects [114]. Spatial memory errors, manifested
as out-of-bound (OOB) errors, enable attackers to corrupt or leak
data stored in neighboring objects (linear OOB), or arbitrary objects
(non-linear OOB)—such errors are out of scope for Safeslab.

Safeslab: Mitigating Use-After-Free Vulnerabilities via Memory Protection Keys CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

Temporalmemory errors, manifested as use-after-free (UAF), double-
free (DF), and invalid free (IF) errors, occur when dangling pointers
reference previously-freed objects, which are later reused in differ-
ent (potentially sensitive) execution contexts, effectively leading
to illegal accesses on those objects. Dangling pointers stem from
(i) improperly invalidating memory pointers once they get freed
(UAF), (ii) race conditions that lead to freeing the same memory
pointer twice (DF), or (iii) programming errors that allow calling
free() on attacker-controlled pointer values (IF). Attackers can
abuse the allocator to build exploitation primitives in two ways:
(a) if the dangling pointer already references the same page as the
target object, attackers manipulate the allocator’s freelist (via heap
spraying) to reallocate the target object so that the dangling pointer
references it [114]; (b) if the dangling pointer does not yet reference
the target object’s page, attackers manipulate the page allocator
to return the dangling pointer’s page when allocating new heap
pages [108]. Safeslab is resilient to both, as it never reallocates
memory objects or pages for which dangling pointers exist.

2.3 Intel Memory Protection Keys
Intel MPK [48] is a recent feature of x86 CPUs that complements
the memory access permissions maintained in the PTs for faster
memory access management. Under MPK every PT entry stores
a four-bit protection key (PK), allowing the whole virtual address
space to be tagged with one of the 16 possible keys at page granular-
ity. Each key is assigned one of four possible access rights (enable,
read, write, disable) through a corresponding two-bit entry in
a dedicated CPU register (PKRU). If a key’s access rights are set to
disabled, the CPU generates a page fault even if the page table’s
access rights permit the access. Safeslab leverages Intel MPK to
isolate its TADs and block dangling pointers.

IntelMPKhas twomodes: Protection Keys for Userspace (PKU) [94]
and Protection Keys for Supervisor (PKS) [24]. The former regulates
access to user pages, and the latter to kernel pages. As PKS is not yet
available, Safeslab configures the system to enable PKU in kernel
mode—similarly to prior work [40]. PKU extends the CPU’s ISA
with a new instruction (WRPKRU), which can be executed by code to
enable/disable access rights for protection keys in the PKRU regis-
ter. Intel MPK’s great advantage is its speed: a write in PKRU takes
only about ≈25 cycles. Safeslab executes the WRPKRU instruction
to modify the PK access rights when switching TADs.

3 THREAT MODEL
We assume that the hardened system (i.e., the OS kernel) contains
vulnerable code that generates dangling pointers to heap-allocated
objects (e.g., via UAF, DF, IF temporal memory errors). Attackers
can trigger an arbitrary sequence of (de-)allocations to manipulate
the allocator into overlapping dangling pointers with victim objects
and build exploitation primitives. Safeslab prohibits overlapping
by not reallocating freed memory objects.

As we integrate Safeslab into the Linux kernel, we only con-
figure it to mitigate UAFs on the memory normally managed by
SLUB, and we consider out of scope mitigating UAFs on the stack
(which are short-lived in the kernel), or on other in-kernel memory
allocators, such as vmalloc [25] and the subsystems that allocate
memory from the buddy allocator directly.

valid object?

start scan

Heap
Allocator

Page
Allocator free pages

quarantine
pages

Pointer
Scanner

Page
Quarantine

TAD Manager

(un)map
dangling
pointers

Page
Metadata

al
lo
ca
te
 p
ag
es

counters, flags, safe? objects, slabs TADs, PKs, PTs

dangling pointersquarantined pagesfreed buddies

setup
TADs

migrate
faulting
pages

Figure 1: High-level overview of Safeslab’s architecture.

Nevertheless, most public UAF exploits in the kernel target
SLUB [20, 109], and are thus mitigated. Finally, although Safeslab
withstands trivial OOB bugs that target allocator metadata, generic
spatial memory errors are outside the scope of our work, as well as
attacks exploiting micro-architectural flaws [14, 54, 61, 69, 111].

4 DESIGN
In this section, we first present Safeslab’s overall architecture, and
then we describe in detail the inner workings of its components.

4.1 Architectural Overview
A system hardened with Safeslab generally consists of the compo-
nents illustrated in Figure 1. The Heap Allocator is responsible for
object (de-)allocations on memory pages that are used for the heap.
These pages are retrieved from the Page Allocator, which manages
the system’s free memory at page granularity. When freeing pages,
instead of giving them back to the page allocator (like the original
allocator does), Safeslab puts them into the Page Quarantine. The
system maintains auxiliary page-management metadata for each
page in the Page Metadata region, which serve either a functional
or a security purpose—these are used by all Safeslab components.

Safeslab providesmultiple virtual aliases for eachmemory page
via temporal aliasing domains (TADs). TADs are maintained by the
TAD Manager, which leverages the underlying hardware (i.e., PTs
and PKs) to (de-)activate them efficiently. Once the page quarantine
reaches a certain threshold (e.g., 4𝐺𝐵), Safeslab initiates a TAD
switch on all CPUs, and releases the quarantined pages back to the
page allocator. This allows the heap allocator to safely reuse the
freed pages with fresh virtual addresses (i.e., aliases) from the newly
activated TAD, while access to dangling pointers in the deactivated
TAD is blocked by PTs or PKs.

Safeslab switches TADs optimistically, without waiting for all
the objects that were allocated during the prior TADs to be freed
(e.g., long-living objects used by the system). Accesses to such ob-
jects will trap in the page fault handler (#PF); however, since these
accesses are legitimate, Safeslab migrates them into the active
TAD, where they can be accessed. Nevertheless, in order to over-
come the finite amount of TADs, Safeslab reuses them in a safe
manner—i.e., when it approaches the last TAD, Safeslab invokes
the Pointer Scanner to search for dangling pointers to deactivated
TADs. Then, when reactivating a TAD, it only uses memory pages
for which the scanner found no dangling pointers in that TAD.

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Marius Momeu, Simon Schnückel, Kai Angnis, Michalis Polychronakis, & Vasileios P. Kemerlis

fixed
offset

Virtual Address Space

...

RAM
PKR[1] = RW

PKR[2] = RO

Page
Metadata

PKR[15] = RO

PK 1

TAD 0
PK 0 PKR[0] = RW

Physical Address Space

TAD 15
PK 15

PK 1 TAD 1
PK 1

TAD 2
PK 2

Figure 2: Memory layout of Safeslab with 16 temporal alias-
ing domains (TADs), isolated via 16 protection keys (PKs).

4.2 Temporal Aliasing Domains
We define a temporal aliasing domain (TAD) as a contiguous range
of virtual addresses that maps the entire physical RAM. Different
TADs provide virtual aliases for each physical page. This is key to
our UAF mitigation approach, since aliases allow Safeslab to use a
new virtual address every time a freed physical page is reallocated.
TADs are implemented via mappings in the kernel’s PTs, and in
order to avoid their management overhead at runtime, Safeslab
(pre-)configures multiple TADs during initialization (in the case
study presented in this paper, Safeslab uses 16 TADs). Figure 2
illustrates the memory layout of Safeslab once the TADs are set.

Safeslab marks each TAD with a different PK during initializa-
tion and governs their access rights at runtime as it (de-)activates
TADs. Specifically, at any time, Safeslabmaintains a single (active)
TAD whose PK rights are enabled, while access rights of the other
PKs, and, consequently, their corresponding TADs, are disabled.
This allows Safeslab to safely reuse a freed physical page with a
new alias from the newly activated TAD—any dangling pointers to
it that may have been produced in prior TADs are blocked thanks to
the lack of access rights to their PKs. Safeslab uses the maximum
number of available PKs to configure TADs during initialization; in
the case of Intel’s MPK, this value is 16 (see Section 2.3). We reserve
TAD#0 (tagged with PK#0) to serve memory that is not managed by
Safeslab, such as the stack, and we never disable access to it, since
the system needs it to function correctly—protecting this memory
is outside the scope of our threat model (see Section 3).

Safeslab leverages a segregated region of memory to maintain
auxiliary metadata for each physical page available in RAM—the
Page Metadata region. This is accessed by all Safeslab compo-
nents, frequently, and is essential for memory management. Thus,
Safeslab configures it at a fixed offset from the pool of TADs,
allowing it to be accessed quickly at runtime via trivial pointer
arithmetic. The metadata store several auxiliary fields regarding
both the functionality and security of each page in memory.

For example, Safeslab maintains object counters for each page,
and uses them to perform efficient object (de-)allocations at runtime
(see Section 4.3). Moreover, we keep track of the safety status for
each memory page, which is updated by the pointer scanner when
it finds dangling pointers to the page (see Section 4.8).

4.3 The Heap Allocator
The heap allocatormanages object (de-)allocationswithin amemory
page, and requests new pages from the page allocator when the
allocated ones are full (and releases them back when they become
empty). Safeslab begins a series of configurations for every new
page, which prepare it for serving object (de-)allocations. Most
notably, it sets the index of the current active TAD in its page
metadata, which is used to compute the virtual addresses of the
objects returned during allocation requests. Thus, object users get
a different (alias) virtual address for their objects with each TAD.

Safeslab adopts a no-reuse object management strategy: it com-
putes the next available virtual address for every new allocation,
and never reuses that address during the life-cycle of that page. This
prevents attackers from manipulating Safeslab into overlapping
new objects on memory referenced by dangling pointers, which
is the main technique used for exploiting UAFs. Hence, Safeslab
does not need to maintain a freelist for keeping track of freed
slots to be reused on subsequent allocations; this is a common ap-
proach adopted by insecure heap allocators (such as SLUB [65] or
ptmalloc [107]). As such, Safeslab not only prevents attackers
from abusing UAF bugs, but also stops them from manipulating
in-object allocator metadata via OOB accesses to craft (arbitrary
R/W) exploitation primitives. If it runs out of unallocated objects on
a memory page, Safeslab gets a new one, as described above.

When Safeslab frees an object it first performs a double-free
check by testing the object’s allocation status. If the object has
not been freed before, Safeslab marks it as such, and proceeds
by updating that page’s memory management metadata, where it
keeps track of its remaining unallocated slots. When all objects on a
page are freed, Safeslab quarantines it until it can safely be reused
with a new alias—this does not happen, however, until the next
TAD switch (see Section 4.4). Hence, the page allocator cannot be
manipulated into reallocating freed pages that might be referenced
by dangling pointers, thus preventing cross-cache UAF attacks.

Contrary to performance-oriented allocators (such as SLUB or
ptmalloc), Safeslab does not reuse objects once they are freed,
thereby resulting in higher virtual address-space utilization. As
such, Safeslabmust invoke the page allocator for fetching/freeing
memory much more often, which adds performance overhead. To
alleviate this, we increase the number of pages that Safeslab allo-
cates at once to 4× the amount requested by the original allocator.

4.4 The Quarantine
Safeslab avoids reusing freed pages within the life-cycle of a TAD
by quarantining them in a singly-linked list until the next TAD
switch. The page quarantine is a global resource, for which all
CPU threads are competing, hence we synchronize access to it via
a lock. Although this could be avoided by configuring per-CPU
quarantines, in our experiments we did not find quarantining to be
a significant source of overhead (see Section 6.1).

Safeslab: Mitigating Use-After-Free Vulnerabilities via Memory Protection Keys CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

Wedefine a configurable quarantine threshold that, when reached,
triggers a TAD switch, after which Safeslab releases the quaran-
tined pages back to the page allocator. For the case study presented
later in the paper, we set the quarantine watermark to 4GB of
memory. Based on our experiments, a quarantine threshold of 2GB
does induce a performance penalty on some benchmarks, while
increasing it to 8GB did not result in any observable difference.

Before switching to the new TAD, Safeslab demotes the cur-
rent quarantine, and promotes an empty one, which allows it to
release the quarantined slabs on one CPU, while the others can con-
tinue quarantining freed slabs simultaneously. Safeslab switches
TADs by sending inter-processor interrupt (IPI) signals to the other
CPUs, which get interrupted to execute the TAD-switching routine.
Concretely, each CPU first updates their active-TAD, a per-CPU
variable that we use to keep track of the active TAD on each CPU;
this spares them from waiting for the other CPUs until they switch
their TAD. Second, each CPU updates its TAD access permissions in
the PKRU register via the WRPKRU instruction, by disabling RW access
for the old TAD, and enabling it for the new one. This prevents any
dangling pointers to prior TADs from accessing the pages that are
released from the quarantine.

Once IPIs are sent, the initiating thread proceeds with empty-
ing the demoted quarantine, while also releasing the quarantine
lock, which makes it available for other threads to use. Releasing
the demoted quarantine is fairly straightforward: Safeslab walks
the linked list and frees every page to the page allocator. Next,
as Safeslab eventually runs out of available TADs, the working
thread checks whether it has reached a predefined TAD (for the
case study presented in this paper this is TAD#12—i.e., the scan-
ning TAD), which is a sign that it will soon have to recycle prior
TADs. In that case, Safeslab invokes the pointer scanner, which is
configured as a separate task during initialization (see Section 4.6).

4.5 Page Migration
As Safeslab disables the PK of a TAD when releasing the quaran-
tine, it may remove access to long-living objects that lie on pages
allocated in the deactivated TAD. Subsequent memory accesses
to such objects will trigger CPU exceptions due to invalid access
rights, even though, semantically, these accesses are legitimate and
should be allowed. Safeslab addresses this by hooking the page
fault (#PF) handler and marking a faulting page with the PK of the
currently active TAD—we call this process migrating pages across
TADs. Safeslab achieves this by updating the PK bits of the fault-
ing address’ translation entry in the page table, which re-enables
its access upon re-executing the faulting instruction. Note that
migrated pages can contain both allocated and freed objects—this
makes no difference in the migration approach.

Also, note that besides getting their PKs updated during page
migrations, TADs are fixed mappings and do not change their view
of physical memory at runtime. This is key to our approach, as it
empowers Safeslab to avoid keeping track of all pointers in the
system for adjusting their addresses, like typical garbage collectors
do for migrating objects on different pages; we only need to update
their PT entry to reflect the PK of the active TAD, which restores
their access. Nevertheless, Safeslab makes sure to only migrate
pages if the faulting address points into a valid page, i.e., allocated,

and whose TAD address matches that of the page’s, which we
store in the page’s auxiliary metadata. This way, attackers cannot
migrate dangling pointers into the active TAD and overlap them
onto allocated objects, thus preventing UAF bugs.

For a faulting address on a legitimate heap object, Safeslab
proceeds by walking the PTs and fetching its corresponding leaf
PT entry (needed to update the PK of the page), which, in modern
systems equipped with huge pages, may map virtual memory in
chunks of 2𝑀𝐵 or 1𝐺𝐵 blocks (to reduce the number of translation
steps [48]). Safeslab migrates memory conservatively—it only mi-
grates the faulting page across TADs, thus breaking huge mappings
into smaller ones until it obtains the 4𝐾𝐵 page that the faulting
address maps onto. Next, Safeslab updates the PK bits of the re-
sulting PT entry with the value of the current TAD, flushes the TLB
of the active CPU, and resumes execution. Note that Safeslab’s
object migration is not a security step, but rather a functional one,
which does not require a TLB shootdown for flushing the affected
translation from all CPUs. In the worst case, another CPU may use
a cached TLB entry with the older PK value, which will trap in the
page fault handler and detect it as correctly mapped, allowing it to
simply resume execution.

4.6 The Pointer Scanner
The pointer scanner finds all dangling pointers that reference freed
pages and marks them as unsafe. At runtime, the heap allocator
checks the safety status of pages retrieved from the page allocator
and rejects those that were marked as unsafe. This allows Safeslab
to only reuse aliases from deactivated TADs that have no dangling
pointers, which renders UAF exploits ineffective. State-of-the-art
pointer scanners can mostly run concurrently with the scanned
tasks, and only require stopping them briefly at the beginning
and end of the scan to prevent dangling pointers from evading
the scan [1, 11, 29]. Although Safeslab is compatible with such
techniques, for simplicity, we stop all tasks running in kernel mode
during the pointer scan. User-space tasks continue to handle non-
kernel workloads, as we only block them when they invoke the
kernel via system calls during the scan. Although we did not find
the pointer scanner to be a significant source of overhead (see
Section 6.1.2), we discuss ways for optimizing it in Section 7.

Safeslab adopts a conservative pointer scanning strategy to
deal withweakly-typed codebases (like the Linux kernel): it assumes
every data word in the system’s memory may potentially store a
pointer. Therefore, Safeslab reads all registers and memory that
are in-use (i.e., stack, heap, .bss, .data, etc., sections) in the target
system, in 8-byte increments, as it assumes that pointers always
reside at 8-byte aligned addresses in memory to satisfy natural
alignment requirements [95]. When encountering a sequence of
bytes that may form a dangling pointer, the scanner skips marking
its page as unsafe if they are part of the same TAD,whichmeans that
the page is still in-use. This does not weaken Safeslab’s security, as
such a pointer can reference either a freed object or a living object
on an allocated page, which is guaranteed by the heap allocator to
not overlap with any other object thanks to its no-reuse approach.
Otherwise, the scanner marks the page as unsafe for the TAD it
belongs to—Safeslab will only reuse it in other TADs.

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Marius Momeu, Simon Schnückel, Kai Angnis, Michalis Polychronakis, & Vasileios P. Kemerlis

Safeslab carefullymarks as unsafe all pages thatmay be reached
by the dangling pointer, such as those stemming from multi-page
objects. For that, Safeslab keeps track of each domain the page is
used in by storing additional information in the page’s metadata.
To improve efficiency when scanning Safeslab’s own heaps, the
scanner only traverses memory pages that are in-use by the heap
allocator, and only scans heap objects that are allocated. This does
not allow attackers to violate Safeslab’s temporal safety property
because: (a) attackers can only reach dangling pointers through al-
located objects; and (b) both Safeslab and the page allocator wipe
the contents of freed memory before allocating it, thus preventing
dangling pointers from propagating into newly allocated objects.

4.7 Addressing False Positives
Safeslab’s conservative approach impedes it from distinguishing
real dangling pointers from false positives, i.e., arbitrary sequences
of bytes that yield valid pointers. Thus, we must treat them conser-
vatively too, and mark their respective memory pages as unsafe,
which signals the heap allocator to reject and put them in the quar-
antine. Consequently, a whole page can become unusable due to
a single false positive, which may put unwanted pressure on the
system’s memory consumption when large amounts are found. This
issue has largely been ignored by prior work [1, 39], even though
codebases that process and store high amounts of data, like the
Linux kernel, exhibit non-negligible amounts of pointer-looking
false positives (see Section 6.2). To alleviate this problem, we fall
back to PT manipulation and unmap the PT entry of all (true or
false) dangling pointers found by the scanner, on a per TAD basis.

Specifically, we invalidate the page table translation of a dangling
pointer’s TAD address, which allows Safeslab to safely reuse its
physical page with aliases from the other TADs, as well as for
other, non-heap memory, such as the stack, since any attempt to
access it after this procedure is blocked by the unmapped PT entry.
Then, Safeslab restores access to unmapped pages, if it finds no
dangling pointers to them in the current scan. We refrain from
interrupting the other threads for flushing stale translations from
their TLBs, in order to avoid penalties in performance. Instead,
Safeslab postpones reusing a page whose dangling pointer got
unmapped until every thread performs a TLB flush (usually done
during the next context switch).

4.8 Marking Unsafe Pages
Safeslab relies on the scanner to determine if dangling pointers to
memory pages exist anywhere in the system. However, Safeslab
must make sure to not reuse a freed memory page in a TAD before
the scanner gets to be executed. Nevertheless, as Safeslab does
not impose any restriction on the lifetime of a page with respect to
its originating TAD, memory pages can be freed while a different
TAD is active, or they can be freed after multiple reuse cycles of
all TADs. This breeds several scenarios in which Safeslab cannot
guarantee that a dangling pointer to a freed page exists or not, and
hence requires the heap allocator to preventively mark pages as
unsafe, until the scanner is executed. Safeslab marks a page as
unsafe if it is freed in the following scenarios: (1) if its an address in
the scanning TAD (TAD#12 in our case)—this is because Safeslab
does not know exactly when the scheduler will awake the scanner

while TAD#12 is in use, and thus we avoid the risk of reusing pages
whose dangling pointers may not have been found by the scanner;
(2) when the page’s TAD address is larger than the CPU’s active
TAD, but smaller than the scanning TAD; and (3) when the active
TAD is larger than the scanning TAD and the page’s TAD address
is either larger than the active TAD or smaller than the scanning
TAD. Both (2) and (3) are required because the scanner does not
execute between the current TAD and the freed page’s TAD.

In addition, Safeslab marks pages as unsafe whenever they are
migrated—this is to avoid reusing a page that got migrated into a
TAD and freed before the CPU switches into that TAD, since the
scanner cannot guarantee that it has no dangling pointers, as it did
not run. Nevertheless, Safeslab needs a mechanism to determine
if a page that was previously marked as unsafe becomes safe for
reuse. This can be either because the previously-found dangling
pointers have disappeared, or because the page was not part of
the scenarios described above. For that, we configure the pointer
scanner to maintain a scan id (sid), which it increments at the
end of every scan. Both the scanner and the heap allocator also
set the sid of a page whenever they mark it as unsafe. The sid
of a page is then checked by the heap allocator before accepting
a new page, and if it does not match the last sid of the scanner, it
considers the page as safe, although it may have been marked as
unsafe previously (i.e., during a previous scan).

5 IMPLEMENTATION
To assess Safeslab’s effectiveness, we integrated it into the Linux
kernel (v6.2.0) and configured it to replace the kernel’s default heap
allocator (SLUB). Thus, Safeslab is able to leverage several traits
available to an OS kernel, such as direct access to privileged PTs,
or executing privileged instructions (e.g., for flushing the TLBs).
We discuss in Section 7 the challenges that need to be addressed in
order to deploy Safeslab in user space.

5.1 PKU in Kernel Space
In our current prototype, we isolate TADs using Intel’s MPK exten-
sion (we discuss in Section 7 how other isolation primitives could
be integrated into Safeslab). However, at the time of this writ-
ing, MPK only supports its user-space mode (called PKU [94], see
Section 2.3). Hence, we repurposed PKU to isolate kernel memory,
by marking its PT translation entries as user-mode (i.e., by setting
the U/S bit). In order to prevent user applications from accessing
kernel pages we rely on KPTI [42, 58]; we also rely on existing
solutions [40] to re-implement SMEP/SMAP and prevent the kernel
from accessing user memory in a confused deputy manner.

Moreover, since PKU is an unprivileged extension, applications
can use it to manipulate the PKRU register via the wrpkru and
xrstor instructions. This could be abused by malicious programs
to disable Safeslab’s isolation before entering kernel mode. We
mitigate this issue by saving the PKRU value in a per-CPU variable
before entering user mode (i.e., by using the RDPKRU instruction,
whose latency is ≈1 cycle [79]), and checking its integrity upon
returning to kernel mode. This way, any modifications applied
on PKRU in user space (via wrpkru/xrstor) will be detected by
Safeslab, which can then restore its saved value.

Safeslab: Mitigating Use-After-Free Vulnerabilities via Memory Protection Keys CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

We believe this is a lean approach, which enables Safeslab
to avoid the expensive requirement of scanning code pages at a
program’s startup time (to ensure that untrusted code does not
contain instructions like wrpkru/xrstor [40, 97]) or intercepting
syscalls (e.g., mmap, mprotect, process_vm_readv, ptrace, open)
to prevent wrpkru/xrstor from being injected at runtime [40, 45,
97]. Safeslab can also avoid intercepting syscalls that may trick the
kernel into a confused deputy scenario to change PKs on isolated
pages (as demonstrated in prior work [23, 87, 102]), since syscalls
are carefully designed to avoid operating on the kernel portion of
the address space. Nevertheless, we plan on integrating PKS [24]
into Safeslab once it becomes available, which will allow us to
disable all the above defenses.

As PKU and PKS are twin technologies, we do not expect a
significant engineering effort in doing so. Although manipulating
access permissions in PKS will be done via rdmsr/wrmsr, which
might have a different latency than rdpkru/wrpkru, we do not
anticipate any differences in performance since MPK-based domain
switches in Safeslab are rare (TAD switching). We also do not
expect a difference in memory consumption or functionality.

5.2 Memory Management
Safeslab’s heap allocator reuses several constructs from SLUB, as
they were designed to facilitate performance. Specifically, it also
uses the slab-based allocation strategy, by grouping several mem-
ory pages to form object slabs that it uses to serve (de-)allocations
for several types of objects. Safeslab also configures per-CPU ob-
ject slabs, which allows it to serve simultaneous (de-)allocations
from the same object cache on multiple CPU threads, without lock-
ing. Contrary to SLUB, Safeslab does not maintain slab freelists,
since it never re-allocates slab objects once they are freed. Instead,
Safeslab maintains an object bitmap for each slab, where it keeps
track of each object’s allocation status—Safeslab uses this to de-
tect double-free bugs (see Section 4.3). Safeslab sequesters the
bitmap outside the slabs themselves, in dedicated memory, where
it is protected from overflows on slab objects. This results in higher
security than SLUB’s current design, which keeps freelist pointers
within the objects themselves, where they can be easily corrupted
in the event of overflows [74].

Safeslab fetches new pages to form slabs from the kernel’s
buddy allocator (see Section 2.1), which manages all freed physi-
cal pages. As invoking the buddy allocator frequently may result
in performance overhead, we configured Safeslab to allocate 4𝑥
more pages than SLUB would for an object slab. As such, the num-
ber of pages in a slab will always be a multiple of 4; we leverage
this to reduce the number of pages touched by Safeslab when
marking and checking the safety of a slab, by only iterating over
the slab pages that are at an index whose value is a multiple of 4.
Furthermore, when migrating pages across TADs, in the page fault
handler, Safeslab adopts a conservative approach: it only migrates
the accessed page, and not the whole slab.

Safeslab leverages the kernel’s vmemmap region [59], which
reserves a 64-byte object, called struct page, to maintain additional
metadata for each physical page of the system. For every page, we
store its slab order and its slab index in the slab it was last part of (in
each TAD). This is used by the scanner upon detecting a dangling

pointer to unmap all pages that were part of that slab, which also
allows us to block access to both single- and multi-page objects.
We configured Safeslab’s TADs based on the kernel’s physmap
region [57], which provides a direct mapping of the entire RAM at
a constant offset in the virtual address space. We also modified the
kernel macros used to compute various values based on a virtual
address, such as virt_to_{phys, page}, to take into account the
TAD that the address belongs to. This is done via pointer arithmetic
operations, as TADs are contiguous memory regions at a fixed offset
from each other (and the beginning of the address space).

5.3 The Pointer Scanner
We configured Safeslab’s scanner to look for dangling pointers
in the following memory regions: the .bss section, the global
data, the .ro_after_init section, the per-CPU regions, the ker-
nel stacks, and the memory allocated dynamically by Safeslab.
When Safeslab signals the running threads to stop for allowing
the scan, it only targets those that run in kernel mode, while user-
mode threads can continue running—as they do not use Safeslab
for memory management, user tasks cannot introduce dangling
pointers in the kernel. We also modified the task scheduler to avoid
scheduling tasks that were executing in kernel mode when they got
de-scheduled, and yield the CPU to allow other user tasks to resume
execution. Safeslab considers kernel threads trusted (e.g., the page
swapper, worker threads), allowing them to run during the scan.

To serve its role as a trusted channel between user programs
and privileged hardware, the OS kernel must process and store user
data. Malicious user applications may abuse this to fill kernel mem-
ory with pointer-looking values (i.e., false positives), which may
lead to virtual address depletion, as they get marked as unsafe by
the pointer scanner and rejected by Safeslab. To counter that, we
configure the scanner to skip reading kernel memory that contains
user data, by leveraging the hardened usercopy feature of the Linux
kernel [55], which keeps track of offsets and lengths in heap objects
that store user data (via the useroffset/usersize fields of the
kmem_cache). While this works reliably with kmem_cache caches,
it is too coarse-grained for kmalloc caches, as it must allow multi-
ple objects with different user-space access patterns to be stored
in the same slab. To mitigate this, we extend Safeslab’s bitmap
for kmalloc caches to also store the offset and length within the
object where user data is stored. We also instrumented the routine
copy_from_user, which is the main interface for copying user data
into the kernel, to store for each kmalloc object that it touches the
offset and length of where it stored user data. This is then used by
the pointer scanner to skip those regions at runtime.

6 EVALUATION
We evaluate Safeslabwhen used as replacement to Linux’s default
memory allocator (i.e., SLUB). First, we analyze its performance
and memory overhead, as these are crucial for an in-kernel heap
allocator. Next, we describe how our extension mitigates UAF bugs
exhibited by SLUB. Our tests were carried out on a host armed with a
24-core 12th Gen Intel Core i9-12900 CPU (1 socket, 16 cores/socket,
2 threads/core), 1 NUMA node, and 64GB of RAM.

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Marius Momeu, Simon Schnückel, Kai Angnis, Michalis Polychronakis, & Vasileios P. Kemerlis

sys
cal
l

rea
d

wr
ite sta

t
fst
at

op
en
/cl
ose

sel
ect
(50
0 f
ds)

sel
ect
(10

fds
)

sel
ect
(50
0 t
cp
fds
)

sel
ect
(10

tcp
fds
)

sig
act
ion

sig
de
liv
er

pip
e

un
ix
soc
ke
t

tcp
soc
ke
t

ud
p s
oc
ke
t

pro
t fa
ult

for
k+
ex
it

for
k+
ex
ecv
e

for
k+
"/b
in/
sh
"

ge
om
ean

0.9
0.95

1
1.05
1.1
1.15
1.2

1.
03

0.
98

0.
97 1.

02

1.
24

1.
18

0.
97

0.
97 0.
98 1 1 0.
98 1.

03

1.
02 1.
05

1 1 0.
99

0.
98

1.
04

1.
03

0.
97

0.
95

1.
02

1.
22

1.
16

0.
97

0.
96 0.
98 1 1 0.
98 1.
01 1.
02

1.
02

1

0.
95 0.
97 0.
98 1.

03

1.
50

1.
46

Ex
ec
ut
io
n
Ti
m
e
(N
or
m
al
iz
ed
)

full nousercopy

Figure 3: LMbench performance results on Safeslab. Results are averaged over 20 runs and normalized to (vanilla) SLUB.

un
pa
ck
-lin

ux

co
mp
ile
-lin

ux

ffm
pe
g

ha
ck
be
nc
h

op
en
ssl
(si
gn
)

op
en
ssl
(ve
rif
y)
ng
inx

ap
ach

e
gn
up
g
sql
ite

red
is

ge
om
ean

0.96

1

1.04

1.08

1.12

1

1.
02

1 1 1

1.
03

1.
03

1 1 1

1.
03

1

1.
02

1 1 1

1.
03

1.
03

1 1 1

1.
02

1.
30

1.
26

Re
su
lts

(N
or
m
al
iz
ed
) full nousercopy

Figure 4: Performance overhead of macro-benchmarks from
PTS on Safeslab. The default parameters were used for each
benchmark, except for hackbench (16 proc. groups), apache
(100 conc. requests), nginx (100 conn.), and redis (16 threads)
to saturate (i.e., increase the utilization of) the CPU. Results
are normalized to (vanilla) SLUB.

6.1 Runtime Overhead
To evaluate the runtime overhead of our extension, we deploy a
set of micro-benchmarks and macro-benchmarks that execute an
array of single-threaded and multi-threaded workloads.

6.1.1 LMbench. We employ the LMbench [73] micro-benchmark
to examine Safeslab on tests that stress individual components
of the underlying kernel. As these tests execute small payloads
repeatedly, they are well suited to evaluate the performance of
Safeslab’s heap allocator (see Section 4.3) and the implications of
quarantining freed memory (see Section 4.4). The other Safeslab
components, i.e., TAD switching, migrating slabs across TADs, and
the scanner are not triggered during the LMbench tests—we use
macro-benchmarks to evaluate them (next section).

Figure 3 shows the results of our experiments carried in two set-
tings: with all Safeslab features enabled (full) andwith Safeslab’s
usercopy on kmalloc mechanism disabled (nousercopy). In the fol-
lowing, we use full as the default setting. The results show that
in more than 3

4 of the LMbench tests Safeslab exhibits either

negligible (< 5%) or no slowdown at all, with a geometric mean
(geomean) of 4%. Note that Safeslab’s geomean is ≈ 5𝑥 smaller
than ViK’s 21%, a recent UAF-mitigation solution for the Linux
kernel based on pointer tagging [21]. The worst-case overhead in-
curred by Safeslab is 50% on stat, 24% on open/close, and 18%
on ‘select (500 fds)’. In order to better understand the nature
of the overhead on these tests, we further analyzed the behavior of
the system via the tracing tools perf [28] and BCC [49].

stat’s execution mainly takes place in the kernel’s syscalls,
where it allocates a single object from the names object cache, per-
forms a number of operations on it, and then frees it. The test
repeatedly executes this sequence over and over again, causing no
interference in-between subsequent allocations, which triggers the
best-case scenario in SLUB: subsequent allocations always return
the same memory object to the caller. This benefits SLUB in two
ways: first, the first memory access of the object user yields a cache-
hit, as its RAM entry is already in the data-cache thanks to prior
accesses; second, SLUB reuses the same slab to serve the subsequent
of (de-)allocations, without having to invoke the buddy allocator
for allocating new slabs, or freeing them.

In contrast, as Safeslab quarantines freed objects for neutraliz-
ing dangling pointers, it never returns the same memory address
on subsequent allocations—this inflicts more cache-misses on stat
compared to SLUB. We confirmed this by tracing execution via
perf and measuring the hardware Performance Monitoring Coun-
ters (PMCs)—indeed, Safeslab inflicted 100𝑥 more cache-misses
than SLUB on stat. Furthermore, as it does not reuse freed slab
slots, Safeslab also invokes the buddy allocator much more often,
despite allocating a larger chunk of pages for each slab (4𝑥 more
in the default configuration). In fact, using BCC, we measured that
SLUB only invoked buddy for allocating and freeing slabs 10𝑥 , while
Safeslab did it for ≈45000𝑥 on the stat benchmark. We observed
a similar behavior on ‘select (500 fds)’.

On open/close Safeslab and SLUB invoked the buddy allocator
the same number of times (measured via BCC). Safeslab exhibited
60𝑥 more cache misses compared to SLUB (measured via perf). This
is because with every slab allocation request, Safeslab always gets
a fresh, unused slab (since used ones are quarantined), while SLUB
receives slabs whose entries are already in the data cache.

Safeslab: Mitigating Use-After-Free Vulnerabilities via Memory Protection Keys CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

On the ‘fork+"/bin/sh"’ test, where Safeslab does not exhibit
any slowdown, Safeslab invokes the buddy allocator ≈700𝑥 , while
SLUB does it for only≈70𝑥 . Additionally, Safeslab inflicts only≈4𝑥
more cache-misses than SLUB. This can be justified by the fact that
the payload is more heterogeneous—it works with a larger variety
of object types, it runs on multiple threads, and it spends more
time doing user space work (≈4% of its time is spent in-kernel)—
this causes more interference between subsequent heap allocations,
which inflicts more cache-misses in SLUB. Moreover, the test itself
allocates ≈10𝑥 less objects on ‘fork+"/bin/sh"’ compared to stat
(i.e., ≈34𝐾 vs. ≈300𝐾 object allocations/deallocations).

We also performed additional experiments to test whether invok-
ing the buddy allocator less often reduces the overhead. Specifically,
we reran the LMbench tests with Safeslab configured to allocate
8𝑥 more pages than SLUB would for a slab, but we observed no
difference in performance compared to Safeslab’s default setting
of 4𝑥 more pages. This hints that Safeslab’s main source of over-
head is attributed to the higher rate of cache-misses on subsequent
allocations. Additionally, as Figure 3 shows, Safeslab’s extended
usercopy feature generally induces between 1% and 4% overhead
on a fraction of the benchmarks, and 1% overall with a geomean of
3%. This is because of the additional bookkeeping required when
the kernel copies data from user space into kmalloc’d objects, as
Safeslab must keep track of the offsets where they are stored
within the object. The other tests remain unaffected, as they copy
less data from user space into the kernel’s kmalloc caches.

6.1.2 Phoronix Test Suite. The stress-tests from LMbench often
trigger the best-case scenario in SLUB (see previous section), which
Safeslab does not benefit from. However, this is rarely met in
real-world, end-to-end workloads. For example, LMbench works
with a small set of objects, and does not even utilize all of the
available CPU cores to their full potential, as only a few of them are
active on tests that stress the scheduler (such as ‘fork+"/bin/sh"’).
Moreover, most LMbench tests execute small payloads that interact
with a small (sometimes only one) object caches in the kernel, and
they do not exercise the other critical components of Safeslab,
i.e., TAD switching, slab migration, and the scanner.

We therefore conducted additional experiments via severalmacro-
benchmarks from the Phoronix Test Suite (PTS) [84]. Figure 4 shows
the results when our extension is used vs. the baseline (i.e., unmod-
ified SLUB). Safeslab encounters the worst-case overhead of 30%
on hackbench, a scheduler stress-test that keeps all CPU cores
occupied. In all other tests, Safeslab exhibits negligible (< 3%)
or no slowdown at all. In order to better understand the nature
of the overhead on hackbench, we further analyzed its behavior
via the tracing tools perf [28] and BCC [49]. hackbench heavily
exercises the kernel’s heap allocator (≈1.8𝑀 object allocations/-
deallocations; ≈92.5% of its time is spent in-kernel), during which
Safeslab exhibits ≈2𝑥 more cache-misses than SLUB.

Additionally, even in the 4𝑥 more pages setting, Safeslab in-
vokes the buddy allocator 100𝑥 more often than SLUB on hackbench.
To determine how much this contributes to Safeslab’s overhead,
we tested whether allocating 8𝑥 more pages per slab reduces slow-
down on hackbench—this is not the case, however. Moreover, dur-
ing hackbench, Safeslab performed 59 domain switches and 4
scans, triggered ≈5200 page faults, (i.e., page migrations across

different TADs), and during handling these page faults it had to
split huge 2𝑀𝐵-pages into 4𝐾 pages ≈3750𝑥 . To test the extent to
which these events contribute to the overhead, we reran hackbench
with Safeslab’s scanner and the PK protection disabled—however,
the overhead is the same. This means, again, that Safeslab’s main
source of overhead are cache-misses. In the case of hackbench,
Safeslab’s extended usercopy feature adds a 4% performance
penalty, which is similar to the few affected tests described in the
previous section, and because of the same reasons.

By comparison, on compile-linux, where Safeslab only ex-
hibits a negligible performance overhead of 2%, although the bench-
mark exercises the allocator≈50𝑥 more than hackbench (≈110𝑀 ob-
ject allocations/deallocations), Safeslab and SLUB exhibit the same
amount of cache-misses, while Safeslab invokes the buddy allo-
cator 20𝑥 more often than SLUB. This is because compile-linux
works with a larger variety of kernel objects, while its tasks keep
getting migrated across CPUs, and spends more time doing user-
space work (≈12.25% of its time is spent in-kernel)—this leads to
more cache-misses in SLUB. During this benchmark, Safeslab per-
formed 14 TAD switches, 1 scan, ≈6000 page faults (i.e., TAD migra-
tions), and ≈5900 huge-page breaks. These however did not seem
to increase Safeslab’s performance overhead in our experiments.

Furthermore, to asses the impact of the pointer scanner on user-
space applications we reran the PTS benchmarks with all Safeslab
features enabled, except for the pointer scanner, and observed that
even on I/O intensive benchmarks its overhead is negligible:≈3% on
hackbench (≈92.5% of its time is spent in-kernel), ≈2% on apache
(≈88.5% of its time is spent in-kernel), ≈1% on nginx (≈40% of
its time is spent in-kernel), 0% on compile-linux (≈12.25% of its
time is spent in-kernel). That this is due to the scanner’s policy
of allowing user-mode tasks to continue running even during the
scan, while only blocking those that enter kernel mode. Moreover,
we analyzed the (false positive) dangling pointers found by the
scanner during 10 runs of each of said benchmarks, and counted
the amount of pages unmapped and remapped by Safeslab as part
of its strategy for reducing false positives (see Section 4.7). Table 2
summarizes our results. Although a fairly large average number
of page (un-)mappings are performed on every scan, Safeslab’s
performance did not seem to be affected. This is attributed to the
fact that scans occur rarely thanks to the MPK-isolated TADs.

6.2 Memory Overhead
We distinguish between two main sources of memory overhead in
Safeslab: static, which stems from additional structures defined at
compile- or boot-time, and dynamic, which is introduced at runtime.

6.2.1 StaticMemory Overhead. Safeslab requires additional mem-
ory for storing pages that map the TADs in the PTs (see Section 4.2),
which varies with the size of a TAD, the number of TADs con-
figured, the address-mapping granularity (i.e., 4K, 2MB, or 1GB
translations), and the number of PT translation levels (i.e., 4-level
or 5-level). We conducted our experiments on hardware that sup-
ports 2MB mappings with 4-level paging enabled, where one single
4K page maps 256TB of virtual memory in the first layer of the PT,
512GB in the second layer, and 1GB in the third layer. As such, we
devise the following formula for determining the amount of addi-
tional memory required by Safeslab to map TADs: ⌈𝑡 · 𝑠 + (𝑡 ·𝑠512)⌉,

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Marius Momeu, Simon Schnückel, Kai Angnis, Michalis Polychronakis, & Vasileios P. Kemerlis

Benchmark max RSS total alloc’ed total freed
Boot 2.6x (110 MB) 15.9x 40x

Build Linux 1.1x (13.5 MB) 122x 130x
Hackbench 2.3x (55 MB) 360x 311x
Nginx 19.5x (71.5 MB) 698x 705x
Redis 6.5x (11.2 MB) 54.5x 55x
SQlite 62x (135 MB) 277.5x 277.5x
Apache 21x (584 MB) 1832x 2184x

Table 1: Memory consumption observed during PTS bench-
marks. Values represent the number of pages compared to
baseline (SLUB). The second column also shows in parentheses
the difference between Safeslab and baseline in MB.

Bench # scans unmapped remapped
Hackbench 40 5014 (20MB) 718 (3MB)
Apache 24 15105 (59MB) 3432 (14MB)
Nginx 24 7343 (29MB) 3208 (13MB)

Build-Linux 10 10176 (40MB) 2618 (11MB)
Total 98 9410 (37MB) 2495 (10MB)

Table 2: Number of unmapped and remapped pages (false
positives) found by the pointer scanner during 10 runs. The
results are averaged over the number of scans.

where 𝑠 is the size of a TAD in GiB and 𝑡 is the amount of TADs
configured by Safeslab. In our experiments we configured the size
of a TAD to be equal to the size of the machine’s available RAM,
i.e., 64GB, and we created 15 TADs at boot time, since that is the
number of PKs provided by Intel (in addition to the default one).

All in all, Safeslab required 96 pages for mapping the TADs,
which amounts to 4MB. In reality, the actual overhead is slightly
less than this, since we do not map in the TADs the memory re-
gions that correspond to immutable sections, such as the .rodata,
.ro_after_init, and the code segment(s). On systems that sup-
port 1GB mappings, the overhead becomes even lower, since the
PTs can use only two levels for translating TADs—in such a setting,
the memory overhead would be reduced to only two 4K pages.
Additional memory consumption for maintaining virtual memory
aliases is a common trade-off made by other solutions that adopt a
similar approach [39, 106], and is not specific to Safeslab.

In addition, Safeslab also introduces auxiliary global data for
managing the quarantine, for keeping track of per-CPU TADs, and
for the pointer scanner—in total, Safeslab requires less than one
4K page for its global data. Furthermore, the scanner spawned at
boot-time introduces 6.4KB for its task_struct.

6.2.2 Dynamic Memory Overhead. Due to its security-oriented
design, Safeslab adds memory overhead in the following ways:
(1) a larger number of allocated pages, which may become only
sparsely occupied since freed slots are not reused; (2) quarantined
memory pages that cannot be reused by the system in order to
avoid UAF scenarios; (3) memory pages marked as unsafe cannot
be reused by Safeslab in the TADs for which dangling pointers
to them exist; (4) additional usercopy metadata for keeping track

kmalloc’d regions that contain user data (see Section 5); (5) ad-
ditional 64-byte metadata objects for all pages used by Safeslab;
(6) large PT mappings (i.e., 2MB) that are split into smaller ones
(4KB) due to alias migrations across TADs.

To evaluate (1) and (2) we monitor Safeslab’s memory con-
sumption during selected benchmarks from PTS, which trigger
many object (de-)allocations in the kernel. During each test, we
record the benchmark’s maximum resident set size (max RSS, mea-
sured in pages), and the total number of allocated and freed pages
throughout the entire benchmark. Table 1 shows the results. We en-
countered the worst-case memory overhead on SQLite and Apache,
where Safeslab’s RSS was 62× and 21× larger than SLUB’s, which
amounted to 135MB and 584MB of additional memory, respectively.
This is due to large fragmentation on live slabs, whose empty slots
are not reused by Safeslab in order to mitigate dangling pointers.

Moreover, Safeslab (de-)allocated on Apache many more pages
than SLUB, overall, leading to two pointer scans (i.e., two domain
switches)—this means that it reached its 4GB quarantine threshold
twice. SQLite works with much smaller objects than Apache, and
hence did not trigger any domain switch. However, as it uses large
memory objects that fill up the quarantine much faster, hackbench
allocated and freedmost memory overall on Safeslab, leading to 59
domain switches—thus, the unusable quarantined memory reached
the worst-case of 4GB for 59×. Overall, Safeslab (de-)allocated
much more memory than SLUB—this is due to its no-reuse approach.
Nevertheless, memory overhead stemming from quarantining is
also exhibited by other solutions that use a similar approach [1].

We also measured Safeslab’s RSS after boot and compared it to
ViK’s [21]. Safeslab used 159% more memory than baseline, while
ViK used 42.5%—this is due to Safeslab’s no-reuse approach, which
puts more presure on memory than ViK’s pointer-tagging approach.
ViK did not conduct memory overhead experiments on PTS, and so
we cannot further compare our results with it. Moreover, ViK was
implemented on Linux v4.14, while Safeslab on v6.2, thus making
the porting process of one to the other a non-trivial task.

We evaluated (3) by counting the number of pages unmapped
and remapped by the pointer scanner during 10 runs of the I/O-
intensive benchmarks described in Table 2—the experiment trig-
gered ≈100 scans. The results show that apache triggers most false
positives, leading to 15K unsafe pages on average in-between scans,
amounting to 59MB. These pages however are only unusable in
the TADs for which dangling pointers were found, but can be used
by the other TADs, as well as by the other kernel subsystems and
user-space applications. The results also show that on average, in
the apache benchmark, around 2432 pages (14MB) loose their dan-
gling references in-between scans, allowing Safeslab to remap
and reuse their pages in their respective TADs.

For (4), we measured the amount of additional usercopy meta-
data maintained by Safeslab for kmalloc caches after boot, and
determined that it needs ≈5MB for storing them. Similarly for (5),
after boot, Safeslab required ≈7.5MB to store the per-page meta-
data objects that are used to keep track of their safety status. In
terms of (6), during the performance experiment with hackbench
described in Section 6.1.2, Safeslab had to split 2MB-pages into
4K ones 3,750×, which increased memory consumption by ≈15MB;
on compile-linux, Safeslab had to split 5,900 huge-pages into
small ones, consuming 23MB of additional memory.

Safeslab: Mitigating Use-After-Free Vulnerabilities via Memory Protection Keys CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

6.3 Security Analysis
6.3.1 SLUB. In what follows we summarize the security properties
of the SLUB allocator (in Linux, as of v6.2) with respect to UAF, DF,
IF, and OOB exploitation scenarios.

Use-After-Free. SLUB has no dedicated mechanism for detecting
or mitigating UAFs in the presence of dangling pointers. These
are mainly abused by attackers to overlap security-sensitive ob-
jects onto victim objects, with the ultimate goal of manipulating
their contents—we observed this “pattern” in all public kernel ex-
ploits surveyed in Section 6.4. Attackers achieve this via one of
the two different approaches (a) and (b) described in Section 2.2,
by manipulating SLUB’s freelist to overlap memory objects, or the
buddy allocator to overlap memory pages, respectively. Although
SLUB makes freelist manipulation harder by randomly shuffling
the freelist when the slab is initialized, techniques such as heap
spraying [114] are typically leveraged by attackers to bypass it.

Double-Free. SLUB only catches DFs when the address cached at
the top of the freelist matches the freed address. However, attackers
can easily circumvent this by freeing a dummy object in-between
the two free invocations on the affected object.

Invalid-Free. SLUB’s security checks against IFs are only executed
when a freelist is demoted from the per-CPU slab. Note, however,
that this is only performed if object caches are explicitly configured
to do so; this feature is not enabled by default for every cache.

Out-Of-Bounds. Attackers can use OOB accesses against freed
objects in SLUB to corrupt their freelist pointers, as they are stored
inline, and use them to build primitives for exploiting the system.
Although, SLUB mangles the freelist pointer (by XOR’ing it with a
secret key) before storing it in objects, the protection is weak and
has been repeatedly circumvented by attackers to further build
exploitation primitives [16–18, 63].

6.3.2 Safeslab. In the following we juxtapose the security prop-
erties of Safeslab with respect to UAF, DF, IF, and OOB scenarios.

Use-After-Free. Safeslab mitigates both approaches that attack-
ers may use to exploit UAFs in the presence of dangling pointers in
the kernel—i.e., (a) and (b) described in Section 2.2. It defeats (a) by
not reallocating slab objects once they are freed—this is exactly the
reason why Safeslab does not maintain a freelist. It mitigates (b)
by quarantining the memory pages that form slabs when they get
freed, so that the buddy allocator returns unused memory pages
when allocating new slabs. Therefore, there is no way for an at-
tacker to manipulate Safeslab or the buddy allocator to reallocate
an object or a slab so that it overlaps with a dangling pointer.

We only reallocate quarantined pages after deactivating their
access rights for the PK that corresponds to their old TAD, thus
blocking any dangling pointers they may have. Although dangling
pointers in active TADs are still accessible, they cannot be used
to overlap security-critical objects and only have a considerably
limited use as an exploitation primitive. Moreover, we have not
encountered any exploit in our security evaluation (see Section 6.4)
that leverages such a primitive. Safeslab recycles TADs once they
get depleted, in order to avoid exhausting the virtual address space.

To do that safely, it employs the pointer scanner to mark as unsafe
all memory pages for which dangling pointers exist in the kernel.
Then, it discards all pages that are marked as unsafe when allocating
new pages from the buddy allocator to form new slabs. We prevent
dangling pointers from escaping the scanner by stopping the tasks
that execute in kernel mode during the scan.

Although the scanner currently cannot detect dangling pointers
that are hidden, e.g., via obfuscation, to the best of our knowledge,
such pointers are not a common construct in the Linux kernel (ex-
cept for SLUB’s mangled freelist pointers, which are obsolete in
Safeslab). Moreover, Safeslab proactively marks as unsafe those
quarantined slabs that might be reallocated before the scanner can
guarantee that they have no dangling pointers (see Section 4.8). We
also prevent attackers from abusing the page migration mechanism
to activate dangling pointers that are blocked by PKs, by only mi-
grating an accessed memory page if the faulting address references
a valid, allocated slab, and their TADs match.

Double-Free. We mitigate DFs via the bitmap that keeps track
of each slab object’s allocation status. Namely, when an object is
freed its bitmap entry is set; however, if the entry was already set
then Safeslab detects the DF attempt.

Invalid-Free. We prevent IFs by ensuring on every free that the
freed address: (a) is freed to the object cache from which it belongs,
(b) references a valid object slab, (c) is aligned to the size of its
cache’s object size, and (d) does not point to an object that has not
been allocated yet.

Out-Of-Bounds. Safeslab does not store metadata within cor-
ruptible slab objects, but rather in segregated regions, outside an
attacker’s reach [74]. Therefore, attackers cannot use in-slab OOB
vulnerabilities to corrupt its metadata for building exploitation
primitives. However, as we do not employ any dedicated memory
isolation mechanism [83], attackers may target Safeslab’s meta-
data through (arbitrary) memory R/W primtives obtained via other
means. Furthermore, we do not employ any dedicated mechanism
for preventing OOB accesses against general object data—this is
outside the scope of our work (see Section 3).

6.4 Real-world Exploits
We surveyed 30 known exploits (targeting SLUB) against use-after-
free CVEs found in the Linux kernel (between 2016 and 2023), and
determined that Safeslab can mitigate all of them [2–8, 15, 31, 35–
38, 44, 51, 63, 64, 67, 68, 70, 80, 85, 86, 96, 98, 101, 103, 116]. They
all rely on SLUB’s weakness to re-allocate sensitive objects after
they are freed, which allows attackers to manipulate their con-
tents via dangling pointers. These exploits are ineffective against
Safeslab, as we do not re-allocate objects at the same virtual
address unless the scanner found no dangling pointers to them.
Additionally, we also analyzed 6 known exploits that abuse OOB-
related CVEs in the Linux kernel to target allocator metadata (such
as freelist pointers), and determined that Safeslab is not affected
by them [41, 63, 72, 77, 81, 104]. This is because, unlike SLUB, which
keeps allocator metadata within slab objects, Safeslab does store
it in segregated memory, where attackers cannot manipulate it.
Nevertheless, note that Safeslab does not mitigate OOB bugs on
other types of sensitive data, such as function and/or data pointers.

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Marius Momeu, Simon Schnückel, Kai Angnis, Michalis Polychronakis, & Vasileios P. Kemerlis

7 DISCUSSION AND FUTUREWORK
Memory Consumption. Safeslab requires additional memory

for pre-configuring TADs (see Section 6.2), which is however on
par with other solutions that adopt a similar no-reuse approach [1,
39, 106]. Nevertheless, our PT mappings for TADs scale with their
number, their size, and the number of PT translation levels, which
are fixed at compile time (see Section 4.2). With 1GB huge-pages en-
abled, the TADmappings could be realized with just two 4KB pages.
Additionally, by either configuring a smaller number of TADs, or
giving them a smaller size of RAM to map, the memory overhead
can be reduced further. Moreover, Safeslab’s memory overhead
introduced by quarantining could be reduced by engineering the
allocator to allow the system to use quarantined pages for other
purposes, such as user applications or the stack. However, access
to the page’s TAD aliases must be disabled in the PT before reusing
it, in order to prevent dangling pointers from accessing it.

MPK Security. If an attacker obtains code execution by exploit-
ing spatial memory errors, then Safeslab can be bypassed using
the techniques identified in prior work [23, 87, 102]. However, this
is currently a limitation of all solutions that focus solely on mit-
igating temporal memory errors [21, 39, 90], and is not specific
to Safeslab or MPK. Nevertheless, if future work aims at tack-
ling this limitation, CFI solutions could be used in Safeslab to
prevent attackers from executing wrpkru/xrstor instructions to
bypass MPK—recent CFI improvements demonstrated that effective
solutions with low-overhead are possible [32].

If efficient CFI solutions are unavailable, then techniques lever-
aged by prior work on securing MPK-sandboxes could be adopted
in Safeslab—prior work demonstrated that secure MPK-callgates
can be designed in a performant manner [43]. Note that, since
Safeslab runs in kernel mode, future attacks cannot abuse syscalls
to bypass MPK in the same fashion as prior work on bypassing
MPK-sandboxing in user space does; however, these attacks, and the
proposed mitigations should be considered if adopting Safeslab
in user space. In addition, isolating Safeslab’s sensitive metadata
(such as page tables, the quarantine, or the struct pagemetadata),
could prevent data-only attacks—this could be achieved by MPK
itself, which prior work [71] demonstrated that incurs a worst-case
≈ 9% performance cost on PTS macro-benchmarks (however, it
protected more kernel objects than those used by Safeslab).

Pointer Scanner. We did not find the pointer scanner to be a
critical source of overhead (see Section 6.1.2), which is attributed
to its infrequent execution due to Safeslab’s TADs. Still, certain
applications might not tolerate being blocked in kernel mode even
for a short time window. Such cases can be addressed by leverag-
ing the io_uring feature [56], which allows processes to register
syscalls asynchronously and continue user-space work until the
syscall is serviced. Additionally, a capability flag could be introduced
in Safeslab (e.g., CAP_SAFESLAB_NOBLOCK) that system adminis-
trators can grant to whitelisted tasks, allowing them to invoke
the kernel without blocking during Safeslab’s scan. Moreover,
although user-supplied dangling pointers might get copied out of
kmalloc’ed objects, Safeslab could be extended to keep track of a
task’s PID, and kill that task if the amount of dangling pointers it
induces exceeds a certain threshold.

Compatibility. Safeslab relies on MPK to prevent access to dis-
abled TADs (i.e., aliases), which may also be achieved via other
hardware features. For example, memory virtualization could pro-
vide Safeslab with a higher number of TADs (e.g., 512) [83] at
the cost of higher runtime/memory overhead due to resource vir-
tualization and more expensive domain switches [45]. Moreover,
as virtualization controls (guest) physical addresses, implementing
Safeslab’s TADswill require re-configuring both the PTs and EPTs,
which might further impact performance. Security-wise, virtualiza-
tion also relies on an unprivileged instruction to switch domains,
i.e., VMFUNC, making it susceptible to the same security issue as MPK
(see “MPK Security” above). Other hardware primitives that have
been repurposed for intra-process isolation, such as Intel CET [110]
or SMAP [74] may not be well-suited for Safeslab, as they define
an unprivileged domain that can also be accessed by the privileged
one, thus failing to prevent access to disabled TADs.

Portability. Safeslab is compatible with other types of alloca-
tors, such as those used in user space [107]. However, as it runs
in kernel mode, Safeslab benefits from direct access to the PTs
and privileged instructions, which speeds-up execution. For a user-
space solution, Safeslab needs to rely on system calls for perform-
ing privileged operations, such as modifying PTs when migrating
pages across TADs, which also require flushing the TLB of the exe-
cuting CPU. However, as page migrations are rare, we do not expect
this to cause high performance overhead—Intel MPK is available
in user space (see Section 2.3) and could be used when switching
TADs. Moreover, Safeslab could also borrow some of the PKs for
protecting other memory regions against temporal errors, such as
the vmalloc region, and even against arbitrary R/W—both on its own
memory-management metadata (e.g., struct page objects) [10, 74]
or other sensitive data (e.g., PTs [83]). However, this may come at a
greater performance penalty in Safeslab, since the pointer scanner
will have to execute more frequently.

8 RELATEDWORK
Most prior solutions that mitigated temporal errors were designed
for user-space applications, and porting them to kernel space, or
alternatively porting Safeslab to user space, to perform an experi-
mental comparison, would be non-trivial. Nevertheless, we provide
in the following a juxtaposition.

Memory Quarantining. MineSweeper [29] and MarkUs [1] also
quarantine freed objects until a certain threshold is hit, and perform
a pointer scan before reusing them. However, they must invoke the
pointer scanner every time their quarantine is full, which happens
15𝑥 more often than with Safeslab—thanks to TADs, we only do
this when we run out them. Nevertheless, as they do not leverage
multiple TADs, which require additional pages to store PT map-
pings, these techniques might benefit from less memory overhead
than Safeslab. Quarantining techniques with probabilistic guar-
antees [78, 82, 91, 92] release quarantined objects in random order
during execution, making it harder for attackers to predict when
a target freed object becomes available. Such techniques usually
fall short against attackers that can execute object (de-)allocations
arbitrarily (e.g., via heap spraying), which is usually the case in
real-world exploits. Safeslab does not rely anything probabilistic.

Safeslab: Mitigating Use-After-Free Vulnerabilities via Memory Protection Keys CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

Address Aliasing. Existing solutions that mitigate temporal er-
rors via address aliasing [27, 39, 106] disable used aliases via page
table manipulations, which is a costly operation that requires sev-
eral accesses in memory to update the corresponding PT entry, as
well as a TLB shootdown on all CPUs. Although it is unclear how
much TLB shootdowns affected performance, we believe they can
have a devastating impact in the kernel when done on every object
deallocation. On the contrary, Safeslab disables used aliases via In-
tel MPK that is fast and does not require updating TLB entries, and
only resorts to PT manipulations for disabling dangling pointers (in-
cluding false positives), which is a rare occurrence. DangZero [39]
and Oscar [27] associate each physical object with multiple virtual
aliases, which puts pressure on the available virtual addresses—as
the kernel works with a large number of objects, we expect such
an approach to exhaust the address space much faster, which, in
turn, would require scanning for dangling pointers more frequently
(to facilitate alias reuse). However, DangZero’s PT compression,
combined with the fact that is does not quarantine memory, might
lead to less memory overhead than Safeslab.

Pointer Tagging. Pointer tagging solutions instrumentmost mem-
ory accesses with an additional check that validates whether a
pointer is allowed to access the referenced object [21, 50, 62, 75, 117].
However, such solutions typically rely on fetching additional meta-
data during the check, which require several lookups in memory,
incurring significant slowdowns. Furthermore, techniques based
on hardware extensions for tagging pointers either require substan-
tial hardware modifications (i.e., CHERI [105]), or are probabilistic
(such as ARM’s MTE [9]) and can be bypased due to tag collisions
(16 tags available). In contrast, Safeslab only entails a performance
penalty on the first memory access of a newly allocated object, while
subsequent memory accesses are unaffected (geomean Safeslab 5%
vs. ViK 21%; see Section 6.1.1), and provides deterministic security
guarantees. However, pointer tagging metadata might incur less
memory overhead(s) than approaches based on no-reuse.

Pointer Tracking. UAF mitigation techniques that keep track of
dangling pointers to invalidate [66, 100, 113] or count them [90]
rely on static analysis to instrument all instructions that manipulate
memory pointers. Such solutions are known to be incomplete since
accurately identifying all instructions that manipulate pointers at
runtime cannot be guaranteed in weakly-typed programming lan-
guages such as C and ASM. Additionally, keeping track of memory
locations that store pointers may considerably increase memory
consumption for pointer-rich systems (e.g., the Linux kernel), while
updating the pointers’ metadata for every instruction that creates,
modifies, or destroys them, may lead to significant performance
overhead due to additional memory accesses. In contrast, Safeslab
does not rely on static analysis to provide its UAF mitigation, and
the additional memory accesses for updating its metadata are far
less frequent, as demonstrated by its low overhead.

Type Isolation. Solutions that avoid reusing virtual addresses
across different types of objects, in user [34, 99] and kernel [46, 47]
space, pin a range of virtual memory to each object class and always
reuse it for new allocations. Nevertheless, such techniques require
(un-)mapping the pinned virtual memory in the PT when getting
new/releasing old physical pages, which hinders performance.

Moreover, they only mitigate UAFs across different object classes,
while UAFs within the same class are still possible. In contrast,
Safeslab prevents UAFs in both cases.

Intel MPK. Intel MPK has been mainly used in prior research for
sandboxing untrusted code within a process and preventing it from
tampering with sensitive memory [22]. Many MPK-based solutions
isolate sensitive data in user-space applications [45, 79, 97, 102],
while others explored sandboxing untrusted microkernel drivers,
in kernel mode [43], or untrusted unikernel drivers [93]. Although
these solutions are effective against attackers that already poses
arbitrary R/W primitives in the address space, Safeslab mitigates
temporal memory errors (which are used to build such primitives)
via Intel MPK—this has not been addressed by prior work.

9 CONCLUSION
In this paper we presented Safeslab, a heap hardening extension
that mitigates temporal memory errors in the presence of dan-
gling pointers. It leverages the novel concept of temporal aliasing
domains, implemented via Intel MPK, to reuse quarantined mem-
ory with new virtual aliases quickly, and an infrequent pointer
scanner to reuse freed virtual addresses safely. We implemented
Safeslab atop the default heap allocator in the Linux kernel (SLUB)
and showed in our evaluation that it can mitigate several existing
UAF exploitation techniques. Additionally, we demonstrated that its
performance overhead on realistic benchmarks is negligible, while
its memory consumption is moderate.

AVAILABILITY
Our Safeslab prototype is available at: https://github.com/tum-
itsec/safeslab

ACKNOWLEDGMENTS
We thank our shepherd and the anonymous reviewers for their
valuable feedback. This work was funded in part by the Bavarian
Ministry of Science and Arts (STMWK), under the project “Secu-
rity in everyday use of digital technologies (ForDaySec),” and the
National Science Foundation (NSF) through awards CNS-2238467,
CNS-2104148, and CNS-1749895. Any opinions, findings, and con-
clusions or recommendations expressed herein are those of the
authors and do not necessarily reflect the views of the US govern-
ment, NSF, or STMWK.

REFERENCES
[1] Sam Ainsworth and Timothy M. Jones. 2020. MarkUs: Drop-In Use-After-Free

Prevention for Low-Level Languages. In IEEE Symposium on Security and Privacy
(S&P). 578–591.

[2] Alejandro Guerrero. 2022. N-day Exploit for CVE-2022-2586: Linux Kernel
nft_object UAF. https://www.openwall.com/lists/oss-security/2022/08/29/5.

[3] Alexander Popov. 2017. Race for Root: Analysis of the Linux Kernel Race
Condition Exploit. https://program.sha2017.org/system/event_attachments/att
achments/000/000/111/original/a13xp0p0v_race_for_root_SHA2017.pdf.

[4] Alexander Popov. 2019. CVE-2019-18683: Exploiting a Linux Kernel Vulnerabil-
ity in the V4L2 Subsystem. https://a13xp0p0v.github.io/2020/02/15/CVE-2019-
18683.html.

[5] Alexander Popov. 2021. Four Bytes of Power: Exploiting CVE-2021-26708 in the
Linux kernel. https://a13xp0p0v.github.io/2021/02/09/CVE-2021-26708.html.

[6] Andrey Konovalov. 2017. CVE-2016-2384: Exploiting a double-free in the Linux
kernel USB MIDI driver. https://xairy.io/articles/cve-2016-2384.

[7] Andrey Konovalov. 2017. CVE-2017-6074: Exploiting a Double-Free in the Linux
Kernel DCCP Sockets. https://xairy.io/articles/cve-2017-6074.

https://github.com/tum-itsec/safeslab
https://github.com/tum-itsec/safeslab
https://www.openwall.com/lists/oss-security/2022/08/29/5
https://program.sha2017.org/system/event_attachments/attachments/000/000/111/original/a13xp0p0v_race_for_root_SHA2017.pdf
https://program.sha2017.org/system/event_attachments/attachments/000/000/111/original/a13xp0p0v_race_for_root_SHA2017.pdf
https://a13xp0p0v.github.io/2020/02/15/CVE-2019-18683.html
https://a13xp0p0v.github.io/2020/02/15/CVE-2019-18683.html
https://a13xp0p0v.github.io/2021/02/09/CVE-2021-26708.html
https://xairy.io/articles/cve-2016-2384
https://xairy.io/articles/cve-2017-6074

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Marius Momeu, Simon Schnückel, Kai Angnis, Michalis Polychronakis, & Vasileios P. Kemerlis

[8] Awarau, and pql. 2022. CVE-2022-29582: An io_uring Vulnerability. https:
//ruia-ruia.github.io/2022/08/05/CVE-2022-29582-io-uring/.

[9] Joe Bialek, Ken Johnson, Matt Miller, and Tony Chen. 2020. Security Analysis
of Memory Tagging. https://github.com/microsoft/MSRC-Security-Research/b
lob/master/papers/2020/Securityanalysisofmemorytagging.pdf.

[10] William Blair, William Robertson, and Manuel Egele. 2022. MPKAlloc: Efficient
Heap Meta-data Integrity Through Hardware Memory Protection Keys. In
International Conference on Detection of Intrusions and Malware & Vulnerability
Assessment (DIMVA). 136–155.

[11] Hans-J Boehm, Alan J Demers, and Scott Shenker. 1991. Mostly Parallel Garbage
Collection. In ACM Conference on Programming Language Design and Implemen-
tation (PLDI). 157–164.

[12] Jeff Bonwick. 1994. The Slab Allocator: An Object-Caching Kernel Memory
Allocator. In USENIX Summer Technical Conference. 87–98.

[13] Daniel P. Bovet and Marco Cesati. 2005. Understanding the Linux Kernel. 294–
350.

[14] Claudio Canella, Jo Van Bulck, Michael Schwarz, Moritz Lipp, Benjamin
Von Berg, Philipp Ortner, Frank Piessens, Dmitry Evtyushkin, and Daniel Gruss.
2019. A Systematic Evaluation of Transient Execution Attacks and Defenses. In
USENIX Security Symposium (SEC). 249–266.

[15] Cedric Halbronn. 2022. SETTLERS OF NETLINK: Exploiting a Limited UAF in
nf_tables (CVE-2022-32250). https://research.nccgroup.com/2022/09/01/settl
ers-of-netlink-exploiting-a-limited-uaf-in-nf_tables-cve-2022-32250/.

[16] Silvio Cesare. 2020. An Analysis of Linux Kernel Heap Hardening. https:
//blog.infosectcbr.com.au/2020/04/an-analysis-of-linux-kernel-heap.html.

[17] Silvio Cesare. 2020. Bit Flipping Attacks Against Free List Pointer Obfuscation.
https://blog.infosectcbr.com.au/2020/04/bit-flipping-attacks-against-free-
list.html.

[18] Silvio Cesare. 2020. Weaknesses in Linux Kernel Heap Hardening. https:
//blog.infosectcbr.com.au/2020/03/weaknesses-in-linux-kernel-heap.html.

[19] Yueqi Chen, Zhenpeng Lin, and Xinyu Xing. 2020. A Systematic Study of
Elastic Objects in Kernel Exploitation. In ACM Conference on Computer and
Communications Security (CCS). 1165–1184.

[20] Yueqi Chen and Xinyu Xing. 2019. SLAKE: Facilitating SLAB Manipulation for
Exploiting Vulnerabilities in the Linux Kernel. In ACM Conference on Computer
and Communications Security (CCS). 1707–1722.

[21] Haehyun Cho, Jinbum Park, Adam Oest, Tiffany Bao, Ruoyu Wang, Yan Shoshi-
taishvili, Adam Doupé, and Gail-Joon Ahn. 2022. ViK: Practical Mitigation of
Temporal Memory Safety Violations Through Object ID Inspection. In ACM
International Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS). 271–284.

[22] George Christou, Grigoris Ntousakis, Eric Lahtinen, Sotiris Ioannidis, Vasileios P.
Kemerlis, and Nikos Vasilakis. 2023. BinWrap: Hybrid Protection against Native
Node.js Add-ons. In ACM ASIA Conference on Computer and Communications
Security (ASIA CCS). 429–442.

[23] R Joseph Connor, Tyler McDaniel, Jared M Smith, and Max Schuchard. 2020.
PKU Pitfalls: Attacks on PKU-based Memory Isolation Systems. In USENIX
Security Symposium (SEC). 1409–1426.

[24] Jonathan Corbet. 2020. Memory protection keys for the kernel. https://lwn.ne
t/Articles/826554/.

[25] Jonathan Corbet and Alessandro Rubini. 2001. Linux Device Drivers, Second
Edition. https://www.oreilly.com/library/view/linux-device-drivers/0596000081
/ch07s04.html.

[26] Emanuele Cozzi, Mariano Graziano, Yanick Fratantonio, and Davide Balzarotti.
2018. Understanding Linux Malware. In IEEE Symposium on Security and Privacy
(S&P). IEEE, 161–175.

[27] Thurston HY Dang, Petros Maniatis, and DavidWagner. 2017. Oscar: A Practical
Page-Permissions-Based Scheme for Thwarting Dangling Pointers. In USENIX
Security Symposium (SEC). 815–832.

[28] Stephane Eranian, Eric Gouriou, Tipp Moseley, and Willem de Bruijn. 2024.
Linux Kernel Profiling with perf. https://perf.wiki.kernel.org/index.php/Tutor
ial.

[29] Márton Erdős, Sam Ainsworth, and Timothy M Jones. 2022. MineSweeper: a
“Clean Sweep” for Drop-In Use-After-Free Prevention. In ACM International
Conference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS). 212–225.

[30] Reza Mirzazade Farkhani, Mansour Ahmadi, and Long Lu. 2021. PTAuth: Tem-
poral Memory Safety via Robust Points-to Authentication. In USENIX Security
Symposium (SEC). 1037–1054.

[31] Flat Security Inc. 2021. CVE-2021–20226: A Reference Counting Bugwhich Leads
to Local Privilege Escalation in io_uring. https://flattsecurity.medium.com/cve-
2021-20226-a-reference-counting-bug-which- leads- to- local-privilege-
escalation-in-io-uring-e946bd69177a.

[32] Alexander J Gaidis, JoaoMoreira, Ke Sun, AlyssaMilburn, Vaggelis Atlidakis, and
Vasileios P. Kemerlis. 2023. FineIBT: Fine-grain Control-flow Enforcement with
Indirect Branch Tracking. In International Symposium on Research in Attacks,
Intrusions and Defenses (RAID). 527–546.

[33] GNU libc. 2024. malloc. http://man7.org/linux/man-pages/man3/malloc.3.html.

[34] Google. 2024. PartitionAlloc Design. https://chromium.googlesource.com/chro
mium/src/+/master/base/allocator/partition_allocator/PartitionAlloc.md.

[35] Google Project. 2018. A Cache Invalidation Bug in Linux Memory Management.
https://googleprojectzero.blogspot.com/2018/09/a-cache-invalidation-bug-in-
linux.html.

[36] Google Security Research. 2023. CVE-2023-0461. https://github.com/google/se
curity-research/tree/master/pocs/linux/kernelctf/CVE-2023-0461_mitigation/
docs.

[37] Google Security Research. 2023. CVE-2023-3390. https://github.com/google/se
curity-research/tree/master/pocs/linux/kernelctf/CVE-2023-3390_lts_cos_mit
igation/docs.

[38] Google Security Research. 2023. CVE-2023-3390_lts_cos_mitigation. https://
github.com/google/security-research/blob/master/pocs/linux/kernelctf/CVE-
2023-3390_lts_cos_mitigation/docs/exploit.md.

[39] Floris Gorter, Koen Koning, Herbert Bos, and Cristiano Giuffrida. 2022. Dan-
gZero: Efficient Use-After-Free Detection via Direct Page Table Access. In ACM
Conference on Computer and Communications Security (CCS). 1307–1322.

[40] Spyridoula Gravani, Mohammad Hedayati, John Criswell, and Michael L Scott.
2021. Fast Intra-kernel Isolation and Security with IskiOS. In International
Symposium on Research in Attacks, Intrusions and Defenses (RAID). 119–134.

[41] GRIMM Cyber. 2021. New Old Bugs in the Linux Kernel. https://blog.grimm-
co.com/2021/03/new-old-bugs-in-linux-kernel.html.

[42] Daniel Gruss, Moritz Lipp, Michael Schwarz, Richard Fellner, Clémentine Mau-
rice, and StefanMangard. 2017. KASLR is Dead: Long Live KASLR. In Engineering
Secure Software and Systems (ESSoS). 161–176.

[43] Jinyu Gu, Xinyue Wu, Wentai Li, Nian Liu, Zeyu Mi, Yubin Xia, and Haibo
Chen. 2020. Harmonizing Performance and Isolation in Microkernels with
Efficient Intra-kernel Isolation and Communication. In USENIX Annual Technical
Conference (ATC). 401–417.

[44] Hardened Linux. 2016. Exploiting on CVE-2016-6787. https://hardenedlinux.gi
thub.io/system-security/2017/10/16/Exploiting-on-CVE-2016-6787.html.

[45] Mohammad Hedayati, Spyridoula Gravani, Ethan Johnson, John Criswell,
Michael L Scott, Kai Shen, and Mike Marty. 2019. Hodor: Intra-process Isola-
tion for High-throughput Data Plane Libraries. In USENIX Annual Technical
Conference (ATC). 489–504.

[46] Jann Horn. 2022. MITIGATION_README. https://github.com/thejh/linux/blob/sl
ub-virtual/MITIGATION_README.

[47] Apple Inc. 2022. Towards the next generation of XNU memory safety:
kalloc_type. https://security.apple.com/blog/towards-the-next-generation-
of-xnu-memory-safety/.

[48] Intel. 2024. Intel® 64 and IA-32 Architectures Software Developer’s Manual.
https://cdrdv2.intel.com/v1/dl/getContent/671200.

[49] iovisor. 2024. BPF Compiler Collection (BCC). https://github.com/iovisor/bcc.
[50] Jann Horn. 2020. Mitigating (Some) Use-After-Frees in the Linux Kernel. https:

//lssna2020.sched.com/event/c74I/mitigating-some-use-after-frees-in-the-
linux-kernel-jann-horn-google.

[51] javierprtd Blog. 2020. CVE-2020-27786 Exploitation: userfaultfd + Patching
file struct /etc/passwd. https://soez.github.io/posts/CVE-2020-27786-
exploitation-userfaultfd-+-patching-file-struct-etc-passwd/.

[52] jemalloc. 2024. jemalloc. https://jemalloc.net.
[53] Di Jin, Vaggelis Atlidakis, and Vasileios P. Kemerlis. 2023. EPF: Evil Packet Filter.

In USENIX Annual Technical Conference (ATC). 735–751.
[54] Di Jin, Alexander J Gaidis, and Vasileios P. Kemerlis. 2024. BeeBox: Hardening

BPF against Transient Execution Attacks. In USENIX Security Symposium (SEC).
[55] Jonathan Corbet. 2017. Hardened Usercopy Whitelisting. https://lwn.net/Articl

es/727322/.
[56] Jonathan Corbet. 2020. The Rapid Growth of io_uring. https://lwn.net/Articl

es/810414/.
[57] Vasileios P. Kemerlis, Michalis Polychronakis, and Angelos D. Keromytis. 2014.

ret2dir: Rethinking Kernel Isolation. In USENIX Security Symposium (SEC). 957–
972.

[58] The Linux Kernel. 2024. Page Table Isolation (PTI). https://www.kernel.org/doc
/html/latest/x86/pti.html.

[59] The Linux Kernel. 2024. Physical Memory Model. https://docs.kernel.org/mm
/memory-model.html.

[60] Kenneth C Knowlton. 1965. A Fast Storage Allocator. Commun. ACM (1965),
623–624.

[61] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel Gruss, Werner
Haas, Mike Hamburg, Moritz Lipp, Stefan Mangard, Thomas Prescher, Michael
Schwarz, and Yuval Yarom. 2019. Spectre Attacks: Exploiting Speculative Exe-
cution. In IEEE Symposium on Security and Privacy (S&P). 1–19.

[62] Mathias Krause. 2022. Canary in the Kernel Mine: Exploiting and Defending
Against Same-Type Object Reuse. https://grsecurity.net/exploiting_and_defend
ing_against_same_type_object_reuse.

[63] kylebot’s Blog. 2022. [CVE-2022-1786] A Journey To The Dawn. https://blog.k
ylebot.net/2022/10/16/CVE-2022-1786/.

[64] Lam Jun Rong. 2022. io_uring – New Code, New Bugs, and a New Exploit
Technique. https://www.starlabs.sg/blog/2022/06-io_uring-new-code-new-

https://ruia-ruia.github.io/2022/08/05/CVE-2022-29582-io-uring/
https://ruia-ruia.github.io/2022/08/05/CVE-2022-29582-io-uring/
https://github.com/microsoft/MSRC-Security-Research/blob/master/papers/2020/Security analysis of memory tagging.pdf
https://github.com/microsoft/MSRC-Security-Research/blob/master/papers/2020/Security analysis of memory tagging.pdf
https://research.nccgroup.com/2022/09/01/settlers-of-netlink-exploiting-a-limited-uaf-in-nf_tables-cve-2022-32250/
https://research.nccgroup.com/2022/09/01/settlers-of-netlink-exploiting-a-limited-uaf-in-nf_tables-cve-2022-32250/
https://blog.infosectcbr.com.au/2020/04/an-analysis-of-linux-kernel-heap.html
https://blog.infosectcbr.com.au/2020/04/an-analysis-of-linux-kernel-heap.html
https://blog.infosectcbr.com.au/2020/04/bit-flipping-attacks-against-free-list.html
https://blog.infosectcbr.com.au/2020/04/bit-flipping-attacks-against-free-list.html
https://blog.infosectcbr.com.au/2020/03/weaknesses-in-linux-kernel-heap.html
https://blog.infosectcbr.com.au/2020/03/weaknesses-in-linux-kernel-heap.html
https://lwn.net/Articles/826554/
https://lwn.net/Articles/826554/
https://www.oreilly.com/library/view/linux-device-drivers/0596000081/ch07s04.html
https://www.oreilly.com/library/view/linux-device-drivers/0596000081/ch07s04.html
https://perf.wiki.kernel.org/index.php/Tutorial
https://perf.wiki.kernel.org/index.php/Tutorial
https://flattsecurity.medium.com/cve-2021-20226-a-reference-counting-bug-which-leads-to-local-privilege-escalation-in-io-uring-e946bd69177a
https://flattsecurity.medium.com/cve-2021-20226-a-reference-counting-bug-which-leads-to-local-privilege-escalation-in-io-uring-e946bd69177a
https://flattsecurity.medium.com/cve-2021-20226-a-reference-counting-bug-which-leads-to-local-privilege-escalation-in-io-uring-e946bd69177a
http://man7.org/linux/man-pages/man3/malloc.3.html
https://chromium.googlesource.com/chromium/src/+/master/base/allocator/partition_allocator/PartitionAlloc.md
https://chromium.googlesource.com/chromium/src/+/master/base/allocator/partition_allocator/PartitionAlloc.md
https://googleprojectzero.blogspot.com/2018/09/a-cache-invalidation-bug-in-linux.html
https://googleprojectzero.blogspot.com/2018/09/a-cache-invalidation-bug-in-linux.html
https://github.com/google/security-research/tree/master/pocs/linux/kernelctf/CVE-2023-0461_mitigation/docs
https://github.com/google/security-research/tree/master/pocs/linux/kernelctf/CVE-2023-0461_mitigation/docs
https://github.com/google/security-research/tree/master/pocs/linux/kernelctf/CVE-2023-0461_mitigation/docs
https://github.com/google/security-research/tree/master/pocs/linux/kernelctf/CVE-2023-3390_lts_cos_mitigation/docs
https://github.com/google/security-research/tree/master/pocs/linux/kernelctf/CVE-2023-3390_lts_cos_mitigation/docs
https://github.com/google/security-research/tree/master/pocs/linux/kernelctf/CVE-2023-3390_lts_cos_mitigation/docs
https://github.com/google/security-research/blob/master/pocs/linux/kernelctf/CVE-2023-3390_lts_cos_mitigation/docs/exploit.md
https://github.com/google/security-research/blob/master/pocs/linux/kernelctf/CVE-2023-3390_lts_cos_mitigation/docs/exploit.md
https://github.com/google/security-research/blob/master/pocs/linux/kernelctf/CVE-2023-3390_lts_cos_mitigation/docs/exploit.md
https://blog.grimm-co.com/2021/03/new-old-bugs-in-linux-kernel.html
https://blog.grimm-co.com/2021/03/new-old-bugs-in-linux-kernel.html
https://hardenedlinux.github.io/system-security/2017/10/16/Exploiting-on-CVE-2016-6787.html
https://hardenedlinux.github.io/system-security/2017/10/16/Exploiting-on-CVE-2016-6787.html
https://github.com/thejh/linux/blob/slub-virtual/MITIGATION_README
https://github.com/thejh/linux/blob/slub-virtual/MITIGATION_README
https://security.apple.com/blog/towards-the-next-generation-of-xnu-memory-safety/
https://security.apple.com/blog/towards-the-next-generation-of-xnu-memory-safety/
https://cdrdv2.intel.com/v1/dl/getContent/671200
https://github.com/iovisor/bcc
https://lssna2020.sched.com/event/c74I/mitigating-some-use-after-frees-in-the-linux-kernel-jann-horn-google
https://lssna2020.sched.com/event/c74I/mitigating-some-use-after-frees-in-the-linux-kernel-jann-horn-google
https://lssna2020.sched.com/event/c74I/mitigating-some-use-after-frees-in-the-linux-kernel-jann-horn-google
https://soez.github.io/posts/CVE-2020-27786-exploitation-userfaultfd-+-patching-file-struct-etc-passwd/
https://soez.github.io/posts/CVE-2020-27786-exploitation-userfaultfd-+-patching-file-struct-etc-passwd/
https://jemalloc.net
https://lwn.net/Articles/727322/
https://lwn.net/Articles/727322/
https://lwn.net/Articles/810414/
https://lwn.net/Articles/810414/
https://www.kernel.org/doc/html/latest/x86/pti.html
https://www.kernel.org/doc/html/latest/x86/pti.html
https://docs.kernel.org/mm/memory-model.html
https://docs.kernel.org/mm/memory-model.html
https://grsecurity.net/exploiting_and_defending_against_same_type_object_reuse
https://grsecurity.net/exploiting_and_defending_against_same_type_object_reuse
https://blog.kylebot.net/2022/10/16/CVE-2022-1786/
https://blog.kylebot.net/2022/10/16/CVE-2022-1786/
https://www.starlabs.sg/blog/2022/06-io_uring-new-code-new-bugs-and-a-new-exploit-technique/
https://www.starlabs.sg/blog/2022/06-io_uring-new-code-new-bugs-and-a-new-exploit-technique/

Safeslab: Mitigating Use-After-Free Vulnerabilities via Memory Protection Keys CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

bugs-and-a-new-exploit-technique/.
[65] Christoph Lameter. 2014. Slab Allocators in the Linux Kernel: SLAB, SLOB, SLUB.

https://events.static.linuxfound.org/sites/events/files/slides/slaballocators.pdf.
[66] Byoungyoung Lee, Chengyu Song, Yeongjin Jang, Tielei Wang, Taesoo Kim,

Long Lu, and Wenke Lee. 2015. Preventing Use-After-Free With Dangling
Pointers Nullification. In Network and Distributed System Security Symposium
(NDSS).

[67] Zhenpeng Lin, Yuhang Wu, and Xinyu Xing. 2022. DirtyCred: Escalating Priv-
ilege in Linux Kernel. In ACM Conference on Computer and Communications
Security (CCS). 1963–1976.

[68] Lin Ma. 2021. Blue Klotski (CVE-2021-3573) and the Story for Fixing. https:
//f0rm2l1n.github.io/2021-07-23-Blue-Klotski/.

[69] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner Haas,
Anders Fogh, Jann Horn, Stefan Mangard, Paul Kocher, Daniel Genkin, Yuval
Yarom, and Mike Hamburg. 2018. Meltdown: Reading Kernel Memory From
User Space. In USENIX Security Symposium (SEC). 973–990.

[70] Lizzie Dixon. 2017. Notes about CVE-2016-7117. https://blog.lizzie.io/notes-
about-cve-2016-7117.html.

[71] Lukas Maar, Martin Schwarzl, Fabian Rauscher, Daniel Gruss, and Stefan Man-
gard. 2023. DOPE: DOmain Protection Enforcement with PKS. In Annual Com-
puter Security Applications Conference (ACSAC). 662–676.

[72] Maxime Peterlin, and Philip Pettersson, and Alexandre Adamski, and Alex
Radocea. 2020. Exploiting a Single Instruction Race Condition in Binder. https:
//www.longterm.io/cve-2020-0423.html.

[73] LarryWMcVoy and Carl Staelin. 1996. lmbench: Portable Tools for Performance
Analysis. In USENIX Annual Technical Conference (ATC). 279–294.

[74] Marius Momeu, Fabian Kilger, Christopher Roemheld, Simon Schnückel, Sergej
Proskurin, Michalis Polychronakis, and Vasileios P. Kemerlis. 2024. ISLAB:
Immutable Memory Management Metadata for Commodity Operating System
Kernels. In ACM ASIA Conference on Computer and Communications Security
(ASIA CCS).

[75] Santosh Nagarakatte, Jianzhou Zhao, Milo MK Martin, and Steve Zdancewic.
2010. CETS: Compiler Enforced Temporal Safety for C. In International Sympo-
sium on Memory Management (ISMM). 31–40.

[76] Manh-Dung Nguyen, Sébastien Bardin, Richard Bonichon, Roland Groz, and
Matthieu Lemerre. 2020. Binary-level Directed Fuzzing for Use-After-Free
Vulnerabilities. In International Symposium on Research in Attacks, Intrusions
and Defenses (RAID). 47–62.

[77] Vitaly Nikolenko. 2016. CVE-2016-6187: Exploiting Linux Kernel Heap Off-by-
One. https://duasynt.com/blog/cve-2016-6187-heap-off-by-one-exploit.

[78] Gene Novark and Emery D. Berger. 2010. DieHarder: Securing the Heap. In
ACM Conference on Computer and Communications Security (CCS). 573–584.

[79] Soyeon Park, Sangho Lee, Wen Xu, Hyungon Moon, and Taesoo Kim. 2019.
libmpk: Software Abstraction for Intel Memory Protection Keys (Intel MPK). In
USENIX Annual Technical Conference (ATC). 241–254.

[80] Patryk Sondej and Piotr Krysiuk. 2023. CVE-2023-32233: Privilege Escalation in
Linux Kernel due to a netfilter nf_tables Vulnerability. https://www.tarlogic
.com/blog/cve-2023-32233-vulnerability/.

[81] Alexander Popov. 2017. Race for Root: The Analysis Of the Linux Kernel Race
Condition Exploit. https://media.ccc.de/v/SHA2017-295-race_for_root_the_an
alysis_of_the_linux_kernel_race_condition_exploit.

[82] Alexander Popov. 2020. Linux Kernel Heap Quarantine Versus Use-After-Free
Exploits. https://a13xp0p0v.github.io/2020/11/30/slab-quarantine.html.

[83] Sergej Proskurin,MariusMomeu, SeyedhamedGhavamnia, Vasileios P. Kemerlis,
and Michalis Polychronakis. 2020. xMP: Selective Memory Protection for Kernel
and User Space. In IEEE Symposium on Security and Privacy (S&P). 563–577.

[84] PTS. 2024. Phoronix Test Suite. https://www.phoronix-test-suite.com.
[85] Querijn Voet. 2023. CVE-2023-3389 – LinkedPoll. https://qyn.app/posts/CVE-

2023-3389/.
[86] Ruihan Li. 2023. StackRot (CVE-2023-3269): Linux Kernel Privilege Escalation

Vulnerability. https://github.com/lrh2000/StackRot.
[87] David Schrammel, Samuel Weiser, Richard Sadek, and Stefan Mangard. 2022.

Jenny: Securing Syscalls for PKU-based Memory Isolation Systems. In USENIX
Security Symposium (SEC). 936–952.

[88] SecWiki. 2020. Linux Kernel Exploits. https://github.com/SecWiki/linux-kernel-
exploits.

[89] SecWiki. 2021. Windows Kernel Exploits. https://github.com/SecWiki/windows-
kernel-exploits.

[90] Jangseop Shin, Donghyun Kwon, Jiwon Seo, Yeongpil Cho, and Yunheung Paek.
2019. CRCount: Pointer Invalidation with Reference Counting to Mitigate
Use-after-free in Legacy C/C++. In Network and Distributed System Security
Symposium (NDSS).

[91] Sam Silvestro, Hongyu Liu, Corey Crosser, Zhiqiang Lin, and Tongping Liu. 2017.
FreeGuard: A Faster Secure Heap Allocator. In ACM Conference on Computer
and Communications Security (CCS). 2389–2403.

[92] Sam Silvestro, Hongyu Liu, Tianyi Liu, Zhiqiang Lin, and Tongping Liu. 2018.
Guarder: A Tunable Secure Allocator. In USENIX Security Symposium (SEC).
117–133.

[93] Mincheol Sung, Pierre Olivier, Stefan Lankes, and Binoy Ravindran. 2020. Intra-
unikernel Isolation with Intel Memory Protection Keys. In ACM International
Conference on Virtual Execution Environments (VEE). 143–156.

[94] The Linux Kernel. 2024. Memory Protection Keys. https://www.kernel.org/doc
/html/latest/core-api/protection-keys.html.

[95] The Linux Kernel. 2024. Unaligned Memory Accesses. https://www.kernel.org
/doc/html/next/core-api/unaligned-memory-access.html.

[96] Theori Vulnerability Research. 2022. Linux Kernel Exploit (CVE-2022–32250)
with mqueue. https://blog.theori.io/linux-kernel-exploit-cve-2022-32250-with-
mqueue-a8468f32aab5.

[97] Anjo Vahldiek-Oberwagner, Eslam Elnikety, Nuno O Duarte, Michael Sammler,
Peter Druschel, and Deepak Garg. 2019. ERIM: Secure, Efficient In-Process
Isolation with Protection Keys (MPK). In USENIX Security Symposium (SEC).
1221–1238.

[98] Valentina Palmiotti. 2022. Put an io_uring on it: Exploiting the Linux Kernel.
https://www.graplsecurity.com/post/iou-ring-exploiting-the-linux-kernel.

[99] Erik van der Kouwe, Taddeus Kroes, Chris Ouwehand, Herbert Bos, and Cris-
tiano Giuffrida. 2018. Type-After-Type: Practical and Complete Type-Safe
Memory Reuse. In Annual Computer Security Applications Conference (ACSAC).
17–27.

[100] Erik Van Der Kouwe, Vinod Nigade, and Cristiano Giuffrida. 2017. DangSan:
Scalable Use-After-Free Detection. In European Conference on Computer Systems
(EuroSys). 405–419.

[101] Vincent Dehors. 2021. Exploitation of a Double Free Vulnerability in Ubuntu
shiftfs Driver (CVE-2021-3492). https://www.synacktiv.com/publications/exp
loitation-of-a-double-free-vulnerability-in-ubuntu-shiftfs-driver-cve-2021-
3492.html.

[102] Alexios Voulimeneas, Jonas Vinck, Ruben Mechelinck, and Stijn Volckaert. 2022.
You Shall Not (by)Pass! Practical, Secure, and Fast PKU-based Sandboxing. In
European Conference on Computer Systems (EuroSys). 266–282.

[103] Vu Thi Lan. 2023. Breaking the Code – Exploiting and Examining CVE-2023-
1829 in cls_tcindex Classifier Vulnerability . https://starlabs.sg/blog/2023/06-
breaking-the-code-exploiting-and-examining-cve-2023-1829-in-cls_tcindex-
classifier-vulnerability/.

[104] Wang, Yong. 2019. From Zero to Root: Building Universal Android Rooting with
a Type Confusion Vulnerability. https://github.com/ThomasKing2014/slides/b
lob/master/Building%20universal%20Android%20rooting%20with%20a%20typ
e%20confusion%20vulnerability.pdf.

[105] Robert N.M. Watson, Jonathan Woodruff, Peter G. Neumann, Simon W. Moore,
Jonathan Anderson, David Chisnall, Nirav Dave, Brooks Davis, Khilan Gudka,
Ben Laurie, Steven J. Murdoch, Robert Norton, Michael Roe, Stacey Son, and
Munraj Vadera. 2015. CHERI: A Hybrid Capability-System Architecture for
Scalable Software Compartmentalization. In IEEE Symposium on Security and
Privacy (S&P). 20–37.

[106] Brian Wickman, Hong Hu, Insu Yun, DaeHee Jang, JungWon Lim, Sanidhya
Kashyap, and Taesoo Kim. 2021. Preventing Use-After-Free Attacks with Fast
Forward Allocation. In USENIX Security Symposium (SEC). 2453–2470.

[107] Wolfram Gloger. 2006. ptmalloc. http://www.malloc.de/en/.
[108] Nicolas Wu. 2024. Dirty Pagetable: A Novel Exploitation Technique To Rule

Linux Kernel. https://yanglingxi1993.github.io/dirty_pagetable/dirty_pagetable
.html.

[109] Wei Wu, Yueqi Chen, Jun Xu, Xinyu Xing, Xiaorui Gong, and Wei Zou. 2018.
FUZE: Towards Facilitating Exploit Generation for Kernel Use-After-Free Vul-
nerabilities. In USENIX Security Symposium (SEC). 781–797.

[110] Mengyao Xie, ChenggangWu, Yinqian Zhang, Jiali Xu, Yuanming Lai, Yan Kang,
Wei Wang, and Zhe Wang. 2022. CETIS: Retrofitting Intel CET for Generic and
Efficient Intra-Process Memory Isolation. In ACM Conference on Computer and
Communications Security (CCS). 2989–3002.

[111] Wenjie Xiong and Jakub Szefer. 2021. Survey of Transient Execution Attacks
and Their Mitigations. ACM Computing Surveys (CSUR) 54, 3 (2021), 1–36.

[112] Meng Xu, Sanidhya Kashyap, Hanqing Zhao, and Taesoo Kim. 2020. KRACE:
Data Race Fuzzing for Kernel File Systems. In IEEE Symposium on Security and
Privacy (S&P). 1643–1660.

[113] Yves Younan. 2015. FreeSentry: Protecting Against Use-After-Free Vulnera-
bilities Due to Dangling Pointers. In Network and Distributed System Security
Symposium (NDSS).

[114] Kyle Zeng, Yueqi Chen, Haehyun Cho, Xinyu Xing, Adam Doupé, Yan Shoshi-
taishvili, and Tiffany Bao. 2022. Playing for K(H)eaps: Understanding and
Improving Linux Kernel Exploit Reliability. In USENIX Security Symposium
(SEC). 71–88.

[115] Google Project Zero. 2022. The More You Know, The More You Know You Don’t
Know. https://googleprojectzero.blogspot.com/2022/04/the-more-you-know-
more-you-know-you.html.

[116] Zhenpeng Lin. 2023. Bad io_uring: A New Era of Rooting for Android. https:
//i.blackhat.com/BH-US-23/Presentations/US-23-Lin-bad_io_uring.pdf.

[117] Jie Zhou, John Criswell, and Michael Hicks. 2023. Fat Pointers for Temporal
Memory Safety of C. Proceedings of the ACM on Programming Languages 7,
OOPSLA1 (2023), 316–347.

https://www.starlabs.sg/blog/2022/06-io_uring-new-code-new-bugs-and-a-new-exploit-technique/
https://events.static.linuxfound.org/sites/events/files/slides/slaballocators.pdf
https://f0rm2l1n.github.io/2021-07-23-Blue-Klotski/
https://f0rm2l1n.github.io/2021-07-23-Blue-Klotski/
https://blog.lizzie.io/notes-about-cve-2016-7117.html
https://blog.lizzie.io/notes-about-cve-2016-7117.html
https://www.longterm.io/cve-2020-0423.html
https://www.longterm.io/cve-2020-0423.html
https://duasynt.com/blog/cve-2016-6187-heap-off-by-one-exploit
https://www.tarlogic.com/blog/cve-2023-32233-vulnerability/
https://www.tarlogic.com/blog/cve-2023-32233-vulnerability/
https://media.ccc.de/v/SHA2017-295-race_for_root_the_analysis_of_the_linux_kernel_race_condition_exploit
https://media.ccc.de/v/SHA2017-295-race_for_root_the_analysis_of_the_linux_kernel_race_condition_exploit
https://a13xp0p0v.github.io/2020/11/30/slab-quarantine.html
https://www.phoronix-test-suite.com
https://qyn.app/posts/CVE-2023-3389/
https://qyn.app/posts/CVE-2023-3389/
https://github.com/lrh2000/StackRot
https://github.com/SecWiki/linux-kernel-exploits
https://github.com/SecWiki/linux-kernel-exploits
https://github.com/SecWiki/windows-kernel-exploits
https://github.com/SecWiki/windows-kernel-exploits
https://www.kernel.org/doc/html/latest/core-api/protection-keys.html
https://www.kernel.org/doc/html/latest/core-api/protection-keys.html
https://www.kernel.org/doc/html/next/core-api/unaligned-memory-access.html
https://www.kernel.org/doc/html/next/core-api/unaligned-memory-access.html
https://blog.theori.io/linux-kernel-exploit-cve-2022-32250-with-mqueue-a8468f32aab5
https://blog.theori.io/linux-kernel-exploit-cve-2022-32250-with-mqueue-a8468f32aab5
https://www.graplsecurity.com/post/iou-ring-exploiting-the-linux-kernel
https://www.synacktiv.com/publications/exploitation-of-a-double-free-vulnerability-in-ubuntu-shiftfs-driver-cve-2021-3492.html
https://www.synacktiv.com/publications/exploitation-of-a-double-free-vulnerability-in-ubuntu-shiftfs-driver-cve-2021-3492.html
https://www.synacktiv.com/publications/exploitation-of-a-double-free-vulnerability-in-ubuntu-shiftfs-driver-cve-2021-3492.html
https://starlabs.sg/blog/2023/06-breaking-the-code-exploiting-and-examining-cve-2023-1829-in-cls_tcindex-classifier-vulnerability/
https://starlabs.sg/blog/2023/06-breaking-the-code-exploiting-and-examining-cve-2023-1829-in-cls_tcindex-classifier-vulnerability/
https://starlabs.sg/blog/2023/06-breaking-the-code-exploiting-and-examining-cve-2023-1829-in-cls_tcindex-classifier-vulnerability/
https://github.com/ThomasKing2014/slides/blob/master/Building%20universal%20Android%20rooting%20with%20a%20type%20confusion%20vulnerability.pdf
https://github.com/ThomasKing2014/slides/blob/master/Building%20universal%20Android%20rooting%20with%20a%20type%20confusion%20vulnerability.pdf
https://github.com/ThomasKing2014/slides/blob/master/Building%20universal%20Android%20rooting%20with%20a%20type%20confusion%20vulnerability.pdf
http://www.malloc.de/en/
https://yanglingxi1993.github.io/dirty_pagetable/dirty_pagetable.html
https://yanglingxi1993.github.io/dirty_pagetable/dirty_pagetable.html
https://googleprojectzero.blogspot.com/2022/04/the-more-you-know-more-you-know-you.html
https://googleprojectzero.blogspot.com/2022/04/the-more-you-know-more-you-know-you.html
https://i.blackhat.com/BH-US-23/Presentations/US-23-Lin-bad_io_uring.pdf
https://i.blackhat.com/BH-US-23/Presentations/US-23-Lin-bad_io_uring.pdf

	Abstract
	1 Introduction
	2 Background
	2.1 Slab-based Allocation in Linux
	2.2 Memory Errors
	2.3 Intel Memory Protection Keys

	3 Threat Model
	4 Design
	4.1 Architectural Overview
	4.2 Temporal Aliasing Domains
	4.3 The Heap Allocator
	4.4 The Quarantine
	4.5 Page Migration
	4.6 The Pointer Scanner
	4.7 Addressing False Positives
	4.8 Marking Unsafe Pages

	5 Implementation
	5.1 PKU in Kernel Space
	5.2 Memory Management
	5.3 The Pointer Scanner

	6 Evaluation
	6.1 Runtime Overhead
	6.2 Memory Overhead
	6.3 Security Analysis
	6.4 Real-world Exploits

	7 Discussion and Future Work
	8 Related Work
	9 Conclusion
	Acknowledgments
	References

