
Configuration-Driven Software Debloating
Hyungjoon Koo

Stony Brook University
hykoo@cs.stonybrook.edu

Seyedhamed Ghavamnia
Stony Brook University

sghavamnia@cs.stonybrook.edu

Michalis Polychronakis
Stony Brook University

mikepo@cs.stonybrook.edu

ABSTRACT
With legitimate code becoming an attack surface due to the prolif-
eration of code reuse attacks, software debloating is an effective
mitigation that reduces the amount of instruction sequences that
may be useful for an attacker, in addition to eliminating poten-
tially exploitable bugs in the removed code. Existing debloating
approaches either statically remove code that is guaranteed to not
run (e.g., non-imported functions from shared libraries), or rely on
profiling with realistic workloads to pinpoint and keep only the
subset of code that was executed.

In this work, we explore an alternative configuration-driven
software debloating approach that removes feature-specific code
that is exclusively needed only when certain configuration direc-
tives are specified—which are often disabled by default. Using a
semi-automated approach, our technique identifies libraries solely
needed for the implementation of a particular functionality and
maps them to certain configuration directives. Based on this map-
ping, feature-specific libraries are not loaded at all if their corre-
sponding directives are disabled. The results of our experimental
evaluation with Nginx, VSFTPD, and OpenSSH show that using the
default configuration in each case, configuration-driven debloating
can remove 77% of the code for Nginx, 53% for VSFTPD, and 20% for
OpenSSH, which represent a significant attack surface reduction.
ACM Reference Format:
Hyungjoon Koo, Seyedhamed Ghavamnia, andMichalis Polychronakis. 2019.
Configuration-Driven Software Debloating. In Proceedings of 12th European
Workshop on Systems Security (EuroSec ’19). ACM, New York, NY, USA,
6 pages. https://doi.org/10.1145/3301417.3312501

1 INTRODUCTION
Modern software development is greatly simplified by an abun-
dance of freely available frameworks, toolkits, and libraries. Shared
libraries, in particular, are widely used due to their several benefits,
including increasing productivity by using ready-made third-party
modules to carry out certain tasks, simplifying code maintenance
and bug fixes without the need to redistribute the whole application,
and reducing space by avoiding multiple copies of the same code
on disk and in memory. The downside of this flexibility, however,
is that the whole library must be loaded even if just a single of its
functions is needed, resulting in “code bloat” due to a large amount
of code that is present but never exercised.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
EuroSec ’19, March 25–28, 2019, Dresden, Germany
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6274-0/19/03. . . $15.00
https://doi.org/10.1145/3301417.3312501

Although a larger code base on its own may not be a significant
drawback when considering the ample resources of modern com-
puting devices (except, perhaps, embedded systems and resource-
constrained devices), from a security perspective, the much larger
attack surface is definitely not welcome. As the code base of a pro-
gram grows, so does the likelihood of finding (exploitable) bugs.
A larger code base also increases the odds of finding sufficient
“gadgets” that can be strung together to mount return-oriented
programming [15] or other types of code-reuse attacks. The inclu-
sion of more libraries also implies more ways to access private or
security-sensitive data, leveraging rarely used or unneeded func-
tionality that is still present.

The above observations have given rise to software debloating
techniques that aim to reduce the attack surface by eliminating
unused code. For most applications, the bulk of the code comes
from shared libraries, which are either bundled with the application,
or are provided by the OS to expose system interfaces and services.
Applications typically use only a fraction of the functions included
in those general purpose libraries, so a natural approach to reduce
the attack surface of a process is to remove unneeded (i.e., non-
imported) functions from all loaded libraries [11, 12, 16]. Typically,
the debloating process takes place on the endpoints, where both
the executable binary and its dependent libraries are present, and
all final dependencies have been resolved.

Besides library customization, prior works have explored various
other debloating approaches applied at different levels, including
function argument specialization [10], feature-driven customiza-
tion [3, 19], and kernel customization [7, 9, 21]. Other software
debloating approaches specialize code for specific languages or
environments, including Java [6, 17, 18], mobile systems [1, 5],
containers [13], or even network protocols [2, 20].

Most of the above approaches follow one of two main strategies
for identifying the code to be removed: i) deterministically identi-
fying code that is guaranteed to be unneeded, e.g., through static
code analysis, or ii) profiling the application using representative
workloads, and keeping only the exercised code. In this work, we
explore an alternative strategy that relies on the configuration of an
application for identifying code that will not be needed at runtime.
The insight behind our approach stems from the fact that among
the multitude of configuration options provided by feature-rich ap-
plications, some of them are rarely used and are disabled by default.
In many cases, a significant amount of code implementing those
features is not needed by any other component, and thus could
be removed whenever the corresponding feature is disabled. Ex-
isting library customization approaches, however, cannot remove
that code because control flow paths to it from other parts of the
program (e.g., the configuration parser) are still present.

As a first step towards developing a fully automated system for
configuration-driven debloating, in this work we aim to explore
the attack surface reduction potential of this debloating strategy.

https://doi.org/10.1145/3301417.3312501
https://doi.org/10.1145/3301417.3312501

EuroSec ’19, March 25–28, 2019, Dresden, Germany Hyungjoon Koo, Seyedhamed Ghavamnia, and Michalis Polychronakis

To that end, we present a semi-automated approach for identifying
libraries solely needed for the implementation of a particular func-
tionality that can be tied to certain configuration directives, and
deriving a mapping between such directives and their exclusively
used libraries. Based on this mapping, the main executable can
then be instrumented to avoid loading any libraries for which the
corresponding directives are disabled.

We applied our technique to the Nginx, VSFTPD, and OpenSSH
servers, and identified various configuration directives that are
associated with a large number of exclusively needed libraries—all
of these directives are disabled by default, and most of them are
rarely used in practice (e.g., XML transformation, image filtering).
The results of our experimental evaluation show that using the
default configuration in each case, configuration-driven debloating
can remove 77% of the code for Nginx, 53% for VSFTPD, and 20% for
OpenSSH, which represent a significant attack surface reduction.

2 BACKGROUND
Applications often allow users to specify initial settings, options,
parameters, and other features by editing a separate configuration
file (typically in ASCII format). The types of configuration directives
vary across different programs. In general, a directive consists of a
variable and a single or multiple values that can be assigned to it. Of
particular interest for our purposes are directives associated with
specific functionality that is carried out by a standalone library—
when such a directive is disabled, then the corresponding library
could be completely removed.

Listing 1 shows a complete instance of an Nginx configuration.
Although Nginx supports 724 different configuration options from
85 components, a simple configuration like this suffices for a basic
web service. The comments highlight directives that are associated
with certain libraries. For example, the gzip directive at line 19 is
associated with the libz.so library. As it is specified under the
server structure, the gzip directive applies to all location sub–
structures. Similarly, the image_filter and rewrite directives in
lines 26 and 27 result in the loading of a graphic library (libgd.so)
and regular expression library (libpcre.so), respectively. In some
cases, multiple directives have to be defined to enable a certain
capability, such as the SSL-related directives in lines 18, 20, and 21.

3 CONFIGURATION-DRIVEN CODE
DEBLOATING

Removing the code that will remain unused according to a given
configuration without breaking the functionality of the program
requires addressing two main requirements. First, the code that is
related to a particular configuration directive needs to be precisely
identified. Second, the rest of the code must be analyzed to ensure
that it does not depend on the code that will be removed if that
particular directive is disabled. Both of the above requirements
are quite challenging to address in an automated and exhaustive
way. An ideal approach would take a configuration directive as
input, automatically identify all associated code, and extract the
subset of that code that is not needed by the rest of the program
when this particular functionality is disabled. This may be feasible
using a combination of control and data flow analysis, but before
investigating such a complex solution, our goal in this work is to

1 # /etc/nginx/nginx.conf
2 worker_processes 1;
3 error_log /var/log/nginx/error.log;
4
5 events { worker_connections 1024; }
6
7 http {
8 include mime.types;
9 index default.html default.htm;
10 default_type application/octet -stream;
11
12 access_log /usr/local/nginx/logs/nginx.pid;
13 geoip_country /usr/local/nginx/conf/GeoIP.dat; #

libGeoIP.so
14 charset UTF -8;
15 keepalive_timeout 65;
16
17 server {
18 listen 443 ssl; # libssl.so
19 gzip on; # libz.so
20 ssl_certificate cert.pem; # libssl.so
21 ssl_certificate_key cert.key; # libssl.so
22
23 location / {
24 root /var/www/hexlab;
25 index default.php;
26 image_filter resize 150 100; # libgd.so
27 rewrite ^(.*)$ /msie/$1 break; # libpcre.so
28 }
29
30 location /test {
31 xml_entities /var/www/hexlab/entities.dtd; #

libxml2.so
32 xslt_stylesheet /var/www/hexlab/one.xslt; #

libxslt.so
33 }
34 }
35 }

Listing 1: Example of an Nginx configuration file.

derive a first estimate of the attack surface reduction potential that
such a configuration-driven debloating scheme would offer.

Unneeded code removal can be performed at different levels
of granularity, e.g., at the instruction, function, or library level.
For instance, prior works remove the functions that are not im-
ported (and thus not used) from the libraries linked to the main
executable [11, 12]. Given the complexity of identifying all func-
tions that are exclusively needed by a given configuration directive,
in this work we decided instead to aim for deriving a lower bound,
and perform code debloating at the library level. The intuition
behind this decision is that many types of functionality that can
be enabled or disabled through configuration directives are often
carried out by third-party libraries. For instance, as shown in the
Nginx configuration example of Section 2, if content compression
is needed, then this will be performed by the libz.so library.

To pinpoint the libraries that are exclusively associated with a
given configuration directive, we perform differential testing us-
ing a combination of static and dynamic analysis. The directives
to be analyzed, as well as appropriate test inputs for driving the
execution of the application during dynamic analysis, are manu-
ally selected after studying the configuration documentation of
the application in conjunction with observing which libraries are
loaded. For this work, we focused on server applications (Nginx,
VSFTPD, and OpenSSH), as they typically require at least some
minimal configuration specification for proper operation.

Figure 1 shows an overview of our approach. First, we compile
the program by enabling code coverage profiling, and run it twice,
with a given directive enabled and disabled. By comparing the two
code coverage reports, we then pinpoint any extra library code that

Configuration-Driven Software Debloating EuroSec ’19, March 25–28, 2019, Dresden, Germany

(2) Library Dependency Analysis

C
o

n
fi

g
u

ra
ti

o
n Directive

OFF

Directive
ON

(1) Directive to Library Mapping Analysis

(source code coverage tool)

Coverage
Diffing

(3) Validation: any function in a removable library is not employed from elsewhere?

Coverage
Report

Coverage
Report

Binary Instrumentation: identifying and removing unneeded modules

Executable

LIB (a) LIB (b)

LIB (c) LIB (d)

Directive X

M
ap

p
in

g

LIB (a) LIB (b) (d)

Directive Y

LIB (d)

Directive Z

Libraries required by the original executable

LIB (a)

LIB (d) LIB (c)

LIB (b)

Libraries after configuration-driven debloating

LIB (a)

LIB (c)

Directive-to-Library Mapping Information

User-Defined Configuration at Runtime

Figure 1: Overview of the configuration-driven code debloat-
ing process.

was exercised onlywhen the directivewas enabled. This allows us to
derive an initial mapping between directives and libraries, which is
then refined in a second dependency analysis step, which builds the
dependency graph across all libraries in the program and identifies
any dependencies that are exclusive to a given library. Finally, a
static analysis step analyzes the whole program and verifies that the
identified directive-dependent libraries are not used by any other
part of the program. The whole analysis process is performed only
once per configuration directive. The resulting directive-to-library
mapping information can then be used as input for instrumenting
the main executable to avoid loading any unneeded libraries for
which the corresponding directive is disabled.

3.1 Mapping Directives to Libraries
To identify the libraries that are exclusively used by certain config-
uration directives, we perform differential testing by comparing the
source code coverage during execution with and without a given
directive. Our technique relies on the LLVM source code cover-
age tool (llvm-cov [8]), to identify the exercised code for a given
combination of configuration directives and test inputs.

Before testing a given directive, we have to manually prepare
i) the specially crafted configuration file that enables or disables
the functionality of interest, and ii) a set of appropriate program
inputs to ensure that the feature of interest will be invoked. We
initially specify the simplest configuration with all directives to be
tested disabled (i.e., commented out) as our base configuration. We
then generate one configuration per directive (or set of directives)
that enables a particular feature or functionality that is likely to be
carried out by a specific library (or set of libraries).

We have implemented an analysis tool that automatically enables
and disables the directive(s) for a given feature, runs the application
with the appropriate test cases, and maps the directive(s) into one
or more libraries. Comparing the two code coverage reports allows
us to pinpoint the extra code that is associated with the tested func-
tionality when the corresponding directive is enabled, and thus the

associated libraries. For example, consider libgd.so, which is used
by Nginx for image manipulation—a functionality that is supported
by Nginx, but is disabled by default. When Nginx runs without this
feature (the default case), we can safely exclude libgd.so from
being loaded, as no other part of the code relies on it.

3.2 Library Dependence and Validation
The list of candidate libraries for removal from the mapping phase
must be validated by checking whether i) other libraries have any
dependencies from the candidate directive-related libraries, and
ii) the rest of the program still uses any functions from the candidate
directive-related libraries.

The first case can be easily handled by statically analyzing the
imports of the main executable and all dynamic libraries. By build-
ing a library dependence graph, we can identify additional libraries
that may be needed solely by a directive-dependent library, which
can then be removed as well. For example, going back to Figure 1, if
libB is directive-dependent, then libD can also be removed when
the directive is disabled, as it is not needed by any other mod-
ule. On the other hand, libC cannot be removed because it is still
needed by other libraries. The second case is handled by identifying
all exported functions of a directive-related library, and checking
whether any of them are used by other parts of the source code.
For instance, although differential analysis shows that the gzip
directive depends on libz.so, we cannot simply remove it because
a function from libz.so is used by other parts of the code.

4 EXPERIMENTAL EVALUATION
We evaluated the potential of configuration-driven code debloating
by experimentingwith threewidely used server applications (Nginx,
VSFTPD, and OpenSSH) running on Ubuntu 16.04. Our aim is to
explore the impact of various features that are disabled by default
on code bloat, i.e., how much code could be removed when a given
feature is disabled in a certain configuration. In addition, we also
compare configuration-driven code debloating with the alternative
(and orthogonal) approach of code debloating based on removing
any non-imported functions from libraries [11, 12].

4.1 Identifying Non-default Functionality
One way to identify promising features that are disabled by default
and which may be associated with libraries that are loaded but
remain unused would be to go through the various configuration
directives and pinpoint the ones that seem promising. However,
as discussed in Section 2, the large amount of configuration di-
rectives for some applications would make this approach quite
time consuming (testing all directives would be even more so). In-
stead, we followed the opposite approach and went through the
loaded libraries of each application, trying to identify those that
seem specific to a certain functionality, and then looking for related
configuration directives in the documentation. Once the directives
corresponding to a given library are identified, a special configu-
ration can be specified in our analysis tool to run the application
with pre-defined test cases (Section 3.1).

One of the libraries Nginx loads (in its default installation, e.g.,
when installed by a packagemanager like apt-get) is libGeoIP.so,
which provides code for mapping IP addresses to their geographic

EuroSec ’19, March 25–28, 2019, Dresden, Germany Hyungjoon Koo, Seyedhamed Ghavamnia, and Michalis Polychronakis

Table 1: Libraries exclusively used by certain (disabled by default) features, and their corresponding footprint in terms of code
size and ROP gadgets, for three server applications.

Program Functionality Libraries # Functions Code (bytes) # Gadgets

Nginx

(Whole)
libdl.so.2, libpthread.so.0, libcrypt.so.1, libpcre.so.3*, libz.so.1*, libc.so.6,
libssl.so.1.0.0, libcrypto.so.1.0.0,
and all libraries from other features

38,712 13,853,649 150,914

GeoIP libGeoIP.so.1* 386 137,663 460

XSLT libxml2.so.2*, libxslt.so.1*, libexslt.so.0*, libm.so.6, libicui18n.so.55*,
libicuuc.so.55*, libicudata.so.55, libstdc++.so.6 20,066 5,766,222 55,595

Image filtering
libgcc_s.so.1, libgd.so.3*, libjpeg.so.8, libpng12.so.0*, libfreetype.so.6*, libxcb.so.1*,
libfontconfig.so.1*, libXpm.so.4*, libX11.so.6, libvpx.so.3, libtiff.so.5,
libexpat.so.1*, liblzma.so.5*, libjbig.so.0*, libXau.so.6*, libXdmcp.so.6*

9,240 4,800,102 49,286

VSFTPD

(Whole) libcrypt.so.1, libc.so.6, libcap.so.0*,
and all libraries from other features 9,005 2,993,778 44,221

SSL libssl.so.1.0.0, libcrypto.so.1.0.0 5,427 1,457,041 21,668
PAM libpam.so.0, libaudit.so.1*, libdl.so.2 211 65,294 1,008
TCP wrapper libwrap.so.0*, libnsl.so.1 230 69,169 1,175

OpenSSH

(Whole)

libcrypt.so.1, libdl.so.2, libcrypto.so.1.0.0, libutil.so.1, libresolv.so.2, libz.so.1*,
libc.so.6, libgcrypt.so.20, libselinux.so.1, libsystemd.so.0, libgpg-error.so.0*,
librt.so.1, liblzma.so.5*, libpcre.so.3*, libaudit.so.1*,
and all libraries from other features

15,563 5,341,425 68,914

Kerberos libgssapi_krb5.so.2*, libkrb5.so.3*, libk5crypto.so.3*, libkrb5support.so.0*,
libcom_err.so.2*, libpthread.so.0 3,823 1,043,336 10,740

PAM libpam.so.0 75 29,920 429

locations.We can easily assume that theremay be a configuration di-
rective related to geolocation, and we indeed identified three related
directives (geoip_city, geoip_country, and geo_org). Similarly,
the presence of libxslt.so is related to the xslt_stylesheet
directive, as shown in Listing 1.

Although we begin with a single library per directive (or set of
directives), it is often the case that a directive-dependent library
exclusively relies on other libraries that are not used by other parts
of the program, which our analysis identifies as well. For example,
libgd.so for image filtering in Nginx subsequently loads 16 more
libraries, such as libpng12.so, libtiff.so, and libjpeg.so. By
following this approach, we identified three main features (GeoIP,
XSLT, and image filtering) which are disabled by default, and ac-
count for the vast majority of loaded libraries of a default Nginx
installation. In particular, among the 33 libraries loaded by default,
25 are solely required for the above three features—just eight li-
braries are really needed when none of those features are enabled.
The left part of Table 1 (first three columns) summarizes the types
of functionality that depend on certain directives, and the corre-
sponding libraries that are exclusively required by them, for the
three applications we tested, as a result of our directive-to-mapping
analysis described in Section 3.

For Nginx, we could identify all libraries for the different direc-
tives without any particular test traffic, i.e., by simply starting and
stopping the web server with each configuration. For the other two
applications, we had to generate realistic traffic, including a com-
plete authentication and log in process, because features related
to authentication (e.e., PAM, TCP wrapper, Kerberos) require an
actual login attempt to generate a meaningful code coverage report.

4.2 Attack Surface Reduction
To get a better insight on the degree of the achieved attack surface
reduction, given that the code size of libraries varies widely, we pro-
vide more detailed information about the amount of code, number
of functions, and number of ROP gadgets that are removed for each
feature, as well as for the original program (last three columns in Ta-
ble 1). We used ROPGadget [14] with its default options to discover
the available ROP gadgets in each module. Note that two common
libraries, the virtual dynamic shared object (linux-vdso.so) and
the dynamic loader (ld-linux-x86_64.so), are omitted from the
table due to their small size.

The rows denoted as “whole” in the Functionality column corre-
spond to the original (non-debloated) binary that is typically dis-
tributed by the various Linux distributions, i.e., which contains the
whole functionality that can potentially be needed by all supported
configurations. For example, a default Nginx process comprises
38,712 functions across 33 libraries, which correspond to approxi-
mately 14MB of code containing around 150,914 ROP gadgets.

The rest of the rows for each application correspond only to
the libraries exclusively needed for a given functionality—all listed
functionalities are disabled by default. Notably, the XSLT feature
of Nginx alone requires 5.7MB of code—when the whole code base
of Nginx is 13.8MB—while image filtering requires 4.8MB of code.
As shown in the pie chart of Figure 2, XSLT and image filtering
correspond to 41% and 35% of the code. When all three features are
disabled (which is very likely to be the case in many configurations),
configuration-driven debloating can reduce Nginx’s code to just
23% of the original. The reduced code for VSFTPD and OpenSSH
with their default configurations is 47% and 80% of the original,
respectively. The reduction for OpenSSH is not that significant,
as just Kerberos corresponds to a significant fraction of the code
(about one fifth).

Configuration-Driven Software Debloating EuroSec ’19, March 25–28, 2019, Dresden, Germany

23%

1%

41%

35%

Nginx

Basic GeoIP
XSLT Image filter

47%

49%

2% 2%

Vsftpd

Basic SSL
PAM TCP Wrapper

80%

19%

1%
Openssh

Basic Kerberos PAM

Figure 2: Breakdown of code size according to different con-
figuration directives. “Basic” corresponds to the remaining
code after configuration-driven debloating when all direc-
tives are disabled, which is the default in all cases.

22.73%

46.54%

75.69%

46.93%

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

Config-driven Config-driven
(Piece-Wise subset)

Piece-Wise Combined

Re
m

ai
ni

ng
 C

od
e

(%
)

Figure 3: Remaining code for Nginx for different debloat-
ing approaches (configuration-driven, Piece-Wise [12], and
their combination).

4.3 Comparison with Library Customization
In this section, we compare configuration-driven debloating with
the alternative—and orthogonal—debloating approach of library
customization [11, 12, 16]. Library customizationworks by statically
analyzing the code of the application to identify which functions
are imported (i.e., actually used) from shared libraries, and then
remove the rest. We use the Piece-Wise Compilation implementa-
tion [12] as a representative library customization technique. For
this set of experiments, we exclude libc, the libraries defined un-
der libc (i.e., libcrypt, libpthread, libm, libdl, and libcrypt)
and several cryptographic libraries (i.e., libcrypto, libssl, and
libgcrypt) because Piece-Wise’s modified LLVM compiler could
not successfully compile them. The remaining libraries that were
successfully processed (33 out of a total of 67 libraries for all three
applications) are marked with an asterisk (*) in Table 1.

Figure 3 shows the remaining code for Nginx using its default
configuration for i) configuration-driven debloating, ii) the same
when considering only the libraries that can be successfully han-
dled by the Piece-Wise compiler, iii) Piece-Wise compilation, and
iv) the combination of the two approaches (i.e., Piece-Wise applied
after configuration-driven debloating has removed the non-needed
libraries). The second case is provided for a more fair comparison
with Piece-Wise debloating, which shows that for Nginx, library
specialization alone cannot reach the level of reduction achieved
by configuration-driven debloating. Although the combination of

both approaches in this case offers only a small benefit (<1%), it
may be beneficial for other applications. We could not meaningfully
perform the same comparison for VSFTPD and OpenSSH because
Piece-Wise could only process less than half of the libraries (mostly
the very small ones), which collectively do not represent a substan-
tial amount of the whole code.

5 DISCUSSION AND LIMITATIONS
Our current implementation requires the source code of the appli-
cation to collect code coverage information during the profiling
phase. The reliance on source code means that the technique is not
applicable on close-source software, while the profiling phase re-
quires appropriate inputs to exercise the corresponding code paths,
which may result in missed functionality, and entails a fair amount
of manual preparation. For example, exercising the code for the
PAM functionality in OpenSSH required realistic interaction with
the server, including proper user authentication.

Our library dependence analysis and validation steps mitigate
this issue, but a more principled approach may be possible by com-
bining code and data flow analysis techniques, which we leave as
part of our future work. Another aspect that currently involves
manual analysis is the identification of particular configuration di-
rectives that seem promising enough to analyze. A fully automated
approach would be capable of exhaustively analyzing all directives,
and even certain directive combinations.

A drawback of relying on source code coverage is that its infor-
mation may not be entirely accurate. Based on our experience with
the LLVM source coverage tool, the coverage report is not gener-
ated properly in cases of some forking applications. In particular,
when the code uses _exit() instead of exit(), the tool fails to
catch the termination of the process. Therefore, we had to modify
the source code as a workaround for both VSFTPD and OpenSSH.
In addition, the environment variable, LLVM_PROFILE_FILE was
not propagated to forked processes in OpenSSH, which resulted in
empty report files. We resorted to running OpenSSH in debug mode,
which disables forking, to extract proper coverage information.

It is worth mentioning that we excluded Apache from our eval-
uation because its modular design is directly exposed to the con-
figuration file. Enabling a certain feature is performed by actually
specifying the precise path to the corresponding shared library
implementing that feature in the configuration.

6 RELATEDWORK
One of the earliest library specialization approaches as a defense
against exploitation was presented by Mulliner and Neugschwandt-
ner [11]. Their Code Stripping and Image Freezing techniques,
which operate on closed-source binaries, identify and remove all
non-imported functions at load time, and then “freeze” the remain-
ing code by modifying certain memory allocation routines to pre-
vent the loading or injection of additional code. Quach et al. [12]
proposed Piece-Wise compilation, which leverages a modified com-
piler and loader to perform shared library specialization. Infor-
mation regarding call dependencies and function boundaries is
embedded as metadata into the binary at compilation time. Song et
al. [16] showed the potential of fine-grained library customization

EuroSec ’19, March 25–28, 2019, Dresden, Germany Hyungjoon Koo, Seyedhamed Ghavamnia, and Michalis Polychronakis

for statically linked libraries using data dependency analysis. Shred-
der [10] aims to specialize further any remaining functions after
applying one of the above library specialization approaches. This
is achieved by restricting the scope of critical system API functions
and allowing only the subset of argument values that are needed
by the benign code.

Feature-oriented software specialization aims to remove unused
functionality across the whole program, depending on its intended
use. DamGate [19] uses both static and dynamic analysis to con-
struct a call graph according to a set of seed functions that are given
as input, and pinpoint the required code. TRIMMER [3] relies on
user-defined configuration data to remove unneeded feature-related
code. The code is identified using inter-procedural analysis based
on the entry points specified in the initial configuration. CHISEL [4]
proposes a reinforcement-learning-based approach that allows a
developer to generate a reduced version of a program based on a
set of example runs with the desired options.

Another line of code debloating research focuses on the kernel.
FACE-CHANGE [21] generates a customized kernel view for each
application to reduce the exposed kernel code based on profiling.
Kurmus et al. [7] presented an automated approach for generating
kernel configurations adapted to particular workloads, which can
be used to compile a specialized kernel tailored for a given use case.

Other types of code specialization focus on different languages [6,
17, 18], environments [1, 5, 13], or protocols [2, 20]. Jred [18] re-
moves unused methods and libraries based on static analysis of
Java code. Similarly, Bhattacharya et al. [17] introduced a technique
to detect bloated sources in Java applications. Jiang et al. [6] pre-
sented a technique for Java bytecode customization using static
data flow analysis and programming slicing. RedDroid [5] elim-
inates unneeded methods and classes from Android apps. Apple
introduced “app thinning” [1] to deliver optimized versions of apps
for different devices. Cimplifier [13] performs container debloating
based on system call analysis. David et al. [2] observed that vulner-
abilities related to protocol implementations often reside in code
that is not frequently used. TOSS [20] is an approach for automated
customization of client–server systems through the removal of code
related to unneeded network protocols.

7 CONCLUSION
We have presented configuration-driven software debloating, an
approach that removes feature-specific shared libraries that are
exclusively needed only when certain configuration directives are
specified by the user, and which are typically disabled by default. Al-
thoughwe have identified several challenges that must be addressed
for developing a fully automated configuration-driven debloating
solution, our current semi-automated approach still demonstrates
that the level of attack surface reduction for certain server appli-
cations is worth the effort—our results show that only 23% of the
code for Nginx, 47% for VSFTPD, and 80% for OpenSSH is really
required based on their default configuration. At the same time, the
technique can be combined with other code debloating approaches,
such as library customization.

Acknowledgments. This work was supported by the Office of Naval
Research (ONR) through award N00014-17-1-2891, the National
Science Foundation (NSF) through award CNS-1749895, and the

Defense Advanced Research Projects Agency (DARPA) through
award D18AP00045, with additional support by Accenture. Any
opinions, findings, and conclusions or recommendations expressed
herein are those of the authors and do not necessarily reflect the
views of the ONR, NSF, DARPA, or Accenture.

REFERENCES
[1] Apple. 2015. What is app thinning? (iOS, tvOS, watchOS). https://help.apple.

com/xcode/mac/current/#/devbbdc5ce4f.
[2] Q. A. Chen David K. Hong and Z. M. Mao. 2017. An initial investigation of

protocol customization. In Proceedings of the Second Workshop on Forming an
Ecosystem Around Software Transformation (FEAST).

[3] Ashish Gehani Hashim Sharif, Muhammad Abubakar and Fareed Zaffar. 2018.
TRIMMER: Application Specialization for Code Debloating. In Proceedings of
the 33rd ACM/IEEE International Conference on Automated Software Engineering
(ASE).

[4] Kihong Heo, Woosuk Lee, Pardis Pashakhanloo, and Mayur Naik. 2018. Effective
Program Debloating via Reinforcement Learning. In Proceedings of the 24th ACM
Conference on Computer and Communications Security (CCS).

[5] Yufei Jiang, Qinkun Bao, Shuai Wang, Xiao Liu, and DinghaoWu. 2018. RedDroid:
Android Application Redundancy Customization Based on Static Analysis. In
Proceedings of the 29th IEEE International Symposium on Software Reliability
Engineering (ISSRE).

[6] Yufei Jiang, Can Zhang, DinghaoWu, and Peng Liu. 2016. Feature-Based Software
Customization: Preliminary Analysis, Formalization, and Methods. In Proceedings
of the 17th IEEE International Symposium on High Assurance Systems Engineering
(HASE).

[7] Anil Kurmus, Reinhard Tartler, Daniela Dorneanu, Bernhard Heinloth, Valentin
Rothberg, Andreas Ruprecht, Wolfgang Schroder-Preikschat, Daniel Lohmann,
and Rudiger Kapitza. 2013. Attack Surface Metrics and Automated Compile-Time
OS Kernel Tailoring. In Proceedings of the Network and Distributed System Security
Symposium (NDSS).

[8] LLVM. 2008. Source-based Code Coverage. https://clang.llvm.org/docs/
SourceBasedCodeCoverage.html.

[9] Hyungon Moon Mansour Alharthi, Hong Hu and Taesoo Kim. 2018. On the Ef-
fectiveness of Kernel Debloating via Compile-time Configuration. In Proceedings
of the Second Workshop on Forming an Ecosystem Around Software Transformation
(FEAST).

[10] Shachee Mishra and Michalis Polychronakis. 2018. Shredder: Breaking Exploits
through API Specialization. In Proceedings of the 34th Annual Computer Security
Applications Conference (ACSAC).

[11] Collin Mulliner and Matthias Neugschwandtner. 2015. Breaking Payloads with
Runtime Code Stripping and Image Freezing.

[12] Anh Quach, Aravind Prakash, and Lok Yan. 2018. Debloating Software through
Piece-Wise Compilation and Loading. In Proceedings of the 27th USENIX Security
Symposium. 869–886.

[13] Vaibhav Rastogi, Drew Davidson, Lorenzo De Carli, Somesh Jha, and Patrick D.
McDaniel. 2017. Cimplifier: automatically debloating containers. In Proceedings
of the 11th Joint Meeting on Foundations of Software Engineering (ESEC/FSE).

[14] Jonathan Salwan. 2011. ROPGadget - Gadgets finder and auto-roper. http:
//shell-storm.org/project/ROPgadget/.

[15] Hovav Shacham. 2007. The Geometry of Innocent Flesh on the Bone: Return-
into-libc without Function Calls (on the x86). In Proceedings of the 14th ACM
conference on Computer and Communications security (CCS).

[16] Linhai Song and Xinyu Xing. 2018. Fine-Grained Library Customization. In
Proceedings of the ECOOP 1st International Workshop on SoftwAre debLoating And
Delayering (SALAD).

[17] Kanchi Gopinath Suparna Bhattacharya and Mangala Gowri Nanda. 2013. Com-
bining Concern Input with Program Analysis for Bloat Detection. In Proceedings
of the 2013 ACM SIGPLAN International Conference on Object Oriented Program-
ming Systems Languages & Applications (OOPSLA).

[18] Dinghao Wu Yufei Jiang and Peng Liu. 2016. Jred: Program customization and
bloatware mitigation based on static analysis. In Proceedings of the 40th Annual
Computer Software and Applications Conference (ACSAC).

[19] Tian Lan Yurong Chen and Guru Venkataramani. 2017. DamGate: Dynamic
Adaptive Multi-feature Gating in Program Binaries. In Proceedings of the Second
Workshop on Forming an Ecosystem Around Software Transformation (FEAST).

[20] Tian Lan Yurong Chen, Shaowen Sun and Guru Venkataramani. 2018. TOSS:
Tailoring Online Server Systems through Binary Feature Customization. In Pro-
ceedings of the Second Workshop on Forming an Ecosystem Around Software Trans-
formation (FEAST).

[21] Xiangyu Zhang Zhongshu Gu, Brendan Saltaformaggio and Dongyan Xu. 2014.
FACE-CHANGE: Application-Driven Dynamic Kernel View Switching in a Vir-
tual Machine. In Proceedings of the 44th IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN).

https://help.apple.com/xcode/mac/current/#/devbbdc5ce4f
https://help.apple.com/xcode/mac/current/#/devbbdc5ce4f
https://clang.llvm.org/docs/SourceBasedCodeCoverage.html
https://clang.llvm.org/docs/SourceBasedCodeCoverage.html
http://shell-storm.org/project/ROPgadget/
http://shell-storm.org/project/ROPgadget/

	Abstract
	1 Introduction
	2 Background
	3 Configuration-Driven Code Debloating
	3.1 Mapping Directives to Libraries
	3.2 Library Dependence and Validation

	4 Experimental Evaluation
	4.1 Identifying Non-default Functionality
	4.2 Attack Surface Reduction
	4.3 Comparison with Library Customization

	5 Discussion and Limitations
	6 Related Work
	7 Conclusion
	References

