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ABSTRACT
Configuration options allow users to customize application features
according to the desired requirements. While the code that corre-
sponds to disabled features is never executed, it still resides in pro-
cess memory and comprises part of the application’s attack surface,
e.g., it can be reused for the construction of exploit code. Automati-
cally reducing the attack surface of disabled application features
according to a given configuration is thus a desirable defense-in-
depth capability. The intricacies of modern software design and the
complexities of popular programming languages, however, intro-
duce significant challenges in automatically deriving the mapping
of configuration options to their corresponding application code.

In this paper, we present Configuration-to-Code (C2C), a generic
configuration-driven attack surface reduction technique that au-
tomatically maps configuration options to application code us-
ing static code analysis and instrumentation. C2C operates at a
fine-grained level by pruning configuration-dependent conditional
branches in the control flow graph, allowing the precise identifica-
tion of a given configuration option’s code at the basic block level.
At runtime, C2C reduces the application’s attack surface by filtering
any system calls required exclusively by disabled features. Using
popular applications, we show how security-critical system calls
(such as execve) can be automatically disabled when not needed,
limiting an attacker’s vulnerability exploitation capabilities. System
call filtering also reduces the exposed attack surface of the underly-
ing Linux kernel, neutralizing 32 additional CVEs (for a total of 88)
compared to previous software specialization techniques.
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1 INTRODUCTION
Software applications typically support a continuously increasing
set of features and extensions [32, 58] that can be controlled by
various runtime configuration options. Through these configura-
tion options, users can alter program execution and tune it towards
their needs. Configuration settings vary significantly across differ-
ent applications in terms of the offered customization granularity.
While some options just enable or disable features, others tweak
their details, providing users fine-grained control over the program.

Although a given active configuration restricts the features avail-
able at runtime, the application code corresponding to these features
and the underlying system calls it relies on always remain accessible
in the program. This unused code is essentially software bloat, and
is often capable of performing privileged operations through the
invocation of critical system calls, such as spawning new processes
and changing memory permissions.

Software debloating and specialization have recently gained
traction as defense-in-depth techniques for reducing the attack sur-
face of applications, by removing or restricting access to unneeded
features. These include techniques applied to user-space applica-
tions [30, 31, 51, 56, 59], as well as techniques for kernel [71, 72] and
container [27, 67] specialization. A common characteristic of these
techniques is that they are configuration agnostic. They consider
all possible configurations of a given application, and therefore
overlook debloating and specialization opportunities that depend
on different configuration settings. This results in the generation of
policies that are more permissive than what is required by typical
configurations used in practice.

The problem of statically mapping code snippets to configura-
tion options for software debloating has not received enough atten-
tion. Previous works [43, 65] have only attempted to derive such a
mapping for test case generation purposes—an admittedly simpler
problem, due to the inherent tolerance for false negatives. Moreover,
these techniques target simpler programming environments (from
a program analysis perspective), such as the C pre-processor and
Android applications. The prevalence of popular C/C++ applica-
tions forces us to handle the complexities of these languages. To
the best of our knowledge, Koo et al. [38] were the first to illus-
trate the benefits of configuration-driven debloating. While they
demonstrated a significant reduction in code size after debloating
using various default configurations, their approach relied on dif-
ferential testing that required significant manual involvement. The
programmer is required to provide correct and valid values for each
configuration option to correctly perform the differential testing.
This process is infeasible for large applications such as Nginx and
Apache, which have hundreds of configuration options. Moreover,
their approach removes code only at the library level, leading to
missed opportunities for code removal at a finer granularity.

https://doi.org/10.1145/3548606.3559366
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Our goal in this work is to develop a system for performing
fine-grained configuration-dependent attack surface reduction by
minimizing the involvement of the programmer. To this end, we
present C2C, a platform for mapping configuration options to ap-
plication code and disabling unneeded system calls according to
a given active configuration, reducing this way the attack surface
exposed to adversaries. Although code removal is desirable, simply
reducing the number of ROP gadgets has minimal security bene-
fits [10]. In contrast, identifying unnecessary code and using it to
build system call profiles has two benefits. First, it hinders user-
level exploitation, and second, it neutralizes kernel vulnerabilities.
C2C minimizes the burden on programmers by requiring them
to provide only two simple inputs, the active configuration with
which they wish to launch the application, and the list of struct types
that store the active configuration values in the application code.
Due to the various methods used by developers to store and apply
options (configuration files, command-line options), automatically
mapping these settings to code is challenging. We have analyzed
these methods, and propose an automated framework for mapping
a program’s configuration options to code.

C2C uses static analysis techniques to derive a fine-grained map-
ping between runtime options and application code at the basic
block level. Our analysis first determines the conditional branches
that depend on runtime options, and then instruments the code with
monitors that, at runtime, observe the values of the corresponding
configuration options. Using these stored values, C2C determines
if a configuration-dependent conditional branch is disabled or not,
and restricts any system calls used exclusively by unreachable basic
blocks. Ideally, static analysis would be able to precisely determine
the value of a runtime option and map it accurately to its dependent
conditional branch. Unfortunately, we cannot assume this is always
the case due to the inherent overapproximation of static analysis.
To preserve the soundness of our analysis, we relax our mappings
from a value-based to a use-based approach. In situations where
static analysis cannot derive the exact value of a given runtime con-
figuration option, we conservatively consider that runtime option
to be used, and retain all conditional branches that depend on it.

We implemented a Linux-based prototype of C2C on top of
LLVM, and evaluated it with ten popular applications (Nginx, Apache
Httpd, Lighttpd, Postgresql, OpenSMTPD, Redis, Memcached, Curl,
Wget, Tar). To demonstrate the security benefits of C2C, we first
show that many security-critical system calls, such as execve, can
be disabled for common active configurations used by popular in-
stallations of these applications. Then, we evaluate how filtering
the unneeded system calls neutralizes critical Linux kernel privilege
escalation vulnerabilities by prohibiting access to the vulnerable
kernel code. The results of our experimental evaluation show that
C2C successfully disables security-critical system calls, including
execve (Apache, Wget), setuid (Nginx), and bind (Postgresql),
which are retained by previous library debloating [59] and tem-
poral specialization [29] approaches. Similarly, C2C neutralizes 32
additional Linux kernel CVEs compared to previous approaches.

Based on our experience with developing C2C and analyzing pop-
ular applications, we observed that certain software design patterns
make applications easier to analyze and adapt for configuration-
driven debloating. In light of the promising results obtained by
C2C for the evaluated applications, we share these insights and

provide guidelines that we believe will encourage the integration
of configuration-driven debloating in modern applications.

In summary, our work makes the following main contributions:
(1) We present C2C, a novel fine-grained configuration-driven

software attack surface reduction technique, which gener-
ates restrictive system call filters based on the specific appli-
cation configuration used at launch time.

(2) We evaluate our prototype implementation with ten popular
applications and demonstrate how C2C can filter security-
critical system calls, such as execve. We further show how
C2C reduces the exposed kernel attack surface by neutraliz-
ing Linux kernel vulnerabilities.

(3) We provide a set of design guidelines for developers on how
to structure and refactor software in a manner that simpli-
fies its analysis and facilitates the mapping of configuration
options to code.

Our prototype implementation is publicly available as an open-
source prototype at https://github.com/shamedgh/c2c.

2 BACKGROUND AND MOTIVATION
2.1 Security Implications of Configuration

Options
Users can modify the execution of applications through configu-
ration options specified either during compilation, or when the
application is launched. While many of these options have no side
effects (e.g., specifying the path to an output file), others can lead
to the execution of sensitive operations, such as spawning new
processes or launching new executables. In this section, we moti-
vate the need for configuration-aware attack surface reduction by
demonstrating how some configuration options introduce security-
critical system calls into the attack surface of an application.

Consider Apache Httpd’s essential SSL plugin, which must be en-
abled to support HTTPS. Among the plethora of options it supports,
one allows the invocation of an external binary for the generation
of random numbers to seed the key generation process. Line 11 in
Listing 1 shows the code that checks if this runtime option has been
configured to launch an external program, and line 12 shows the
ssl_util_ppopen function which internally invokes the execve
system call to launch the external program. The SSL plugin in-
vokes the security-critical execve system call only if the nSrc field
of the pRandSeed object is initialized with the SSL_RSSRC_EXEC
value—execve is not required under any other circumstances.

1 typedef struct {

2 ssl_rsctx_t nCtx;

3 ssl_rssrc_t nSrc;

4 char *cpPath;

5 int nBytes;

6 } ssl_randseed_t;

7

8 int ssl_rand_seed(server_rec *s ...){

9 SSLModConfigRec *mc;

10 ssl_randseed_t *pRandSeed = getRandSeed(mc);

11 if (pRandSeed ->nSrc == SSL_RSSRC_EXEC)

12 fp = ssl_util_ppopen(s, p, cmd ,argv);

13 }

Listing 1: Simplified code from Apache Httpd showing a
branch that depends on a configuration-related struct type.

https://github.com/shamedgh/c2c
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Across the many configurations used by different production
Docker images that we analyzed, including BitnamiWordpress [16],
Mediawiki [18], and Drupal [17], we could not find a single deploy-
ment that configured the SSL plugin to launch an external binary.
Yet, under previous coarse-grained library debloating [59], and
system call specialization [29] techniques, the execve system call
would be retained in Httpd’s attack surface as long as the SSL plugin
is enabled, irrespectively of whether the external key generation
option is used or not.

Similar situations arise with client applications too. The utility
program Wget, used to download remote web pages and files, pro-
vides the runtime option –use-askpass, which allows the user to
launch an external program to handle user credentials. Similar to
Httpd’s SSL plugin, if this option is specified, the execve system
call is invoked to launch the external program. Although execve is
solely required by this runtime option, existing approaches cannot
remove it from the attack surface, because it is a valid part of the
program’s control flow graph.

In C2C, our goal is to map these runtime options to code. Per-
forming this fine-grained mapping will in turn allow us to specialize
the application at runtime by filtering system calls depending on
the particular configuration used to launch the application.

2.2 Seccomp BPF
Our fine-grained application specialization technique filters un-
needed system calls by applying Seccomp BPF programs to the
target application. Seccomp BPF is a mechanism implemented in
the Linux kernel which allows a user-space program to restrict its
own access to the system calls provided by the kernel. Specifically,
Seccomp BPF uses the Berkeley Packet Filter language [45] to allow
developers to write programs that act as system call filters, i.e., BPF
programs that inspect the system call number (as well as argument
values, if needed) and allow, log, or deny the execution of the re-
spective system call. Applications can apply Seccomp BFP filters
by invoking the prctl or seccomp system calls from within their
own process. After doing so, all system call invocations from within
the process and any of its forked child processes will be checked
against the installed filters and will either be permitted or blocked,
depending on the specified policy.

3 THREAT MODEL
Similarly to previous attack surface reduction techniques [27, 29],
our threat model assumes remote adversaries armed with a vulner-
ability that allows arbitrary code execution. C2C does not rely on
any other exploit mitigations to be deployed. Our technique limits
the set of system calls an attacker can invoke. Therefore, any exploit
code (e.g., shellcode or ROP payload) will have limited capabilities,
and will not be able to invoke the system calls that are not required
by the current active configuration. These may include security-
critical system calls that can be used to spawn additional processes,
execute shell commands, and so on. Preventing access to a system
call also effectively neutralizes the corresponding kernel code that
carries out its functionality. This can prevent the exploitation of
vulnerabilities that can lead to privilege escalation [42]—an attacker
cannot trigger those vulnerabilities to compromise the kernel, as
the respective system calls cannot be invoked in the first place.

4 DESIGN
The goal of C2C is to accurately map configuration options to
application code, and then to block system calls used exclusively
by disabled configuration options at launch time. In the rest of this
paper, we use the term runtime options to refer to configuration
options that can be specified while launching a binary (e.g., through
command line arguments), and active configuration to refer to the
particular runtime settings used by a process.

By analyzing the source code of different applications, we ob-
served that in most cases configuration-dependent code follows
one of two main design patterns:

• Basic blocks following conditional branches or switch state-
ments that depend on whether a runtime option is set in the
active configuration.

• Functions reachable through function pointers that are ini-
tialized depending on whether a runtime option is set in the
active configuration.

Figure 1 presents an overview of how our system handles each
of these cases. In addition to the source code of the application,
C2C requires the programmer to provide the list of struct types or
scalar variables that are used to store active configuration settings.
Applications typically store the active configuration in dedicated
struct types, such as ngx_core_conf_t in case of the popular Nginx
server. These configuration-related types (not their instances) must
be provided as input to our C2C toolchain. We also require the
programmer to annotate the point in the application’s code where
the parsing of runtime configuration options is complete, with
the start_processing annotation. Typically, the code that parses
and loads the configuration values is straightforward, and thus
identifying both the types that store the active configuration and the
completion of the configuration parsing phase is a simple task. Once
provided with the source code and the names of these struct types,
C2C performs basic block specialization through the following
analysis phases:

• Augmented Control Flow Graph (ACFG) Creation: The ACFG
contains detailed information about configuration-dependent
branches (or switch statements), including the (field of the)
configuration object that the branch depends on, and the
targets of the True and False conditions.

• Conditional Branch Pruning: Instruments every store instruc-
tion that writes values to fields of the objects of the anno-
tated configuration types, to record the written values during
program execution. Then, depending on a given active con-
figuration, branches of configuration-dependent conditional
branches are enabled or disabled.

• Runtime Address-Taken Pruning: Filters the targets of indi-
rect function calls depending on whether the address of the
target function is taken during program initialization, and
whether it can be taken post-initialization, based on the en-
abled conditional branches.

• Filter Generation: Using the results of the previous phases,
identifies the code that can be removed, and generates cor-
responding Seccomp filters.

At each of these stages, our design ensures the soundness of the
remaining code by performing conservative analysis—some code
associated with disabled configuration options may be retained,
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filter(SYS_execve)
filter(SYS_setuid)
filter(SYS_setsid)
filter(SYS_bind)
filter(SYS_listen)

ACFG without
Pruned Indirect Targets

ACFG without Disabled
Conditional Edges

During Program Execution

Augmented
CFG

Config Types

Conditional 
Branch Pruning

Address Taken 
Pruning

LLVM IR

ACFG 
Generation

Compilation Time

Filter Generation

Figure 1: Overview of how C2C maps configuration options to code and applies restrictive system call filters to reduce the
application’s attack surface.

but no basic block is pruned from the graph unless its associated
configuration option is also disabled. The following section will dis-
cuss the first step of performing basic block specialization through
building the ACFG.

4.1 Augmented Control Flow Graph
Construction

We first build a sound interprocedural control flow graph (CFG) that
includes the conditional branches and switch statements. We call
this the Augmented Control Flow Graph (ACFG). Traditional control
flow graphs contain only the edges of the control flow, but not the
condition under which an edge is taken. The ACFG augments the
graph by labeling the edges of a conditional branch as True and
False, according to the result of the condition. Also, each case of a
switch statement is augmented with a Switch label specifying only
one case can be true at runtime.

In order to build the ACFG, we start with the CFG of every
function and then augment the edges corresponding to conditional
branches with both their condition, and whether the edge is taken
if the condition is True or False. As shown in Figure 2, the two
control flow edges connecting basic block bb0 to bb1 and bb2 are
labeled with the result of the condition that causes the branch to be
executed. To simplify the handling of complex branch conditions
that involve logical operators (such as conjunction, disjunction, and
negation), we expand complex conditions into nested if-statements
so that each if-statement has a single condition involving a simple
comparison operator. For example, in Figure 3, the complex condi-
tion involving the conjunction operator is expanded into two if
statements, each having a single comparison.

Switch statements require special handling because each case
only has a True edge that can be enabled or disabled. We do this by
augmenting the branch of each case with a Switch label and check
whether the value matches each case at runtime, only keeping the
taken case branch.1

4.2 Conditional Branch Pruning
Application code that depends on runtime options is predicated
by conditional branches and switch statements. These branches

1From this point forward, any reference to conditional branches covers switch state-
ments as well.

function run_handler(xml_config* xC) {

bb0: if ( xC->type == “dtd” ) then

bb1: do_dtd_processing();

bb2: finalize_handler();

}

run_handler

bb0

bb1

bb2

return

True

False

bb0->bb1
bb0->bb2
bb1->bb2

bb0-[True]->bb1
bb0-[False]->bb2
bb1->bb2

A
u
gm

en
t

Figure 2: The augmented control flow graph for a sample
Nginx code snippet. Every control flow edge is augmented
with the value of the condition.

if ( a == 10 && 
b == 12 ){

//operations
}

if ( a == 10){
if ( b == 12 ){

//operations
}

}

Figure 3: Converting a complex branch condition with con-
junctions into nested simple branches.

check whether a runtime option is enabled or initialized to a par-
ticular value, and depending on the result of the check, execute
the configuration-specific code. Using the annotated struct types,
C2C first derives which conditional branches depend on runtime
option values. Then, the values written to these configuration ob-
jects are recorded at runtime. Finally, based on the configuration
values written the inaccessible system calls are filtered.

4.2.1 Configuration-dependent Conditional Branch Identification.
We perform data flow analysis starting from the configuration ob-
jects (objects of programmer annotated struct type), to identify the
conditional branches that depend on runtime options. Only the
top-level configuration-related struct type needs to be provided by
the developer. Our analysis automatically infers the fields of these
objects as well as other related struct types. C2C performs forward
analysis, iteratively joining use-def chains to identify all values
derived from configuration-related objects. When the forward anal-
ysis reaches a conditional branch, C2C concludes that the branch
depends on the configuration value and records the dependency of
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int ssl_r_seed(...){

ssl_randseed_t *pSeed = getFromConfig();

if (pSeed->nSrc == 3 )

ssl_util_ppopen(...); //calls execve()

}

Configuration-dependent Conditional Branch Identification

int ssl_cmd_SSLRandomSeed(...){

ssl_randseed_t *seed = ssl_conf->r_seed;

seed->nSrc = 3;

c2c_solver_engine(3, funcId, bbId);

}

Configuration Initialization Identification (Heap Object)

Branch Condition Table

func-bbId Op. Cmp. 

ssl_r_seed-bb1 EQ 3

Config Branch Table

func-bbId Result

ssl_r_seed-bb1 T or F

c2c_solver
_engine T

F

1

2

3

Figure 4: The different steps of conditional branch prun-
ing. 1) Identify the configuration-dependent conditional
branches. 2) Instrument the configuration initialization
instructions. 3) Evaluate the results of configuration-
dependent conditional branches (at runtime). (Dotted lines
represent operations performed at runtime.)

the conditional branch and the fields of the configuration objects in
a table that we call ConfigBranchTbl. At runtime, the result of the
branch condition is updated to this table and this mapping is used
to determine which conditional branches can be safely removed.

Consider the simplified code snippet from Apache Httpd pre-
sented in Figure 4. Assuming that the type ssl_randseed_t is
derived from the programmer-specified top-level configuration
type, our forward analysis can successfully identify that the system
call execve is guarded by a configuration-dependent conditional
branch, and that this branch depends on the configuration value
stored in the nSrc field of an object of type ssl_randseed_t.

Note that while our analysis can identify most of the runtime
options in the applications we tested, missing an option does not
affect the soundness of our approach—it only results in creating
more permissive filters.

4.2.2 Configuration Initialization Identification. Finally, C2C ex-
tracts the values stored in the configuration objects before the start
of the processing phase. Using these values, at runtime, the instru-
mentation added by C2C computes whether the branch conditions
that depend on these objects evaluate to True or False, and up-
dates the ConfigBranchTbl accordingly. This step differs depending
on whether the configuration object is a heap object or a global
variable.

Global Configuration Objects. Some applications store their run-
time options in global objects. For example, wget uses an object of
the struct type options. C2C instruments the start of the process-
ing phase to iteratively read the values of the global configuration
objects. C2C uses the type information available at compilation
time to insert instructions that traverse the various fields of each
of the configuration objects, and invoke an evaluation routine that
computes whether the values result in the True or the False branch
to be taken. This information is recorded in the ConfigBranchTbl
entry for each configuration-dependent conditional branch. During
program execution, when this code is executed, the configuration
values are read and evaluated, and the configuration-dependent
conditional branches will be enabled or disabled depending on the
active configuration of the process.

Heap Configuration Objects. Reading configuration objects on
the heap presents certain challenges. Unlike global objects which
are always valid during the program’s lifetime, reading the values
of heap objects requires a valid pointer to refer to them. This is not
always straightforward because the pointer itself may be stored as
a field of another object. To avoid these complexities, C2C simply
identifies the instructions that parse runtime options and stores
them into heap configuration objects, and instruments them to
record the values being stored.

Similar to identifying configuration-related conditional branches,
C2C performs forward analysis, traversing the def-use chains orig-
inating from the configuration objects to store instructions. C2C
instruments these memory store instructions to call an evaluation
routine that inspects the value written and evaluates the branch
condition. Depending on the result of this evaluation, we update
whether the True or False branch will be taken. (See Section 4.5
for exceptions.) Thus, by analyzing the state of ConfigBranchTbl,
C2C can map the active configuration to code and determine which
branch targets can be safely disabled for the current invocation of
the application.

In Figure 4, our analysis identifies that ssl_cmd_SSLRandomSeed
parses and stores the configuration value to the nSrc field of the
ssl_randseed_t object. Using the previously derived information
that the conditional branch in function ssl_r_seed depends on
this object field, C2C instruments the store instruction to invoke
the C2C Solver Engine, which at runtime, evaluates the result of
that conditional branch and updates ConfigBranchTbl.

Once every branch in ConfigBranchTbl is analyzed, C2C identi-
fies the inaccessible code. Starting from the disabled branch targets
of the configuration-dependent branches, C2C follows the function
call edges in the call graph to identify the functions that no longer
have any caller and therefore can be safely removed. To do this,
C2C starts with a precomputed call graph that we build offline, as
discussed in Section 4.2.3, and iteratively removes functions that
are no longer reachable. In line with previous works [29], we also
perform additional filtering on the targets of indirect function calls
based on functions which have their addresses taken. We discuss
this process in detail in Section 4.3. Finally, based on the remaining
functions, C2C enforces restrictions which we discuss further in
Section 4.4.

4.2.3 Callgraph Construction. We construct the application’s call-
graph offline to reduce start time overhead. The presence of indirect
function calls via function pointers requires the use of static pointer
analysis. We use a field-sensitive version of the well-known An-
dersen’s [8] pointer analysis algorithm to resolve the targets of
function pointers. Because our analysis is field-sensitive, it treats
each field of a complex object (e.g., struct), distinctly. This provides
a higher degree of precision for our analysis.

4.3 Runtime Address Taken Pruning
As discussed in Section 4.2.3, we perform offline pointer analysis to
resolve indirect function calls. Performing the callgraph construc-
tion offline inherently forces us to consider all code as in-scope,
and therefore our callgraph contains some overapproximation—the
targets of indirect call sites include functions that will never be
invoked via a function pointer. For example, a runtime option might
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Unreachable 
Basic Block

fptr = func1;

init_handler

run_handler

return

return

if (cond)

(*fptr)();

fptr = func2;

(a)

run_handler -> func1
run_handler -> func2

run_handler -> func1
run_handler -> func2

After pruning 
unreachable 
targets based 
on active 
configuration

(b)

Figure 5: Pruning targets of indirect call sites based on func-
tion pointers initialized at runtime.

initialize a function pointer with multiple targets, none of which
are actually feasible if the option is disabled at runtime.

To address this issue, C2C performs an additional level of prun-
ing of the targets of indirect call sites at runtime. Our approach is
inspired by the address-taken pruning approach presented in Tem-
poral Specialization [29]. We observe that a function can be a valid
target of an indirect function call, only if its address is taken (and
stored to another variable) in code that is accessible at runtime. If a
function’s address is not taken before the processing phase starts
and thereafter is solely taken inside an unreachable basic block,
it cannot be a valid target for an indirect function call. Therefore,
C2C removes these functions from the target sets of all indirect call
sites.

Figure 5 shows an example. Assume that for a given active config-
uration the conditional branch in function init_handler depends
on the variable cond that always evaluates to False, and thus the
function pointer fptr can never point to func1 (Figure 5a). Before
the start of the processing phase, our analysis determines this, and
thus prunes func1 from the list of possible callees of run_handler,
where fptr is dereferenced in an indirect call (Figure 5b).

4.4 Filter Generation
Using the mapping between runtime options to code, and given
the active configuration of a process, we use system call filtering
to reduce its attack surface. Similarly to previous works [13, 27,
29], we mainly focus on reducing the attack surface in terms of
minimizing the set of system calls available to the process based on
its active configuration. We consider two phases of execution for
all applications: the initialization phase and the processing phase.
We use the open-source framework by Ghavamnia et al. [29] to
extract the list of required system calls for each phase.

As discussed in Section 8, in our current implementation C2C
solely filters system calls and does not remove any code, due to
the minimal benefits of the latter at the basic block level. Still,
implementing support for removing any code deemed inaccessible
is straightforward (e.g., by zeroing out).

After performing the steps outlined in Section 4.2, we know
which configuration-dependent conditional branches will always
evaluate to False during the current execution. With this informa-
tion, we proceed to find the functions that become inaccessible and

derive the system calls accessed exclusively by these functions. The
result of this step is an interprocedural pruned control flow graph.

We use our generated pruned callgraph to extract the set of
system calls required by the program. Based on the open-source
frameworks provided by previous works [29, 59], we map the re-
tained functions to their system calls. Finally, at runtime, we install
a Seccomp BPF filter [1] at the start of the processing phase to filter
the system calls identified as unnecessary by our analysis.

4.5 Ensuring Analysis Soundness
It is not always possible to correctly identify the value stored at the
configuration object, or the exact configuration-dependent value
that is the predicate of a conditional branch. The presence of point-
ers in C/C++ code also presents an additional level of challenge in
ensuring soundness, as the address of the configuration object may
be passed as an argument to a function invoked via an indirect call
using a function pointer. The results of pointer analysis techniques
usually include imprecision, making them unsuitable for our use—if
the analysis informs us that a branch condition might refer to a
configuration value disabled in the active configuration, we still
cannot remove it safely, as it might, in reality, refer to a different
object altogether.

Another source of uncertainty about the result of a conditional
branch is when C2C cannot statically determine either predicate of
the comparison. This can either be due to the configuration object’s
value undergoing uncertain computation before being compared in
the conditional branch, or because the configuration value is com-
pared with a value that cannot be determined statically. Consider
Listing 2 from Nginx’s codebase. The value in the configuration
object ngx_http_gzip_conf_t can be derived statically, but since
it is being compared with content_length_n which changes dy-
namically, C2C cannot reason about the resolution of this branch.

1 int ngx_gzip_head_filter(ngx_req_t *r){

2 ngx_http_gzip_conf_t *c = ...;

3 if (r->head_out.cont_len < c->min_len)

4 process_filter ();

5 }

Listing 2: A configuration-dependent conditional branch in
which the left-hand operand of the comparison operation
cannot be statically determined.

In situations where C2C cannot identify the exact value that is
being stored at a configuration object, or the exact value that is
the predicate of the conditional branch, it falls back to a use-based
approach—our analysis simply decides if the configuration value
is “used.” In particular, our analysis defaults to use-based analysis
under the following conditions.

(1) The configuration object or field is passed as an argument
at an indirect function call site.

(2) A value that cannot be determined statically is written to
the configuration object or field.

(3) Our analysis concludes that a value derived from the config-
uration object is used as a predicate in a conditional branch,
but the value cannot be statically determined.

(4) The value derived from the configuration can be statically
determined, but it is compared with a variable which cannot
be statically determined.
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Table 1: Decision Table for Value-based and Use-based con-
ditional branches. “T or F” indicates that the True or False
branch will be retained depending on the result of the com-
parison performed by our solving engine. “T & F” indicates
that both the True and the False branch will be retained, to
preserve soundness. For switch statements, “T & F” means
that all cases will be enabled, and “T or F” means that only
one case will be enabled, depending on the value of the con-
figuration variable.

Approach Constraint Result

Global Configuration Variables
Value-based - T or F
Use-based Non-deterministic comparison T & F

Heap Configuration Variables
Value-based Executed at runtime T or F
Value-based Not executed at runtime None
Use-based Argument to indirect call site T & F
Use-based Non-deterministic comparison T & F
Use-based Not executed at runtime None

If C2C concludes that the configuration value is indeed used in
the active configuration, it preserves both the True and the False
branches for conditional branches and keeps all case branches for
switch statements. Similarly, if C2C concludes that a configura-
tion value is not used in the active configuration, it removes both
branches in the case of conditional branches and removes all case
edges for switch statements, except the default edge (if one ex-
ists). The complete decision table for global and heap configuration
objects is provided in Table 1.

5 IMPLEMENTATION
We implemented C2C using the LLVM 12 toolchain. C2C requires
interprocedural, whole program analysis to perform basic block
specialization. To this end, we use LLVM’s Link Time Optimization
(LTO) [35] to obtain the linked Intermediate Representation (IR) of
the entire application and its dependent libraries. We use this linked
IR bitcode to construct the Augmented Control Flow Graph (ACFG).
Conditional branches are represented by BranchInst instructions
and switch statements are represented by SwitchInst in the IR
bitcode. LLVM’s Clang frontend automatically decomposes the
complex branch conditionals discussed in Section 4.1, into simple
nested branch instructions that depend on a single value. Iterating
over each BranchInst in a function’s Control Flow Graph (CFG)
our analysis annotates each conditional branch edge as True or
False, depending on the resolution value that determines which
control flow edge is traversed. For switch statements, C2C annotates
each case edge with a Switch label, enabling only one at runtime
depending on the observed value. This information is stored in a
global variable named ConfigBranchTbl.

We perform forward analysis starting from the configuration-
related objects to identify both the configuration-dependent con-
ditional branches (and switch statements), as well as (in case of
configuration objects on the heap) the StoreInst instructions that
write the active configuration values into them. LLVM automati-
cally provides the def-use chains that link the definition of a variable

to its use, and we recursively join these def-use chains to imple-
ment the forward analysis algorithms. Once our forward analysis
identifies the StoreInst instructions that store the active config-
uration, we instrument them with calls to the C2C Solver Engine
and pass the stored configuration value to it. The solver engine
uses the ACFG stored in the ConfigBranchTbl to determine if the
value stored disables any configuration-dependent branch edge.
For global configuration objects, we instrument the start of the
processing phase to retrieve the values stored in them and invoke
the solver engine, which in turn updates the ConfigBranchTbl.

To resolve the targets of indirect call sites, we generate the
interprocedural callgraph of the application at compile time us-
ing the SVF [64] framework. The runtime address taken pruning
discussed in Section 4.3 is implemented by instrumenting each
function’s entry to record its invocation in a runtime table named
RuntimeExecuteTbl. After the application completes parsing its
configuration, this table is used to determine which functions could
not possibly have their addresses taken and therefore can be safely
pruned from the target-sets of all indirect call sites. As the final
step, we use the framework provided by previous works [27, 29] to
derive the system call profile for the application and apply it to the
application, as a Seccomp profile.

6 EXPERIMENTAL EVALUATION
In this section, we evaluate the attack surface reduction achieved
by C2C. We use C2C to derive system call profiles for ten popular
applications based on commonly used active configurations, and
compare the results with the profiles generated by existing library
specialization [59] and temporal specialization [29] techniques.

6.1 Applications and Active Configurations
We have chosen seven server applications (Apache Httpd, Nginx,
Lighttpd, Postgresql, OpenSMTPD, Redis, and Memcached) and
three client applications (Wget, Curl, and Tar) for our evaluation.
The manual effort required for identifying the required annotations
was less than one hour per application.

Our approach applies system call specialization depending on
a given active configuration. Because the results depend on the
active configuration used, we attempt (whenever possible) to use
configurations that are representative of real-life workloads, such
as those used in official Docker images. For example, to evaluate
the benefits of applying C2C to Apache Httpd, we used the active
configurations from the Bitnami Wordpress [16], Drupal [17], and
Mediawiki [18] Docker images that use Httpd as their web server.
To build our baseline binaries, we use the compilation options used
to build the application binaries in the Docker images (if available),
or the ones used to build the binary installed by the Ubuntu package
manager. For client applications, in which the active configuration
typically depends on the user-supplied command line options, we
use typical configurations considered in previous works [31].

To illustrate the benefits of C2C over previous approaches, we
specialize the same set of ten applications with library specializa-
tion [59] and temporal specialization [29], using the toolchains pro-
vided by the temporal specialization open-source framework [28].
In the following, we provide more details for the applications we
evaluated using our C2C toolchain.
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Table 2: Conditional branch pruning statistics. The first two columns show the number of annotations required and the lo-
cation of the configuration object. The next columns show the number of conditional edges, configuration-dependent edges,
configuration-dependent with initialization identified, followed by the number of edges with imprecision (non-deterministic
comparison). The last column shows the number of disabled edges at runtime based on the configuration used.

Application
(Configuration Used)

Config.
Annotations

Global (G)
or Heap (H)

Conditional
Edges

Config.
Dependent

Heap Init.
Identified

Edges with
Non-Det. Cmp.

Disabled

Apache (Bitnami Wordpress) 1 G/H 54K 4.9K 3.5K 2.5K 665 (%13.3)
Nginx (Zend Server) 2 H 39K 4.0K 3.8K 0.6K 1674 (%41.0)
Lighttpd 1 H 11K 0.1K 0.1K 16 70 (%49.2)
Postgresql 7 G/H 206K 2.5K 0.4K 0.4K 1230 (%48.5)
OpenSMTPD 1 H 23K 0.1K 0.1K 98 33 (%19.8)
Redis (Redis) 1 G 34K 3.2K - 0.6K 641 (%19.8)
Memcached 1 G 15K 0.5K - 98 228 (%41.0)
Curl (no options) 4 H 24K 1.0K 0.9K 80 881 (%90.6)
Wget (no options) 1 G 15K 1.5K - 64 732 (%46.8)
Tar 1 G 25K 85 - 2 25 (%29.4)

6.1.1 Apache Httpd. Apache is a popular web server which sup-
ports a long list of configuration options. It uses multiple levels
of struct types and objects to store these options, rooted in the
top-level struct type server_rec. We use the active configurations
included in the Docker images for Bitnami Wordpress [16], Dru-
pal [17], and Mediawiki [18] for our evaluation. Of the top-50 most
popular Docker images, these images have the most variety in their
active configurations. While the Drupal andMediawiki images have
similar active configurations, the Bitnami Wordpress image enables
different options (e.g., SSL-related settings) not used by the others.

6.1.2 Nginx. Nginx is a popular web server that is highly con-
figurable. The ngx_core_conf_t and ngx_conf_s top-level struct
types are used to store runtime options. Nginx creates objects of
these and other related struct types on the heap. From the top-50
popular images on Docker Hub, the Zend Server [20] image uses
Nginx as its underlying web server. We used its active configuration
for our evaluation as it is representative of real-world use cases.

6.1.3 Lighttpd. Lighttpd is a lightweight web server which also
supports a broad set of runtime settings. The server_config top-
level struct type is used to store high-level runtime options, with
more detailed options stored in key-valuemaps. For example, whether
the server should run as a daemon is specified by the dont_daemonize
field of the server_config struct type. We note that the configu-
ration parsing code was refactored in the latest version (v1.4.63),
making it amenable to C2C’s analysis.

6.1.4 Postgresql. Postgresql is one of the most popular database
servers, supporting many runtime options. With 804 KLOC, it is
the largest application codebase in our test suite. The active con-
figuration for Postgresql is stored in two primary struct types,
HbaLine and Port, and also multiple scalar global variables (e.g.
bool EnableSSL). Pointers to these global variables are stored
in struct objects of type config_bool, config_int, config_real,
config_string, and config_enum. We thus require the program-
mer to annotate these five struct types, after which our analysis can

derive the branches associated with the rest of the configuration-
related variables. We use the default runtime settings provided with
the source code for our evaluation.

6.1.5 OpenSMTPD. OpenSMTPD is a SMTP-based email server. It
uses a single struct type (smtpd) to store its active configuration.
The active configuration includes several options through which
the user can specify various limits, such as message-queue size and
number of recipients per transaction. We use the sample runtime
settings available with the source code for our evaluation.

6.1.6 Redis andMemcached. Redis andMemcached are in-memory
data stores. They both store all their runtime options in a global
struct object of type redisServer and settings, respectively. We
use the compilation options used to build the Redis and Memcached
binaries for their official Docker images [19, 21], and the active
configurations used in them.

6.1.7 Wget, Curl, and Tar. Wget, Curl, and Tar are widely-used
command-line utilities. Wget and Curl are used for retrieving the
static content of websites, and Tar is used for creating and ex-
tracting file archives. Wget uses the single-level global struct ob-
ject options to store its configuration, whereas Curl uses the
structs GlobalConfig, OperationConfig, ssl_primary_config,
and ssl_general_config. Tar, on the other hand, uses a global
enum variable named subcommand_option to store the main run-
time options provided by the user. For Wget, we used three different
active configurations: 1) no options; 2) with an output file; and
3) with a third-party authentication application enabled. In case of
Curl, along with the simplest case of requesting a URL without any
options, we considered two other active configurations: 1) using
the output file option, and 2) specifying the request type. For Tar,
we considered three active configurations: 1) creating an archive,
2) extracting files from a pre-generated archive, and 3) testing the
correctness of an archive. Although not server applications, these
utilities have a history of vulnerabilities [15, 50, 52] that can be
exploited by a malicious website or archive to attack the client.
As we will discuss in Section 6.4.1, this is particularly important



C2C: Fine-grained Configuration-driven System Call Filtering CCS ’22, November 7–11, 2022, Los Angeles, CA, USA

because all these applications can potentially invoke the execve
system call, which could allow an attacker to run unauthorized
programs on the client machine.

6.2 Conditional Branch Pruning
The ACFG created by C2C contains configuration-dependent con-
ditional branch edges. Table 2 provides detailed statistics about the
number of configuration-dependent branches, how C2C identifies
them, and what type of matching it performs for each edge. The
first column shows the number of annotations required to specify
the configuration-related data types. The next column specifies
whether the application stores its configuration objects on the heap
or as a global variable.

The subsequent columns show the number of conditional branch
edges, the subset of configuration-dependent edges, and for how
many edges C2C could identify an initialization instruction (if
stored on the heap). As mentioned in Section 4.5, C2C falls back to
use-based matching if the application performs a non-deterministic
comparison (column “Edges with Non-Det. Cmp.”), or if it passes
the configuration object as an argument to an indirect function
call (not observed across any of the applications). The final column
shows the number of edges that are disabled depending on a sample
active configuration.

For example, Apache has 54K conditional edges, of which 4.9K
are configuration-dependent. It uses both the heap and global
variables for storing its configuration objects. Out of the 4.9K
configuration-dependent edges, C2C can identity the initializa-
tion instruction of 3.5K edges. For 2.5K edges, C2C is forced to
resort to use-based matching due to a non-deterministic compari-
son at the configuration read site. Our runtime analysis concludes
that in the case of Bitnami Wordpress [16], more than 13% of its
configuration-dependent edges can be disabled. Across all applica-
tions, C2C disables 19% (for OpenSMTPD) to 90% (for Curl) of all
configuration-dependent edges.

To further evaluate the security benefit of C2C, we measure the
number of system calls that remain accessible, and compare it to
previous approaches [29, 59]. We use the framework provided by
temporal specialization [28] to perform this comparison. Table 3
shows the number of system calls remaining in the attack surface
for C2C, library specialization [59], and temporal specialization [29].
The results in the C2C column correspond to the active configura-
tions specified in the “Active Configuration” column. Although the
additional reduction in the number of system calls offered by C2C is
small (e.g., for Bitnami, just six additional system calls are removed
in the processing phase), as we will discuss in Section 6.4.1, the
security benefit of this reduction is significant, as these system calls
include security-critical ones (e.g., execve).

6.3 Overhead
Compilation Time. C2C performs a one-time analysis to build the

application’s ACFG, which increases the compilation time. Pointer
analysis is the most time-consuming part of this analysis and is
needed to resolve the targets of indirect function calls. The com-
plexity of each application affects the time required to perform this
analysis. Specifically, building the ACFG takes less than one hour
for most applications. The only exception is Postgresql, for which,

due to its larger codebase, the analysis takes approximately 22 hours.
Although the overhead seems significant, we do not believe it is a
major barrier for applying C2C in practice. First, this is a one-time
analysis which does not depend on the active configuration used by
the end-user at runtime. Second, other pointer analysis algorithms
can be used which have lower algorithmic complexity but have
lower precision (e.g., Steensgaard’s algorithm [63]).

Code Size Increase. C2C instruments each application to keep
track of the configuration-related object values and perform call-
graph pruning at runtime. Since this instrumentation adds new
instructions to the program, it increases the code size. We used
the LLVM IR instruction count to measure the code size increase.
Based on our assessment, C2C increases the IR instruction count
by less than 3% for most applications. Nginx is the only application
for which the LLVM IR instruction count increases by 10%. This
is mainly because each configuration initialization instruction in
Nginx affects multiple conditional branches, and our current imple-
mentation uses basic instrumentation that does not take advantage
of any available optimizations. Applying these optimizations can
reduce the code size overhead.

Runtime Overhead. C2C performs conditional branch pruning
once the program is launched, and can therefore incur some runtime
overhead. However, since the pruning is performed only during
the initialization phase, it solely affects the application’s startup
time. Hence, it does not affect the runtime performance of the pro-
cessing phase of server applications (e.g., handling client requests).
Nonetheless, for client applications (that are usually launched to
handle a single request), the entire program execution is affected.
The startup time for the applications in our dataset ranges from
one second (for smaller applications, e.g., Wget) to 100 seconds (for
larger applications, e.g., Postgresql) after applying C2C. While this
overhead is still significant for client applications, it can be reduced
by improving the efficiency of our pruning algorithm, or by caching
the pruned callgraph for frequently used active configurations. We
leave the implementation of these techniques as part of our future
work.

6.4 Security Evaluation
C2C offers two main security benefits. First, by filtering security-
critical system calls, C2C breaks payloads used to performmalicious
operations. Second, filtering system calls reduces the exposed attack
surface of the underlying kernel, rendering certain kernel vulner-
abilities unreachable to the adversary. We evaluate both of these
aspects in the following sections.

6.4.1 Security-critical System Call Filtering. Attackers use system
calls to perform their intended operation after successfully exploit-
ing vulnerabilities in user-space applications. Security-critical sys-
tem calls such as execve are widely used in exploit shellcode and
ROP payloads. Previous studies [29] have shown that 46% (800 out
of 1726) of the exploit payloads available in Metasploit [46] and
Shell-storm [61] perform remote code execution and other system
operations that can be broken by disabling security-critical system
calls. In this section, we study the additional security-critical system
calls that C2C removes, compared to previous approaches.
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Table 3: Number of system calls retained (out of 333 available) after applying library debloating [59], temporal specializa-
tion [29], and C2C. “Init.” indicates the application’s initialization phase and “Proc.” the processing phase.

Application Active Config. Lib. Spec.
Temp. Spec. C2C Example Syscalls Filtered

Init. Proc. Init. Proc. Exclusively by C2C

Apache Bitnami Wordpress 111 110 103 108 97 execve,* setsid, mremap

Apache Drupal/Mediawiki 110 109 102 107 95 execve,* dup, dup3

Nginx Zend Server 116 116 111 113 108 setuid, setpriority, setrlimit

Lighttpd Ubuntu Default 100 100 78 97 74 recvmsg, readv, getsockname, uname

Postgresql Source Code Default 120 120 109 118 105 bind, setsockopt, getsockopt

OpenSMTPD Source Code Default 110 109 109 109 109 -

Redis Redis 92 92 84 88 82 recvfrom,sendto

Memcached Ubuntu Default 102 102 84 97 83 nanosleep

Curl -X GET, -i -o 100 100 100 98 98 utimes, fsetxattr

Wget [no opt], -O 92 92 92 78 78 execve, setresuid, setresgid, pipe

Wget –use-askpass 92 92 92 92 92 -

Tar -czvf 97 97 97 84 84 mkdir, setxattr, fchmod, fchown

Tar -xzvf 97 97 97 94 94 flistxattr, fgetxattr, llistxattr

Tar –test-label 97 97 97 73 73 socket, sendmsg, connect, mkdir

*Previous works [29] evaluated temporal specialization with an active configuration that did not require execve after initialization.

Apache Httpd. As shown in Table 3, C2C restricts access to
security-critical system calls such as execve. The active config-
urations we considered for Apache load the SSL module, which
requires the execve system call only if the SSLRandomSeed sub-
configuration is initialized with the value exec. However, none
of the considered configurations set this value to exec. Therefore,
by applying C2C, the execve system call can be safely filtered.
Note that non-configuration-aware approaches [29, 38, 59] cannot
remove execve in these scenarios, as it remains reachable in the
CFG. Given that execveat is already filtered by applying library
specialization, an attacker now cannot launch executables through
a single system call invocation.

Nginx. C2C restricts access to the setuid system call for Nginx,
which is used across different user-level exploits [29] to change the
effective user ID of the process. Since we can also filter setreuid
by applying library specialization [4, 59], a local attacker cannot
easily modify the effective user ID and elevate privileges without
performing a privilege escalation attack against the kernel.

Lighttpd and Postgresql. As shown in Table 3, C2C can filter
network-related security-critical system calls for Lighttpd and Post-
gresql. For example, it removes bind for Postgresql and recvfrom
for Lighttpd. However, C2C cannot filter the execve system call for
these two applications. In the case of Lighttpd, this is due to the im-
precision of our analysis. Lighttpd supports executing a third-party
program as its logger, configurable at runtime. Nevertheless, it uses
pointer arithmetic (which C2C does not support) to perform string
matching in the respective conditional branch. We leave implement-
ing support for these more complex situations as part of our future
work. In Postgresql, the log archiver invokes the execve system call
to move the archive logs to backup folders. While execve cannot be
filtered entirely in this scenario, the arguments passed to it (specif-
ically, the pathname) could potentially be restricted by applying

API specialization techniques [47], preventing the attacker from
executing arbitrary programs.

Wget. As mentioned in Section 2.1, Wget provides a command-
line option for specifying a third-party application to handle cre-
dentials when accessing web pages that require authentication.
C2C maps this –use-askpass option to its respective field in the
options global object, and successfully restricts the execve sys-
tem call when the active configuration does not use this option.
Although Wget is a client application, it could still be a target for a
remote code execution attack against the user, e.g., as was the case
with CVE-2019-5953 [14].

Tar. C2C can filter three and 13 system calls for Tar when de-
compressing and creating an archive, respectively. These include
system calls related to file access and permissions. However, the
execve system call cannot be filtered due to the overapproximation
of our approach. The –file option can be provided with a remote
host or a local file. If a remote host is specified, Tar uses execve to
spawn rsh to connect to the remote location. It uses an array-index-
based comparison to compare the configuration value stored in the
–file option. Our current prototype does not support comparisons
based on array indices, therefore we are unable to reason about the
value stored in this configuration option. We plan to handle these
situations in future iterations of our prototype.

Curl. In case of Curl, the imprecision of our analysis prevents
us from removing the security-critical execve system call, which
is used only when NTLM authentication is requested. In particular,
because the respective configuration value is copied to multiple
variables before being used in a conditional branch, we would need
complex data flow analysis to map the conditional branch instruc-
tion to the runtime configuration. We leave the implementation of
such analysis as part of our future work.
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OpenSMTPD, Redis, and Memcached. OpenSMTPD has many
runtime settings and C2C can capture the values stored in them,
but they do not affect the underlying system calls used. Redis and
Memcached do not provide many runtime options, and our manual
verification shows that the invocation of security-critical system
calls does not depend on the runtime configuration. Therefore,
there is limited benefit in applying C2C to these applications re-
garding critical system call filtration. However, as we discuss next,
even filtering system calls that are not security-critical reduces the
underlying kernel attack surface.

6.4.2 Kernel Security Evaluation. While system calls can be abused
by attackers to perform unwanted operations in user space, they
also provide an entry into the kernel. Kernel vulnerabilities ac-
cessible through system calls allow attackers to mount privilege
escalation attacks. These attacks can potentially disable security
mechanisms imposed by the kernel and result in root access. Be-
cause these kernel vulnerabilities are related to arbitrary system
calls, and not only the security-critical ones, filtering any system
call can potentially reduce the kernel’s attack surface.

We evaluated the security benefit of applying C2C in terms of
kernel attack surface reduction by analyzing the number of Linux
kernel CVEs mitigated through the system call filters generated by
C2C. Our approach for mapping CVEs to kernel code differs from
previous work [29] because of inherent overapproximations in their
callgraph construction techniques, resulting in an overly conser-
vative analysis. Instead, we rely on a public manually-curated list
of Linux kernel CVEs [44] and apply semi-automated text analysis
to derive a more accurate mapping. The description for each CVE
on this list contains information about the system calls that can
trigger it. We automatically parse these descriptions and use them
to map system calls to CVEs.

Our results show that C2C mitigates a total of 88 CVEs, each
in one or more of the ten applications. More importantly, 32 of
the vulnerabilities could not be mitigated by previous approaches
in at least one or more applications. Table 4 shows a summary of
these 32 CVEs where C2C offers a benefit over library and temporal
specialization. The last three columns of Table 4 show the number
of applications for which the CVE is effectively mitigated by library
specialization, temporal specialization, and C2C, respectively.

7 LESSONS LEARNED
During the course of our work, we studied extensively how differ-
ent applications parse and store runtime options. We discovered
that the effectiveness of C2C depends largely on the ease with
which static program analysis techniques can be applied to the
application, and that certain software design decisions complicate
the mapping of configuration options to application code. These
design decisions impact not only C2C, but also other systems that
perform configuration-dependent program analysis, such as test-
case generation [43, 65]. While most applications are designed in a
manner that is amenable to static analysis, some are not. In light
of the benefits of automatically mapping runtime options to appli-
cation code, we believe adopting design practices that make the
application easier to analyze statically is a worthwhile endeavor.
To that end, in this section we describe our insights and present

guidelines on how to design and refactor applications in a way that
simplifies configuration-dependent program analysis.

Separate Configuration Parsing From Request Processing. An es-
sential requirement for configuration-dependent debloating is the
separation of configuration parsing from the actual processing of
user inputs. If the application parses runtime options on demand,
interspersed with the processing of user inputs, then we cannot
determine which configuration-dependent features should be re-
moved before the untrusted inputs enter the system. This prevents
the specialization of the application binary based on the active
configuration. The FTP server Vsftpd is one such application that
parses the active configuration on-the-fly upon receiving a client
request. This prevented us from applying C2C to reduce its attack
surface. Despite this complexity, after manually analyzing its code,
we found that it could be easily refactored to parse the runtime
options before serving any FTP requests.

Avoid Compulsory Initialization of Linked Modules. To ensure
maximum dynamic configurability, it is preferable to perform all
software specialization at runtime at the basic block level. In this
way, developers could ship a binary containing all features, which
can be self-specialized at runtime depending on the active con-
figuration. However, certain design patterns adopted by popular
web applications prevent runtime-only specialization. These in-
clude storing both enabled and disabled plugins in the same array,
and unconditionally invoking each plugin’s initialization routine
irrespective of whether the active configuration requires it.

Mindful of these findings, we recommend transitioning to a
modular architecture, where any plugin-specific code is invoked
only if the active configuration actually requires the plugin. Finally,
enabled and disabled plugins should not be stored in the same array,
to facilitate simple static analysis that does not need to distinguish
between individual array elements.

8 DISCUSSION AND LIMITATIONS
Manual Effort. Our approach requires a limited amount of man-

ual effort by the programmer, namely providing the transition point
and the information about the struct types used to store the active
configuration. The transition point requirement is not unique to
C2C, and previous multi-phase system call filtering approaches [29]
need it too, while there have been efforts to automate its identi-
fication [6]. Identifying the struct types used to store the active
configuration does not require significant effort either, because C2C
only needs the top-level types to be specified, and can automatically
derive any dependent configuration-related sub-types. Moreover,
missing a configuration-related struct type does not result in false
positives, i.e., required system calls are not mistakenly filtered—it
only results in the generation of more permissive policies.

Code Removal. C2C creates system call filters based on the gener-
ated fine-grained mapping between runtime settings and code. Al-
though we identify the unneeded basic blocks, they are not removed
because the amount of code that can be disabled does not justify
the effort needed at runtime. On the other hand, some applications
support optional modules that can be enabled or disabled during
compilation. By mapping each runtime configuration option to its
respective module, we can disable unnecessary modules entirely
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Table 4: Number of applications (last three columns) in which kernel CVEs are mitigated by filtering unneeded system calls
by applying library debloating, temporal specialization, and C2C.

System Call(s) # CVEs CVE Examples Lib. Temp. C2C

execveat, execve 8 CVE-2015-3339, CVE-2016-1576, CVE-2015-8543, CVE-2016-2853 1 1 3
getxattr 1 CVE-2013-4591 9 9 10
uname 1 CVE-2012-0957 0 0 1
bind 6 CVE-2015-8956, CVE-2013-7421, CVE-2014-2678, CVE-2014-9644 1 2 3
recvmsg 1 CVE-2015-8019 0 0 1
setsockopt 12 CVE-2017-6346, CVE-2013-0310, CVE-2017-16939, CVE-2013-4470 1 1 2
recvfrom, sendto 1 CVE-2015-2686 1 1 2
getsockopt 1 CVE-2013-1828 1 1 2
sendto 1 CVE-2016-8645 1 1 2

based on runtime settings at compile time. This coarse-grained
code reduction can remove large chunks of code at the module and
library level without affecting runtime performance [38]. While
mapping runtime configuration settings to compile-time options
that affect the inclusion of certain modules is straightforward for
some applications (e.g., Apache and Nginx, for which we actually
implemented this capability), it is challenging for others. We leave
the design and implementation of a generic solution for this purpose
as part of our future work.

Sources of Imprecision. The callgraph generation of C2C is suscep-
tible to overapproximation due to the need for resolving the targets
of indirect function calls. This is not a limitation of our approach,
as any technique that relies on sound static analysis would face the
same issue. Furthermore, C2C has limited support for conditional
branches which perform array-index-based comparisons and falls
back to use-based matching under these circumstances. We leave
improving accuracy for these cases as part of our future work.

Remaining Attack Surface. Like other attack surface reduction
techniques, we do not claim to prevent the attacker from crafting
their exploits by reusing the code and system calls that remain
in the attack surface after specialization. Depending on the goal,
these may still be enough for successful exploitation. However,
by filtering many security-critical system calls such as execve,
C2C significantly limits the attacker’s flexibility. Similarly, filtering
system calls reduces the number of entry points into the underlying
Linux kernel available to the attacker.

Configuration File Integrity. When the active configuration is
read from a file, as is the case with web servers such as Nginx and
Apache Httpd, C2C relies on the integrity of this configuration file.
If the configuration file is compromised, the attacker could mount a
two-step attack, first enabling runtime options that enable access to
the desired security-critical system call, and then forcing the appli-
cation to relaunch with the altered active configuration. The simple
solution to prevent this is to revoke the write permission from the
configuration file before launching the application. Furthermore,
we assume the active configuration is not modified by the user after
the launch of the program. Although some programs (e.g., Apache)

provide features for the user to modify the active configuration of
a running process, we leave this out of scope for our current work.

Dynamically Loaded Libraries. Similarly to previous works [13,
29] that generate system call policies based on static analysis, we as-
sume all library dependencies can be identified statically at compile
time. If the application dynamically loads a library (e.g., by invoking
dlopen and dlsym), the programmer must manually provide these
libraries to the C2C toolchain.

9 RELATEDWORK
Previous works on host-based intrusion detection systems [23–25,
33, 39, 54, 60, 66], have used system call policies to detect anomalous
behavior. However, because the focus of our work is attack surface
reduction, we primarily discuss the related work in the context of
debloating and specialization.

9.1 Application Debloating
Various approaches have employed static analysis to identify and
disable inaccessible application code. However, these techniques do
not consider the active configuration used to launch the application.
Mulliner and Neugschwandtner [51] proposed one of the first tech-
niques for application debloating, by removing the non-imported
functions from dependent shared libraries. Quach et al. [59] and
Agadakos et al. [4] perform library debloating at source-code level
and binary-level respectively, by computing callgraphs for both
the application and its libraries. Porter et al. [55] also perform li-
brary debloating, but use an oracle to predict the library functions
required during an application’s lifetime.

Davidsson et al. [12] analyze the full-stack requirements of web
applications and specialize dependent libraries based on the require-
ments of the web application. LightBlue [68] provides a framework
to perform automatic profile-aware debloating of Bluetooth stacks,
spanning from Bluetooth host code to the firmware. Song et al. [62]
perform fine-grained library customization of statically linked li-
braries using data-dependency analysis.

Temporal specialization [29] technique splits the server applica-
tion lifetime into two phases (Initialization and Serving), and tailors
the system call filters to the profiles of each phase. Sysfilter [13]
and Chestnut [11] present binary analysis frameworks that restrict
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the system calls available to user-space processes. Abhaya [53]
also creates allow lists for system calls and their arguments by
applying static analysis to the target program. Shredder [47] and
Saffire [48] restrict the arguments passed through library API calls,
for Windows and Linux applications respectively. SGXPecial [49]
specializes SGX enclave interfaces.

Other works use dynamic analysis and training to identify un-
used application code. Qian et al. [56] remove unused code from
binaries using heuristics and training the application with likely
user inputs. Ghaffarinia and Hamlen [26] use a similar training-
based approach to prevent control flow transfers to unauthorized
code. CHISEL [31] uses reinforcement learning to debloat software
based on user-provided test cases. DamGate [70] prevents the execu-
tion of unused features by rewriting binaries with gates that restrict
access to disabled code. Slimium [57] debloats the Chromium web
browser based on pre-generated profiles for multiple popular web-
sites. Ancile [9] leverages fuzzing to identify the code necessary
for performing the operations required by the user. However, since
these techniques rely on dynamic analysis, they cannot provide
any soundness guarantees.

The previous work closest to our approach is the technique
presented by Koo et al. [38]. They propose a hybrid technique, com-
bining static and dynamic analysis, that uses differential testing to
identify the library dependencies of each runtime option supported
by the application. While effective, this approach requires extensive
manual effort to generate specially crafted active configurations
that exercise each runtime option. Moreover, they support removing
code only at the coarser library level. More recently, TRIMMER [5]
also presented a configuration-based software debloating technique
that relies on dynamic taint tracking to identify and remove code
paths which are related to unused configuration options. Similarly,
LMCAS [6] performs partial-evaluation to propagate constants cap-
tured in the initialization phase and identify any unneeded code.

While the above techniques focus on C/C++ applications, applica-
tion debloating techniques have been proposed for other languages
too. Jred [69] statically analyzes Java applications to identify and
remove unused methods and classes. Jiang et al. [34] present a
feature-based debloating technique for Java using data flow analy-
sis. Azad et al. [7] remove excessive features from PHP applications
by profiling the web application using dynamic analysis. MiniN-
ode [37] presents a framework for reducing the attack surface of
NodeJS applications by removing unnecessary packages.

9.2 Kernel and Container Debloating
There has been significant interest in debloating and specializing
the Linux kernel with respect to specific application or workload
profiles. KASR [71] and FACE-CHANGE [72] use dynamic analysis
to create application-specific kernel profiles. Kurmus et al. [40]
present a configuration-based debloating technique for the Linux
kernel and automatically generate compilation configuration files
that can be used to build custom Linux kernels tailored for spe-
cific workloads. Similarly, Acher et al. [3] create customized Linux
kernels using a statistical supervised learning method. SHARD [2]
uses context-aware hardening to specialize the Linux kernel.

Wan et al. [67] use training to profile the required system calls
of a container and generate the corresponding Seccomp filters. Due

to the incompleteness of dynamic analysis, Confine [27] uses static
analysis to derive these Seccomp system-call profiles. MiniCon [36]
uses dynamic analysis to identify the minimal set of capabilities
required by a container. DockerSlim [22], an open-source tool, re-
moves unnecessary files from Docker images by applying dynamic
analysis. SPEAKER [41] separates the required system calls of con-
tainers into twomain phases, booting and runtime and uses dynamic
training to generate system call profiles for each phase.

10 CONCLUSION
We presented Configuration-to-Code (C2C), a novel approach for
specializing applications and their system calls based on the active
configuration. Compared to previous configuration-based debloat-
ing approaches, C2C requires significantly less manual effort and
performs finer-grained specialization, leading to the identification
of unnecessary code at the basic block level and the generation of
more restrictive filters. We demonstrated the effectiveness of C2C
by evaluating it with ten popular applications. By performing basic
block specialization, we show how C2C can filter more system calls
compared to previous approaches, and also how it can mitigate 32
additional Linux kernel CVEs.
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