Security Risks in Asynchronous Web Servers: When Performance Optimizations
Amplify the Impact of Data-Oriented Attacks

Micah Morton,* Jan Werner,* Panagiotis Kintis,” Kevin Snow,}
Manos Antonakakis, Michalis Polychronakis,® Fabian Monrose*

*University of North Carolina at Chapel Hill; email: {micah,jjwerner,fabian} @ cs.unc.edu,
TGeorgia Institute of Technology; email: {kintis,manos} @ gatech.edu,
iZeropoint Dynamics; email: kevin@ zeropointdynamics.com,
§Stony Brook University; email: mikepo @ cs.stonybrook.edu

Abstract—Over the past decade, many innovations have been
achieved with respect to improving the responsiveness of
highly-trafficked servers. These innovations are fueled by a
desire to support complex and data-rich web applications
while consuming minimal resources. One of the chief ad-
vancements has been the emergence of the asynchronous web
server architecture, which is built from the ground up for
scalability. While this architecture can offer a significant boost
in performance over classic forking servers, it does so at the
cost of abandoning memory space isolation between client
interactions. This shift in design, that delegates the handling
of many unrelated requests within the same process, enables
powerful and covert data-oriented attacks that rival complete
web server takeover — without ever hijacking the control flow
of the server application.

To demonstrate the severity of this threat, we present
a technique for identifying security-critical web server data
by tracing memory accesses committed by the program in
generating responses to client requests. We further develop a
framework for performing live memory analysis of a running
server in order to understand how low-level memory structures
can be corrupted for malicious intent. A fundamental goal of
our work is to assess the realism of such data-oriented attacks
in terms of the types of memory errors that can be leveraged
to perform them, and to understand the prominence of these
errors in real-world web servers. Our case study on a leading
asynchronous architecture, namely Nginx, shows how data-
oriented attacks allow an adversary to re-configure an Nginx
instance on the fly in order to degrade or disable services (e.g.,
error reporting, security headers like HSTS, access control),
steal sensitive information, as well as distribute arbitrary
web content to unsuspecting clients — all by manipulating
only a few bytes in memory. Our empirical findings on the
susceptibility of modern asynchronous web servers to two well-
known CVEs show that the damage could be severe. To address
this threat, we also discuss several potential mitigations. Taken
as a whole, our work tells a cautionary tale regarding the risks
of blindly pushing forward with performance optimizations.

1. Introduction

Since the earliest memory corruption attacks emerged as
serious threats to the security of computer systems, security
professionals have been tirelessly trying to stay ahead of
exploitation tactics. Much of this defensive effort has fo-
cused on thwarting attacks that corrupt application control
structures in order to hijack the execution of running soft-
ware. Data Execution Prevention (DEP), which enforces that
writeable data sections of a program (e.g., the stack) are not
also executable, and Address Space Layout Randomization
(ASLR) are two prominent examples of widespread defenses
that have been incorporated into mainstream systems. How-
ever, these defenses were later shown to be less effective
than first thought given a single memory disclosure [33].

Accepting the fact that there will be exploitable bugs
in complex programs, the designers of modern browsers
have chosen to limit exploitation by delegating buggy ren-
dering code to unprivileged sandbox processes. Similarly,
contemporary web servers are built in a way that delegates
connection parsing and processing to lower-privilege worker
processes. In both cases, these design decisions force adver-
saries to further employ privilege escalation attacks to gain
system-level access, which in turn adds an extra layer of
sophistication in order to successfully exploit an application.
While not perfect, these mitigations significantly raise the
bar for control-hijacking attacks.

That being said, as system compromise through control
flow hijacking becomes more difficult due to the myriad of
defenses that have been deployed in this space, adversaries
will undoubtedly explore new paths of least resistance.
One such path is via the so-called data-oriented attacks
that leverage the power of memory corruption to target
non-control data for the purpose of exploiting applications
without ever corrupting control flow [11, 21, 22, 23, 30].

We take a multi-step approach in demonstrating the fea-
sibility of data-oriented attacks against modern web servers.
We show that these attacks are made easy because of per-
formance versus security tradeoffs that have been made by
web server architectures. To elucidate these issues, we first
describe a method for locating security-critical configuration

data structures by tracing server execution during request
processing. We then propose an automated framework for
live memory analysis which can be used to expose the low-
level state of critical data structures at runtime, matching
different live memory states with different configuration file
parameters on disk. Next, we show how our automated
framework can be used to produce faux copies of key server
data structures without any need for manual source code
analysis or reverse engineering. Using this framework, we
demonstrate how an adversary can leverage real-world mem-
ory disclosure and corruption vulnerabilities to re-configure
a running web server on the fly, by redirecting data pointers
to faux structures, instead of redirecting code pointers to
malicious code. We present a complete case study of such
data-oriented attacks against the contemporary Nginx web
server, and evaluate the covertness of our demonstrated
attack in the face of common real-world security-hardened
deployment scenarios. Our specific innovations include:

o A flexible and robust instrumentation technique for
identifying security-critical data in web server memory.

o An approach for bypassing ASLR using only a linear
heap memory disclosure vulnerability.

o Highlighting how an adversary can significantly reduce
the work factor involved in server takeover (compared
to what is typically considered necessary using con-
temporary approaches).

o Evaluating the feasibility of such attacks by studying
the widespread susceptibility of deployed web servers
to vulnerabilities that enable such attacks.

2. Background

Although modern web servers generally carry out a set
of straightforward tasks when handling incoming requests
(e.g., accepting network connections, parsing client requests,
fetching content from a datastore, and generating responses),
there have been a number of proposed approaches to imple-
menting this workflow. The differences can be attributed to
varying standards for scalability, performance, robustness,
and simplicity in design. Designing a web server architec-
ture that is optimized for any of these high-level attributes
involves awareness of how to leverage lower-level operating
system features (e.g., processes, threads, asynchronous I/O).

One approach relies on using a different process or
thread for each connection being serviced. This greatly
improves the scalability of servicing requests through syn-
chronous I/O, since the process or thread associated with
a given request can be suspended while waiting for an I/O
operation to complete — freeing resources which can be
dedicated to processing additional requests. In recent years,
this model has been popularized by the Apache web server,
which forks a separate process to handle each incoming con-
nection, terminating it upon connection closure. One notable
optimization of Apache’s process-per-request architecture
involves preforking a pool of processes on startup to avoid
the overhead of forking upon each incoming connection.
While using multiple processes for handling concurrent
requests indeed benefits scalability, the heavyweight nature

Synchronous Web Server Asynchronous Web Server

(e.g., Apache) (e.g., Nginx)
Parent Process Parent Process
i i i
fork() fork() fork()
v v v
Worker Worker Long-running
Process #1 Process #N Worker Process
Client1 |...| ClientN Client1 |...| ClientN

Figure 1: Synchronous vs. asynchronous web servers.

of a process object, as well as the overhead of context
switching between processes, means that this model is not
satisfactory for web servers that must handle hundreds or
thousands of incoming connections concurrently.

In response to demands for highly concurrent web
servers, traditional process-based architectures such as
Apache have begun to offer thread-based concurrency that
allows a single process to service multiple concurrent con-
nections by dedicating a unique thread to each connection.
In this way, one thread in a process can block while waiting
for an I/O operation to complete at the same time that other
threads continue to service other requests. This approach,
called worker mode by Apache [4], is a popular alternative
to process preforking when scalability to many connections
is important, but allocating a thread for each connection is
still considered inefficient for many real-world servers [24].

As the demand for web server concurrency has in-
creased, a new architecture emerged: the asynchronous
(event-driven) web server. Under this model, requests
are serviced asynchronously by a single (single-threaded)
worker process, which uses event-based callback functions
to carry out server functionality when needed (e.g., parse
request headers, construct response headers). Since blocking
on synchronous I/O is not necessary, connections do not
need to be associated with a scheduling unit that can be
suspended, providing greater scalability. Note that the func-
tionality that enables asynchronous request processing (e.g.,
chaining processing modules together via callback func-
tions) must be at the core of the overall server architecture
and must be incorporated into many design aspects.

Despite the challenges of refactoring its core syn-
chronous processing implementation, Apache recently of-
fered a processing mode known as event [4], which makes
further strides to optimize the number of clients that can
be handled simultaneously by a single worker process. As
we show later, the risks of abandoning web server memory
space isolation between client requests, will only become
more relevant as Apache continues to refactor its server de-
sign to match the impressive scalability performance offered
by asynchronous architectures.

Nginx (pronounced engine-x), the market’s most popular
asynchronous web server, has garnered widespread adop-
tion as a result of its ground-up design for asynchronous
scalability [39]. In fact, although Apache still holds the
largest market share, many sites have switched to Nginx in
recent years (potentially also incorporating other back-end
processing solutions). At the start of the decade in 2010,
Apache claimed 71.5% of the web server market, while
Nginx was only used by 3.9% of sites. However, as of
January 2017, only 50.9% of sites still use Apache, while
32.1% use Nginx. The popularity of Nginx is especially
apparent for the busiest websites, as the majority of the
busiest 100,000 sites use Nginx over Apache [41].

Figure |1 shows the high-level architectural differences
between the industry’s two most popular web servers. Crit-
ically, the figure shows the difference in how Apache uses
process-based isolation to logically separate request process-
ing, while Nginx handles all requests in a single process.
This key difference in architectural models has major im-
plications in terms of the susceptibility of these web servers
to non-control-data oriented attacks.

2.1. Exploiting Web Servers

Exploiting a web server can be a desirable feat for mounting
widespread attacks against unsuspecting clients. Web server
exploitation is often the first step in a drive-by download
campaign, where the ultimate goal is to use the popularity
of a legitimate website to distribute malware once the web
server has been compromised. To put the findings of
this work in perspective, it is important to understand the
requirements for a modern-day exploit chain that seeks to
gain system level control of a victim machine. Due to
ubiquitously deployed mitigations such as DEP and ASLR,
full system exploitation generally requires an adversary to:

1) Exploit a memory corruption vulnerability to modify
the contents of an application’s memory.

2) Leverage a memory disclosure bug to circumvent ad-
dress space randomization.

3) Prepare a code re-use payload in memory and pivot the
stack pointer to the start of this chain.

4) Use the ROP chain to map the location of injected
shellcode as executable.

5) Launch a privilege escalation attack against higher-
privilege components.

Each of these steps in the exploit chain provide unique
challenges to an adversary. In particular, accepting the fact
that memory errors will inevitably occur in complex ap-
plications written in type-unsafe C/C++ code, the research
community has focused heavily on raising the bar for steps
3-5 through DEP and code reuse defenses, sandbox devel-
opment, kernel hardening and many others.

Interestingly, while the absence of untrusted script exe-
cution protects web servers from many associated vulnera-
bilities, the non-trivial logic implementing complex request
processing and dynamic content generation exposes a con-
siderable attack surface to adversaries. Indeed, Hu et al.
[22] recently showed the feasibility of achieving arbitrary

write capabilities against popular server programs, thereby
confirming the generally accepted notion that motivated
adversaries will find ways to leverage memory corruption
exploits (e.g., buffer overflow, use-after-free, double free) in
order to achieve the so-called write-what-where capabilities
[26]. This scenario — which affords the ability to write an
arbitrary value at an arbitrary location in process memory
— can be enacted in a variety of ways, such as corrupting
stack or heap objects that will be written to in the future.
Like Hu et al. [22], we assume the existence of an arbitrary
write vulnerability in Nginx for the proof of concept exploits
presented in Section 6.

Although we assume such arbitrary write capabilities,
we do not assume the ability to use memory corruption to
gain arbitrary read capabilities. In particular, after extensive
research, we found no practical exploits or exploit method-
ologies that can be leveraged to disclose server memory at
an arbitrary address. Although such exploits may exist, we
restrict ourselves from asserting the theoretically powerful
assumption of arbitrary read capabilities due to their rarity
and to keep with our goal (§4) of presenting attacks that are
feasible in the real world.

On the other hand, there have been instances of server
vulnerabilities that disclose a linear swath of heap memory
(e.g., Heartbleed (CVE-2014-0160), Cloudbleed [18], Ya-
hoobleed (CVE-2017-9098), CVE-2014-0226, CVE-2012-
1180) at an unspecified address. The Heartbleed vulnera-
bility, for example, was one of the most impactful security
issues in the last decade, with 24-55% of HTTPS servers in
the Alexa Top 1 million sites being initially vulnerable [14].
In early 2017, researchers uncovered the Cloudbleed vul-
nerability in Cloudflare’s CDN service, due to a memory
error in an Nginx module used for parsing and modifying
HTML pages on-the-fly [18]. This vulnerability serves as a
reminder that complex and memory-error-prone processing
is employed by cloud-based services within the confines
of Nginx’s asynchronous architecture. While Heartbleed,
Cloudbleed, and similar vulnerabilities do not give the ad-
versary as powerful of a primitive as arbitrary read, we
show that even a partial linear read of heap memory (whose
location is not controlled by the adversary) can be leveraged
to undermine ASLR and locate key application structures as
a first step in performing powerful data-oriented attacks.

3. Other Related Work

Over a decade ago, Chen et al. [11] highlighted the power of
leveraging memory corruption exploits to subvert systems
through the manipulation of security-critical non-control-
data — all without ever corrupting the control flow struc-
tures of an application. They demonstrated data-oriented
attacks against an assortment of widely-used server-side
applications, but their approach required manual source code
analysis to obtain in-depth semantic knowledge regarding
the layout of security-critical data and how its corruption
could be leveraged in each application. More recently, Hu
et al. [21] showed how to lessen the amount of a-priori
knowledge needed for pulling off the same attacks pre-

sented by Chen et al. [11]. Their approach, termed data-
flow stitching, utilizes taint tracking to compute data flows
that occur during application runtime. This approach treats
file inputs to the application as data sources and file outputs
as data sinks, tracing how critical data is imported to an
application from the file system as well as how information
generated by the program flows out to the filesystem. Shortly
thereafter, Hu et al. [22] highlighted the feasibility of using
commonly occurring memory corruption vulnerabilities to
gain arbitrary write capabilities in server programs. That
work shows how memory errors can be leveraged to achieve
write-what-where [26] capabilities in process memory.

None of these works provide a general technique for
overcoming ASLR, but rather require that a pointer to
security-critical data is somehow leaked to the adversary by
the same memory error that allows for the arbitrary write.
Thus, it is unclear how an adversary would adapt the opaque
payloads generated by these approaches, even if the loca-
tions of modules in the process address space were known
through traditional ASLR-bypass techniques. Empowered
by the write-what-where [26] capabilities demonstrated in
Hu et al. [22], we explore the importance of server process
architectures and how they affect data-oriented attacks. This
connection has been critically overlooked, and we believe
this oversight has dire consequences moving forward.

3.1. Defenses Against Control-Flow Hijacking

As the security community has largely acknowledged that
memory corruption vulnerabilities in complex software are
inevitable, defensive mitigations have most prominently tar-
geted the control-flow hijacking steps of the exploit chain
— including return-oriented programming tactics [34] and
related variants. These solutions employ varied techniques
to thwart attacks, such as ensuring control-flow integrity
(CFD) [1, 29] or employing code diversification (e.g., [5]).
These approaches do not protect against data-oriented at-
tacks as they are exclusively directed towards protecting the
executable section of a program from being repurposed for
malicious means, and do nothing to enforce the integrity of
non-control data that is read or written by the application.

4. Goals And Adversarial Model

Given the fact that asynchronous server architectures such
as Nginx handle many client connections in the same long-
lived server process, our goal is to show realistic attack sce-
narios in which data-oriented attacks have expressive power
rivaling that of control-flow hijacking exploits against web
servers. Moreover, we seek to show that in some respect,
data-only attacks are more attractive from an adversarial
perspective than attacking control flow, since they tend to be
especially covert from a system-monitoring perspective, and
also obviate the need for further privilege escalation attacks
once the server worker process has been exploited.

4.1. Adversarial Model

As alluded to earlier, recent work [31] has assumed the
full powers of arbitrary read and write exploitation against

web servers and the ability to trivially defeat ASLR given
these primitives. However, our extensive research into the
actual remote server exploits seen in the wild — as well as
published research on the matter [22] — led us to question
that assumption, and instead limit our adversarial model to
one in which the adversary has the powers of arbitrary write,
but only linear heap disclosure. Critically, unlike prior work,
we do not assume the adversary can read data from arbitrary
addresses in memory since we see no supporting evidence
for this ability in real-world server exploits. Our attacks are
demonstrated against Nginx, the industry leader in scalable,
event-based server architectures. For simplicity, we assume
the adversary has access to debug symbols, which is a
realistic assumption given that the two most popular web
servers', namely Apache and Nginx, are both open source.

5. Approach

Even under the assumption that an adversary can leak heap
memory and overwrite arbitrary data in process memory,
there are several hurdles that must be overcome to achieve
viable data-only attacks against asynchronous web servers.
First among these is identifying data that when overwritten
will have the intended high-level effect of injecting mali-
cious web content that would result in drive-by downloads
or disabling services that provide privacy and confidentiality.
Next, having identified this data, we must find ways to
reliably overwrite it to meet the desired objective. Lastly,
to fully explore the power of this threat, we seek ways to
automate the steps as much as possible.

5.1. Memory Access Tracing

To address the first challenge, we provide a technique for
tracing the memory accesses committed by a web server in
servicing a request, and explain how these accesses can be
inspected to identify data that is critical to server execution
as configured by website administrators. In other words, we
aim to identify data consulted on every incoming request
that when overwritten will cause the server to behave differ-
ently than expected. Unexpected behaviors include serving
malicious drive-by download content along with the original
benign web pages, or downgrading the connection security
of HTTPS without warning.

Our solution uses Intel’s Pin framework [25] to record all
reads directed at the . data section of the main executable’s
memory from the time the server receives an incoming
HTTP request until the service of this request is complete.
For each read, we also record the instruction pointer which
issued the read. Next, in an offline phase, we use debug
symbols to construct a timeline of data accesses made when
servicing a request, including the variable name and offset in
the .data section that was accessed as well as the function
name and offset that issued the access. We trace accesses to
the .data section (rather than the heap) because they tend
to offer better insight into the high-level operations that take
place while a server is processing a request. Specifically, the

1. Together, these servers account for 83% of the market share [42].

.data section .text section

Heap

ngx_http_core_module

ctx_index: 0 < ®

}

ngx_http_log_module

< o

ctx_index: 1 < .]

¥

Retrieve
ngx_http_access_module

ctx_index: 7 <« o

}

ngx_http_headers_
filter_module

ctx_index: 37 < o}

¥

ngx_http_create_request() {

ngx_http_log_handler() {

offset ngx_http_access_handler(){//

ngx_http_headers_filter() { / s N B < =

Config. data

pointer table
Core config.
[> Offset 0 —> > g

N

Offset 1 1
WL N L N
Log config.

Offset 7 —

Reference
config. data L | f—

| » | Offset 37 \Headers filter config.

o N

XD

e

Learned through program instrumentation

~

Learned through memory analysis

Figure 2: NGINX exploit diagram. Through program instrumentation and memory analysis, an attacker can locate the entries
of interest in the configuration data pointer table, and overwrite them to point to malicious entries.

.data section often contains top-level pointers to complex
per-module data structures which are spread throughout the
heap, and this top-level is generally a good starting point
for the live memory analysis techniques explained shortly.
Moreover, the heap is accessed thousands of times more
often during request processing than the .data section,
and thus it is more difficult to associate high-level server
operations with individual memory accesses. Lastly, even
while instrumenting a program it is often difficult to as-
sociate individual allocations with the type of object that
will reside at the given heap location, thus lessening the
advantages provided by debug symbols.

The reader may be wondering why we do not simply
conduct manual source code analysis to identify where
critical configuration data is accessed in the server program.
In fact, we initially took this manual approach, but soon re-
alized that the complex nature of asynchronous web servers
(in the way they chain modules and functionality together
through callback functions) made for much difficulty in
manually tracing the flow of execution that occurs while
handling even the simplest of requests. Said another way,
the performance optimization gained by asynchronous server
architectures comes at the cost of code simplicity, as every
small module of processing that takes place in servicing
a request must be chained together through complex data
structures rather than following a simple, sequential order.
Such modular code design is an essential component of
asynchronous web servers, as there are no thread or process
objects to save the code execution state of a partially-formed
response while waiting on some resource (e.g., a file from
disk). Instead, small code modules accomplish simple tasks
that can be asynchronously invoked to perform some step

towards generating a response. Thus, following the control
flow and data accesses of asynchronous web servers through
manual source code inspection is a difficult task, and for
that reason, we resorted to program instrumentation to help
identify security-critical data.

For pedagogical reasons, we note that a sample memory
trace for Nginx to service an HTTP GET request contains
less than 150 accesses to the data section, so it is feasible
to manually identify data of interest. For example, the 96th
access directed at the data section in our trace originated
from ngx_ http access_ handler (), which accesses
data at offset 0 within the ngx_http access module
structure. With a quick inspection, it becomes clear that
the function is referencing an access control configura-
tion data structure on the heap, using an index stored at
ngx_http access_module + 0 to retrieve the pointer
to this data. Given such a memory trace, an adversary can
easily hone in on some important access control related
configuration data in memory. While this example may
seem overly simple, we found that additional code paths
we identified in Nginx, that consult in-memory configuration
data structures for other modules (e.g., SSL module, security
headers module, error and access logging modules), are just
as straightforward to analyze.

5.2. Corrupting Data for a Desired Effect

Armed with the ability to locate sensitive data within a
program, the next challenge involves determining how to
overwrite that data for the intended degradation of server
security — without introducing unstable behavior to the
server. In this work, we restrict our attacks to influencing the
in-memory representation of configuration data. Specifically,

we seek to understand how different server configuration
options cause in-memory data structures to be populated
with different data. This objective could conceivably be
achieved through manual source-code analysis, tracking the
data flow of information from configuration file to in-
memory structures. However, as discussed in Section 5.1,
the complex nature of callback functionality to support
asynchronous server processing means such manual analysis
is a non-trivial task. Alternatively, related work by Hu et al.
[21] uses taint tracking to identify data in a server that is
influenced by directives in a configuration file, but this is
an unnecessarily complex approach that generates a vast
search space,” and at times requires the adversary to fall
back on manually specifying the security-sensitive data in
an application.

Instead, we leverage the information gained from the
memory tracing step to conduct live memory analysis of a
running server application in order to provide intelligence
on the low-level state of security-critical data structures and
how they can be manipulated. Specifically, our solution for
live memory analysis assumes that step one of our attack
workflow has identified a spot in the code that references the
given in-memory configuration data structure in question.
Considering Nginx in particular, we observe that it has
unique data structures representing the configuration for
its different processing modules (e.g., SSL module, GZIP
module, access control module), and that each of these
modules consult those data structures in determining how
to respond to a request.

In this way, for an arbitrary server processing module,
we can set a breakpoint on a location in the program
that obtains a pointer to that module’s configuration data,
and run the server with different configuration options set,
investigating how those different high-level configuration
directives map onto the low level in-memory data structures
once they have been populated in process memory (these in-
memory data structures are shown on the right in Figure 2).
With the application paused at a place where we have a
reference to this process memory, we can combine debug
symbols with access to raw process memory to construct
an image of how the different configuration data structures
for given modules are populated based on different spec-
ifications in the configuration file. In essence, we build a
memory analysis framework that produces a live snapshot
of a given structure, including following pointers to other
structures and capturing their snapshots recursively. The left
side of Figure 2 shows how our instruction tracing step helps
us hone in on spots in the code that reference configuration
data structures — specifically via the config data pointer
table. Together with the results of our live memory analysis
technique (shown on the right), these two frameworks help
us leverage our assumptions of linear heap disclosure and
arbitrary write to locate security-critical objects in memory
and corrupt them for malicious effect.

The output of our memory analysis framework is a

2. A significant fraction of all data in a web server depends on the
configuration file in one way or another.

ngx_http_access

ngx_http_access
(a) e oo rule t

_loc_conf_t* ngx_array_t

alcf elts

mask: 25413176

nelts: 1 address: @

ngx_http_access

_Tloc_conf_t size: 16 deny: 1

rules

rules_un

ngx_http_access
ngx_array_t rule_t
elts mask: 25413280

nelts: 1

() ngx_http_access

_Toc_conf_t* address: @

alcf ‘ size: 8 deny: 1

ngx_http_access
_Toc_conf_t

rules: NULL

rules_un: NULL

Figure 3: Extracted data structures by our memory analysis
framework when configuring Nginx (a) to deny all access,
and (b) to not perform any access control.

human-readable printout of the data structure as well as a
copy of the data structure in binary format. There are two
distinct abilities that this memory analysis approach affords
the user. First, the framework can identify places in a given
configuration data structure that vary for different config-
uration settings. Running a program multiple times with
different configurations and performing a simple diff on the
output of the memory analysis allows the user to quickly get
a sense of the changes in low-level data structures that oc-
cur in response to issuing different high-level configuration
directives to the application. This is useful for determining
the elements in a data structure whose runtime modification
will essentially re-configure the server, causing it to behave
differently than was intended by the configuration settings.
For many of Nginx’s processing modules, it is a non-trivial
task to hone in on which fields in the associated configu-
ration data structure must be (recursively) altered to cause
the server to operate insecurely without introducing some
unexpected behavior. This is because the same configuration
structures often appear very differently in process memory,
depending on the directives given in the configuration file.
Our framework relieves the burden of needing to understand
all of these complex interdependencies in the configuration
data structures, instead forcing the application to generate
the different versions of the structure and making it easy to
observe the differences.

Figure 3 shows example outputs of running our mem-
ory analysis framework on the access control configuration
structure after having configured the server to (a) deny all
access and (b) to not impose any access control (default
behavior). Many of the configuration structures in Nginx
are much more complex with many levels and members,
but this example illustrates how the memory representation
of a structure changes for different configuration directives.
The differences in these structures for different configuration
directives completely determine how the server responds to
a given request in terms of access control. We refer to a
snapshot of the data structure our framework creates as
a deep copy of that structure since it recursively records
pointers to other structures and their values.

A second benefit of our framework is the ability to
extract from memory a full copy of a given data structure,
outputting a flattened version of the arbitrarily deep multi-
level structure. Implementation-wise, this involves arranging
all the objects from the multiple levels of the data structure
into a contiguous buffer and ensuring pointers from one level
to another target the correct offsets. The ability to output this
flattened structure is especially useful when considering that
we assume an adversary to be lacking the ability to read
arbitrary server memory. If an adversary is able to control
a pointer to the top level of some multilevel configuration
structure, they only need to redirect this top level pointer to
a full deep copy of the configuration structure in question.
The full copy is necessary since the adversary does not have
the ability to follow pointers in the data structure to the
elements they desire to modify, due to our assumption of
lacking arbitrary memory disclosure capability (see §4). In
this scenario, the adversary would use our framework to
generate a flattened copy of some configuration structure
featuring the desired insecure directives, write this buffer
to server memory, and redirect the top-level pointer to
reference this injected structure.

5.3. Memory Analysis Framework

Our live memory analysis framework for processing
configuration-related data structures is implemented as a
GDB Python plugin. With this framework in hand, one
can take live deep copy snapshots of a given data structure
and compare them across different configurations, thereby
understanding how differences in configuration directives
map to differences in process memory state for. Our memory
analysis framework is effective in that it is generic to any
arbitrary structure in the memory of a program for which
debug symbols are available. However, there are a few
limitations that are consequences of the C programming
language, which is the source language for both Nginx and
Apache. In what follows, we discuss hurdles we encountered
when using our framework on Nginx. While these obstacles
could be overcome through manual inspection of the source
code, we present the techniques we used to overcome them
without such manual effort.

Void pointers. At the first instance when our recursive
memory analysis encounters a member of a struct that is of
type void«*, we will not know how to treat the structure ref-
erenced by that pointer given only debug symbols. However,
there is a straightforward workaround for this issue: we can
use the tracing technique (§5.1) to pause execution at a place
where the structure is referenced and then set a memory
access breakpoint on the location of the voidx pointer.
Upon resuming execution and triggering the breakpoint, we
record the line of code associated with the current program
counter and note the corresponding source code for the
destination type of the cast from void. Thenceforth, we add
a rule to the memory analysis framework to always treat a
specific void member in a given structure as a given type
for the application under inspection.

Unions. Similarly, we will not know initially how to treat
a variable of type union; in which case a single variable can

be interpreted as multiple types. This problem is an easier
version of the issue with void pointers, and as such we use
the same approach as described above.

Pointers treated as the base of an array. When an array
is defined as part of a structure, we can use its statically
determined size to know how many objects are contained
in it, and recursively process them accordingly. On the
other hand, using only debug symbols, there is no way to
distinguish when a program treats a pointer type as the base
of an array containing multiple items versus simply treating
it as a pointer to a single object of the given type. Luckily,
this most often occurs with null-terminated C-style strings of
type charx*, and thus we treat char~+ variables as arrays by
default, processing memory until a null byte is encountered.’

Overall, our memory analysis framework vastly de-
creases the amount of semantic knowledge necessary for
observing the runtime memory layout of security-critical
data structures. While not perfect, the framework was suf-
ficiently effective to enable a wide range of attacks against
Nginx without performing manual source code analysis to
reason about the structures used in the application.

6. Case Study

As shown in Figure 2, our program tracing and memory
analysis frameworks enable the identification of critical
configuration data in Nginx, and provide an understanding of
how that data is accessed by the program. A key realization
is that given the ability to control the config data pointer
table, an adversary could trick the server into referencing
any spot in process memory and interpreting it as the given
type of configuration data structure. Moreover, since Nginx’s
asynchronous worker processes are long-lived and handle
many connections, corrupting this data in a worker process
will affect all future requests. In the case of Nginx, although
this configuration data (and associated pointer table) is on
the heap, there is only a single copy that is referenced
throughout the lifetime of the process. Therefore, an adver-
sary who could corrupt the pointer table and control some
part of process memory could write fake configuration data
structures into memory, cause entries in the pointer table
to point to these fake structures, and trick the program into
behaving differently from the way it was configured.

In order to accomplish this attack, the adversary must
be able to (1) locate the single unique copy of the config
data pointer table on the heap, (2) write a data payload
somewhere in memory such that it will neither be corrupted
in the future by the process nor itself corrupt any meaningful
data in use by the process, and (3) create a faux configuration
data structure containing the desired malicious parameters.
Armed with these capabilities, an adversary can coax the
server into behaving as desired, without ever hijacking its
control flow. Worse yet, by corrupting this configuration
data, the adversary can have a long-lived effect on the server,
leaving behind little forensic evidence.

3. There are more complex heuristics that could be performed to predict
whether a given variable points to an array, but we did not find this to
be necessary for the security-critical data structures analyzed in this work.
Such an exercise is left for future work.

6.1. Experimental Setup

Before describing the details of this case study for Nginx, we
first relay some background experiment setup in terms of the
deployment scenario that we use to evaluate the feasibility
of our approach in real-world scenarios. A vitally important
aspect of evaluating the behavior of a web server is the
ability to interact with that server from client endpoints
such that the type and frequency of client interactions are
controlled for all experiments conducted. Importantly, we
enable various kinds of functionality on the Nginx server
which we believe is an accurate reflection of common real-
world use cases. Specifically, we ensure that the server
handles a mixture of HTTP and HTTPS connections, serves
different types of static content (e.g., HTML and JPEG files),
and serves different types of dynamic content including PHP
scripts. Likewise, we ensure that any time we issue client
requests to the server, the requests are a diverse mixture of
GET/POST requests, HTTP/HTTPS connections, requests
for different types of static content, requests for URLs that
exist on the server as well as some that do not (triggering
an Error 404 response), and requests for different types
of dynamic content. The distribution of these requests is
derived from server logs from a popular campus server. Our
Nginx server ran on a quad core, 8 thread, Intel i7-2600
processor with 16 GB of main memory.

Our goal in the experimental setup was to exercise many
code paths on the server. This is essential for several of
the experiments we run, including evaluating the feasibility
of using heap disclosure to leak specific objects, as well
as of finding safe areas in process memory into which we
can write fake data structures. For the rest of this section,
whenever we mention issuing requests that target our Nginx
server, those requests are distributed according to the real-
world variations above.

6.2. Locating the Config Data Pointer Table

Recall that our program instrumentation step allows us to
hone in on locations in the code that retrieve pointers to
configuration data from the config data pointer table. In-
vestigation of the macro in Nginx that conducts this pointer
retrieval shows that the location of the table is stored as
part of every HTTP request structure in the program. The
HTTP request structure, called ngx_http request t in
the source code and referred to by r in the following
example, is an object (allocated on the heap for each in-
coming connection) that gets passed along to the different
processing modules in Nginx as they prepare the appropriate
response. The following macro depicts how Nginx retrieves
a configuration data pointer from the config data pointer
table for a given module. This line of code represents the
action that is depicted in Figure 2:

#define ngx http get module loc conf(r,
module)
(r)—>loc conf[module.ctx index]

As shown, the 1loc conf field within an
ngx_http request t structure holds a pointer to
the config data pointer table, and thus the ability to disclose

the contents of an ngx_ http request t object from
the heap would allow an adversary to learn the location
of the config data pointer table. With the location of the
table known, an adversary could overwrite particular offsets
(which correspond to different modules and are determined
at compile-time) to point to an injected payload comprising
a faux configuration data structure. While this will be
discussed in more detail shortly, we now focus on how an
adversary can reliably use a /inear heap memory disclosure
(e.g.,CVE-2014-0160, CVE-2014-0226, CVE-2012-1180)
to leak an ngx_http request t object from the heap.

We use the Heartbleed vulnerability in our experiments
to show that given a linear heap disclosure (in the case
of Heartbleed, 32KB), its is realistic to assume that an
adversary can disclose an ngx _http request t object
from the heap with high likelihood — even though the
location of heap data that is disclosed by Heartbleed is
unpredictable and different every time. While this may
seem odd at first blush, the chances of success are im-
proved by the fact that one of these objects is allocated
on the heap for each incoming request, so a server handling
many requests simultaneously will have many instances of
this object on the heap. Our approach involves triggering
the heap disclosure in the server, followed by identifying
an ngx_http request t structure within the disclosed
32KB of arbitrary heap data. To validate the right structure
has been found, we perform pattern matching based on
predictable data contents of the ngx http request t
structure. In the experiments that follow, we evaluated the
success rate of leaking the desired structure on a moderately
loaded server averaging 25 connections per second — a
number derived from data we collected for one of the main
web servers on our campus.

If no other clients are interacting with the server at
the time a disclosure is performed, there may be only a
few ngx _http request t objects on the process heap.
However, adversaries can increase their chances of success
by preparing the process heap with innocuous HTTP re-
quests before performing the disclosure. It is important that
these requests are performed in parallel, so that multiple
ngx_http request t objects are allocated on the heap
for the different requests. Therefore, in each run of the
experiment, we allow the adversary to prime the server by
first issuing n € 0. .. 30 simultaneous HTTP requests before
performing a disclosure. That exercise is repeated for d = 50
disclosure attempts for each value of n, and to ensure there
are no lingering side effects, the server is restarted before
proceeding to the next value of n.

Figure 4 (top) shows the average success rate of finding
an ngx_http request t structure after prepping the
server and subsequently performing a disclosure. Notice that
without prepping the server, we achieve an average success
rate of 12.4%. That success rate peaks to just under 33.7% at
n = 7 innocuous requests, before stabilizing. We believe the
fluctuations after around n = 7 are due to intricacies of how
Nginx handles connections. The attacker can increase her
success rate — though at the risk of raising suspicion server-
side — by instead prepping the server with requests targeted

709

60%-
T
|
50% i
I
I
I
40%| +
I
I

30%-
20%’\T L

I
1 LR
! | ! - - |
+ 1 - + o1 -
T
10%| + + ! 4

0%l v
"0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

Number of simultaneous requests used to prep the server

Success rate

G +
[I E—
-
-{TF -
T
- -7
- T
-
— T
[S——
-1 F -4
—TF -
[l S
B I]
- - T -+
T3
T
-
B I E—
T -
— T -~
—T 1+ -~
- - +
T
—T%F
T -4+
4

0% —F—F——T—T—"—T T T T T T T T T T T T T T T T T T T T

60%|
50%| i
N T
R ‘ !
T . ! b !
1% |- I Lo 1 - d|
0%y T Lo ! ! PR T
‘ ' Z + i z | : 1
[- + |
. L
30%) H 1l + + ! i
1 |
I

20%

Success rate

10%|

0%

oF

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
Number of simultaneous requests used to prep the server

Figure 4: Disclosure success (a) for increased stealth, with

adversarial prepping following the distribution of request

types for varied content, and (b) when prepping targets only

a PHP script. Performing 10 disclosures at a 25% individual

success rate gives an overall likelihood of greater than 94%.

at a specific server-side PHP script, for example, that ties
up resources slightly longer than for simply returning a
static HTML page (i.e., = 250ms versus 50ms). Figure 4
(bottom) shows that in this case, the success rate improves
dramatically. In any event, our disclosure technique does
not need to have a 100% success rate, since triggering the
Heartbleed leak does not crash the server worker process and
thus can simply be exercised multiple times until the struc-
ture is successfully disclosed.” Even placing a conservative
estimate of the individual disclosure success rate at 25%,
performing 10 disclosures would raise the overall likelihood
of success to above 94%.

Lastly, we explored what happens on a more heav-
ily loaded server scenario by issuing numerous requests
from many different physical machines until a threshold
is reached where our Nginx server is operating at max
capacity (servicing around 130 requests per second). While
maintaining this max throughput threshold on the server, we
triggered d disclosures at random periods and examined the

4. Even with a linear memory disclosure vulnerability that does cause a
crash, this does not present much of an issue as Nginx worker processes
are restarted automatically after a crash.

success rate for finding the ngx_http request t object.
We verified that we attained and maintained a threshold of
heavy use on the server by monitoring the connection logs
with Splunk [40]. Even then, the observed success rate (not
shown) at n = 7 was 12% with no prepping, 16% when the
innocuous HTTP requests target an HTML file, and 32%
for the PHP target.

6.3. Writing Faux Data Structures

After leaking an ngx http request t object and de-
termining the location of the config data pointer table,
an attacker can use an arbitrary write vulnerability to re-
configure the server by overwriting an offset in this table and
redirecting the program to accessing a fake configuration
data structure. Recall that the need for creating an entire fake
data structure (rather than simply overwriting elements in
an existing structure) revolves around the fact that our heap
disclosure and ability to find the ngx http request t
object only allows for knowing the base location of the
config data pointer table. Since we do not assume the ability
to read arbitrary process memory in our attacks, we are
restricted to overwriting offsets in this table without being
able to read the pointers that exist at given offsets in this
table. Therefore, our only choice is to write an entire fake
copy of a given configuration data structure to memory and
redirect a pointer in the table to this location.

Having obtained the data structure format that corre-
sponds to some unsecure configuration of a given module,
we need to figure out how to write this fake structure into a
safe place that will not disrupt the execution of the server.
Equally importantly, we do not want the server to corrupt
our fake data structures at any time in the future. Although
it may be possible to write these fake data structures to the
process stack or heap, in our approach we elect to write
our payload into an unused portion of the data section. This
location is attractive because (i) knowing the base address of
the data section allows an adversary to have full knowledge
of the offsets (determined at compile time) of different
variables and structures in it, and certain swaths of memory
in the data section may never be used by the worker process
in the Nginx model; (ii) the size of the data section does not
dynamically change, unlike the process stack/heap; (iii) in
general, any part of the stack/heap that is allocated by the
worker process will be used/reclaimed at some point, which
may present challenges for persistence of the written data
without introducing incorrect behavior to the server.

For two key reasons, the attack techniques we demon-
strate hinge on the ability to overcome ASLR. First, we
need to know the absolute address of the .data section to
determine where to write our faux data structures inside it.
Second, we need to fix up any pointers (e.g., references to
function addresses) in the faux data structures we generate
to point to the correct offsets in the given module. Beyond
defeating ASLR, we must also identify offsets within the
.data section that can be effectively used as scratch space
to write our data structure payloads without worrying about
touching data that is actually used by the application.

It turns out that the first requirement has a sim-
ple solution. The ngx http request t object leaked
from the heap contains multiple function pointers to pre-
dictable offsets. Specifically, its read event handler,
write event handler, and log handler members
predictably point to three respective functions in the main
executable. Critically, ASLR moves around modules in such
a way that knowing the absolute address of the text section
of the main executable gives the absolute address of the data
section as well. In this way, our heap disclosure also allows
us to compute the base address of the data section in the
main executable.

To identify offsets in the data section that fulfill our
second requirement, we propose a strategy for tracing mem-
ory accesses committed by the parent and worker processes
during server execution. A motivating realization for this
approach is that parts of the data section are likely only
used by the parent process in Nginx, and therefore after
the worker process is forked to handle connections, these
zones can be freely written by the worker and will never
be accessed by normal program execution in the worker.
Moreover, there are likely zones which are never accessed
by either the worker or the parent (e.g., static error pages in
memory for errors that will never be triggered), which also
implies the adversary can safely write to these regions.

To trace memory accesses to the data section, we in-
strument the server to record accesses in both the parent
and worker processes from the time the parent process is
started to when both processes are terminated when the
server is shut down. Figure 5 shows accesses to the data
section by the parent and worker processes, respectively.
The heatmaps correspond to starting the server, handling
10,000 HTTP requests, then shutting down. Dark regions
represent no access, while white regions denote areas that
are heavily accessed.

The plots show that the parent process accesses the
data section more extensively than the worker, so a remote
attacker exploiting the worker process has many options for
places within the data section to write their fake data struc-
tures. Moreover, the predictable code paths of the worker
process mean that the same offsets are accessed over and
over, so the adversary can be confident large swaths of
memory will not be touched by the worker. There are even
places in the data section that are not touched at all by either
process (e.g., in pages 1, 4, 5, 14, 15). This is due to the fact
that some data compiled into the server (e.g., static strings
representing canned error page responses for unusual errors)
go un-accessed even for long running instances.

6.4. Creating Valid Faux Data Structures

Next, we discuss how an adversary can construct fake data
structures and write them into process memory in such a
way that they will be semantically valid fake versions of
the corresponding configuration data structures. To high-
light the ease with which this can be done, we built our
automated memory analysis framework with the capability
of outputting configuration structures in a semantically valid
binary format. This way, in an offline step, an adversary can

1,

: RN . fone

D [| = <10

p R <100

© < 1000

< il f

£ | > 1000

B 1

4 | r 1|

2 1

5

o I L |

©

a.

0 1000 2000 3000 4000
Byte Offset within 4KB Page
EEE None
|l <10
- <100
< 1000
> 1000

Page Offset within .data Section

0 1000
Byte Offset within 4KB Page

2000 3000 4000

Figure 5: Heatmap showing (a) accesses in the parent pro-
cess, and (b) accesses in the worker process

set the configuration for Nginx to some insecure setting,
analyze the configuration data structure containing that in-
secure setting with our memory analysis tool, and obtain
the binary format of that structure which can be written
into process memory during an exploit. To successfully
use the framework, the adversary must provide the abso-
lute virtual address offset where the binary data structure
payload will be written in memory. Also, if any pointers
in the faux structure need to reference a given module (e.g.,
function pointers in to the . text section of the executable),
the adversary must provide the offset of this module. In
particular, for the attacks we demonstrate, some of the
faux structures that our framework successfully generates
(shown in Table 1) must contain function pointers into the
main Nginx executable. We provide this through disclosure
of the ngx http request t structure as discussed in
Section 6.2, which contains function pointers that allow us
to compute the location of the main Nginx executable.

6.5. Findings

The end-to-end exploits we performed that aptly demon-
strate the power of the attacks are listed below. These ex-

ploits were performed against a running Nginx instance vul-
nerable to Heartbleed and a simulated remotely exploitable
arbitrary 8-byte write vulnerability.’

1) Reconfigure the server to cease logging connections.

2) Re-enable logging on the server (useful for achieving
stealthiness after exploitation is complete).

3) Reconfigure the server to use a higher error alert
level, in essence causing the server to cease reporting
anything but the most extreme errors.

4) Reconfigure the server to use the document root path
/ rather than the default path, allowing for leaks from
the file system, including the server’s private RSA key.

5) Restore normal configuration after attacks 3 and 4.

6) Control what headers are appended to HTTP responses
by the server (e.g., causing the server to omit secu-
rity critical headers such as HSTS, X-XSS-Protection,
X-Frame-Options, Referrer Policy) to disastrous ef-
fect [17, 35].

7) Enable or disable access control on the server.

8) Change the maximum SSL protocol version that will
be supported by the server (e.g., limiting the server to
use TLS 1.0 or SSLv3).°

In the case of web-based malware distribution, the ability
to enable access control in Nginx turns out to be especially
powerful. Since the default Error 403 page served by Ng-
inx is stored at a pre-determined compile-time location in
the data section, an adversary can overwrite elements of
this simple HTML page with a custom page containing
malicious web content (e.g., a JavaScript exploit within a
hidden frame). Then, by re-configuring access control on
the server to deny access to all clients (or particular IP
addresses), the adversary can force the custom Error 403
page to be distributed by the server en masse. This capability
would be a springboard for adversaries to gain widespread
distribution of web malware or perform targeted attacks
against a web service. Notice that with logging temporarily
disabled during the attack, server-side monitors that operate
off the error or access logs will not notice the attack, thereby
making it extremely difficult for network operators to detect
or diagnose’ the malfeasance.

Without a doubt, these attacks demonstrate the serious
threat of non-control-data oriented attacks against asyn-
chronous web servers. Table | shows the sizes of the config-
uration data structures that were written into memory for the
various exploitation scenarios. For all cases but the SSL con-
figuration data structure, our memory analysis tool was able
to automatically produce a fake configuration data structure
that is semantically acceptable in order to re-configure the
server without introducing unexpected behavior. The diffi-
culties posed by the particular SSL configuration structure

5. The realism of this threat model in real-world deployment scenarios
is discussed throughout this work, including in Sections 2, 3, 4 and 6.6.

6. TLS 1.0 is supported by all major browsers and even the insecure
SSLv3 was supported in recent browser versions, including Safari for OS
X 10.10 and iOS 8 [44].

7. For example, Cloudflare’s analysts relied almost exclusively on server
logs to understand what might have been leaked. See https://blog.cloudflare.
com/quantifying-the-impact-of-cloudbleed/.

are due to limitations of the current implementation of our
memory analysis framework (see §5.3).

Critically, we note that both a) disabling server logging
and b) disabling all security headers can be done with a
single top level pointer overwrite in the config data pointer
table and do not require generating a fake structure at all.
This is because each of these data structures contain a
variable in their top level that when assigned a specific value
causes the server to completely forgo using the associated
module to process a request. Thus, redirecting the associated
entry in the config data pointer table to point to any memory
in the .data section which contains the given value (zero
in case a, true (non-zero) in case b) at the given offset is
semantically just as effective as writing the whole faux data
structure to memory — since in both of these cases the
certain value in a single variable is all that is necessary
for achieving the desired re-configuration. We verified that
this optimization works in practice. This saves the adversary
a few bytes-worth of memory overwrites and simplifies
the attack payload as much as possible for these powerful
attacks. Importantly for case a, this means that only a single
pointer overwrite to the given offset in the table is sufficient
for completely disabling the access logs in Nginx. Thus an
adversary could do this as a first step and then proceed
to perform any number of connections required in order to
write faux data structures to memory for re-configuring other
processing modules, all while evading detection by server
monitoring mechanisms.

The rightmost column of Table | shows the number of
connections required to write the other faux data structures
to memory once logging has been disabled. Assuming an
8 byte overwrite per HTTP request and 100 requests per
keepalive connection (default on Nginx), we can overwrite
800 bytes per connection.” This is an important consider-
ation in the context of network traffic monitoring systems
which seek to detect anomalous connection behavior. We
note that even in a less-ideal situation where the specific
vulnerability requires multiple requests to trigger the arbi-
trary write or only affords an overwrite of lesser size, the
approach could still be extended to evade detection as even
if we increase the number of connections required by an
order of magnitude, the attack would likely go undetected
on a busy server (e.g., twitter handled 200-300 connections
per second, on average, in 2009).’

6.6. Empirical Analysis

To assess the potential impact of attacks of the kind dis-
closed herein, we performed an empirical evaluation using
data provided by a cloud-based service, called Censys [15].
Censys maintains an up-to-date snapshot of the hosts and
services running across the public IPv4 address space.
Starting in August 2015, Censys routinely scans the public
address space across a range of ports and protocols, and

8. Per Hu et al. [22], CVE-2013-2028 can be used to accomplish this
arbitrary write, in addition to leveraging the Heartbleed bug for a linear
memory disclosure.

9. See http://highscalability.com/scaling-twitter-making- twitter- 10000-
percent-faster.

TABLE 1: Size of data structures for different configurations.

Initial State New State Automatic No
Structure Initial State Struct Size New State Struct Size | Generation COIII;S
(Bytes) (Bytes) Successful? :
Logs Config Normal Logging 802 No Logging 407 Yes 1
Logs Config No Logging 40! Normal Logging 794 Yes 1
Core Config Default Error Alert Level 1417 | Elevated Error Alert Level 1417 Yes 2
Core Config Default Document Root Path 1417 Document Root Path: / 1397 Yes 2
Headers Config No Headers 32 Use Security Headers? 534 Yes 1
Headers Config Use Security Headers? 534 No Headers 32 Yes 1
SSL Config Use up to TLS 1.2 12615+ Use up to TLS 1.0 12615+ No 16+
SSL Config Use up to TLS 1.0 12615+ Use up to TLS 1.2 12615+ No 16+
Access Ctrl Config No Access Control 16 Deny All 112 Yes 1
Access Ctrl Config Deny All 112 No Access Control 16 Yes 1

!'See Section 6.4 on how creating a faux structure is not necessary here.

validates the resulting data via application-layer handshakes.
The framework also dissects the handshakes to produce
structured data about each host and protocol. We use data
from Censys to examine the number of hosts that were
vulnerable to Heartbleed (CVE 2014-0226) or were running
versions 1.39 or 1.40 of Nginx that were affected'’ by CVE-
2013-2028. We examined data for the earliest day (i.e.,
7/8/2015) for which Censys provides scans for Heartbleed
and port 80 scans for the IPv4 address space.

The results are quite troubling — even 16 months after
the initial disclosure on April 7, 2014 [14], 255,161 servers
were still vulnerable to Heartbleed, and 3599 servers were
running vulnerable versions of Nginx. This is quite disheart-
ening given that there were no less than five major releases
of Nginx after version 1.4 and before the snapshot date,
yet still several major websites were running a significantly
outdated version. While only 75 network objects (i.e., 2
domains in the Alexa’s top 1 million on 7/8/2015 and 73 IPs)
were potentially vulnerable on the day of the Censys scan
to both of the CVEs relied upon in this paper, the results
would certainly have been far worse closer to ground zero.
The fact that there are only limited automatic updates for
web servers (unlike the browser market), coupled with the
observation that many servers may go unattended for long
periods once deployed, may be contributing factors to why
these servers went unpatched for so long.

To understand how many clients may have been exposed
to these potentially vulnerable servers, we used a large
passive DNS [43] datastore to analyze 6 days worth of DNS
lookups in May 2017. We only analyzed the subset of 3133
vulnerable servers that were in the Alexa Top 1 million
on 7/8/2015. Figure 6 shows the observed DNS resolutions
attempted by clients to these network objects during the
monitored period. We observed 481,122,464 resolution at-
tempts from 5,607,805 clients to servers that were subject to
either vulnerability. The lookup volume to the 75 network
objects with both vulnerabilities was far less — only 19
on average, but several of these servers are now defunct.
We note that our statistics are lower bounds on what the

10. Note that from the Censys data it is impossible to tell where the sites
were running patched versions and so the numbers reported here could be
an over-estimate.

2 HSTS, XSS-Protection, X-Frame-Options and Referrer Policy.

Number of DNS Requests Over Time

B QNAME
[l RDATA

May 11

Date

Figure 6: DNS resolutions

potential affected client population would have been like on
7/8/2015 because we are effectively sampling as the passive
DNS data is from the vantage point of a single provider in
the US, and several of those domains are popular in regions
outside our purview.''

6.7. On the Assumption of Arbitrary Write Capabilities
in Multi-Core Scenarios

Recall that on an 8-core system, for example, Nginx starts
one main parent process which then spawns 8 different long-
running worker processes. This might seem a problem for
an adversary when performing multiple arbitrary writes to
worker process memory, as the writes may be spread across
multiple processes, thereby disrupting the attack. Yet, the
adversary can easily sidestep this potential issue by taking
advantage of the HTTP connection keepalive functionality.
Specifically, a given keepalive connection will always reside
in the same Nginx worker process for the lifetime of that
connection. Additionally, we found that all the security-
critical configuration data structures are instantiated on the
heap by the parent process as part of server start-up (i.e.,
before the fork() calls that spawn the worker processes),

11. Therefore, lookups for domain names that, e.g., may be popular in
Asia or Europe, will not be well represented in the estimates we provide.

so all the worker processes inherit the same address space
containing the structures (e.g., the config data pointer table)
at the same addresses. Thus, even in a multicore setting, a
disclosure that leaks the address of a structure in one worker
is sufficient for knowing the location in all processes.

6.8. Applicability To Other Modern Web Servers

As a step toward assessing the generalizability of our tech-
niques, we applied a similar analysis to another web server
that also supports processing simultaneous connections —
namely, Apache. Specifically, using our program tracing and
memory analysis frameworks (§5), we investigated whether
the key architectural weaknesses we brought to light earlier
are also central to the way Apache processes connections.

We remind the reader that the classic processing model
employed by Apache provides isolation between clients
and is less vulnerable to memory corruption attacks that
trigger bugs in one connection to affect the processing of a
different connection. However, Apache no longer runs in the
classic mode by default, preferring to employ thread-based
connection processing, in which many different connections
share global data that is not specific to a given thread.
Thus, to gain insight into the susceptibility of Apache, we
analyzed its multithreaded “event” and multi-process “pre-
fork” worker models.

Given that an end-to-end proof of concept against
Apache would be beyond the scope of this paper, we focused
our cursory analysis on answering two questions that we
believe are key to understanding the susceptibility of Apache
servers, specifically: (i) does Apache store a single copy of
its global configuration data in such a way that corruption
of this data affects how all threads in the process service
their respective connections? (ii) are there readily accessible
data structures on the heap that point to such global data,
such that a linear heap disclosure could reliably identify the
location of the configuration data? In short, the answer to
both of these questions is yes.

In the same fashion as was done for Nginx, we used
our program instrumentation workflow to identify global
configuration data structures in Apache that are referenced
by each thread during the processing of client connections.
We supplemented our analysis with a review of the source
code and found that Apache stores the server configuration
in a global data structure server rec on the heap. The
configuration-related data is initialized during server startup
by the control process (routine init server config()
in server/config.c)), and resides in the memory of the
child processes after forking.

Among the basic configuration fields, we found that the
server configuration contains a module config vector
that stores pointers to configuration data structures of
all enabled modules. Apache relies on a set of macros
operating on the vector module config to obtain the
configuration of each registered module. This pattern
closely resembles the module configuration code in Nginx.
Instrumentation of the web server process using our program
tracing and memory analysis framework indicated multiple
accesses to the server configuration struct, confirming

.text section Heap

Config. data
pointer table
ap_http_filter() { Core config

‘\ offset 0 7@»:'7@
} Offset i [:::k:[::]
= —]

Log config.

Sisss

Server configuration struct
server_rec on the heap

ssl_engine_init() { N\a| module_config

offset j

¥ Reference

config. data
Access control config.

I I
:K%
Headers filter config.

C
(|
:]

oOffset k

-

Learned through program instrumentation
and source code analysis

Learned through memory analysis
supplemented by source code analysis

Figure 7: Connected structures in Apache.

our suspicion that modifying the configuration structure
on the heap will affect the processing of all subsequent
connections for a given process. As a specific example,
notice that the function ap http filter() accesses
the global server rec structure when deciding how to
respond to a GET request (e.g., core server config
xconf = (core_ server config x)

ap_get module config(f->r->server—>

module config, &core module)).

Digging deeper, analysis of the httpd source
code revealed that two data structures (conn_ rec and
request rec representing HTTP connection and HTTP
request, respectively, contain pointers to the global
server rec data structure. Given the observation that
each HTTP connection will result in a conn_rec struc-
ture, and possibly multiple request rec structures are
allocated on the heap, we believe that leaking a pointer to
the global server configuration should be as viable as in the
Nginx case. Successfully exploiting this at runtime is left as
an exercise for future work. Conceptually, after locating the
server rec structure containing the server configuration,
the attack would simply proceed as in the Nginx case, i.e.,
one needs to create faux data structures and find a suitable
place to write them in the process memory.

These findings suggest that the framework provided in
this paper can be extremely helpful in diagnosing security
weaknesses in modern servers. In summary, our analysis of
two major asynchronous web servers lead to similar find-
ings: performance optimizations that drive the architectural
design decisions in these applications significantly amplify
their susceptibility to data-oriented attacks.

7. Mitigations

Enforcing full memory safety to unsafe languages can essen-
tially block all memory corruption exploits. Unfortunately,
this entails both spatial and temporal safety, which results
in a prohibitively high cost. Indicatively, when CETS [28]
is coupled with SoftBound [27] to achieve full memory
safety, the resulting approach incurs an average overhead of
116% for the SPEC benchmarks [28]. Even when focusing

on spatial safety alone, runtime overheads are considerable.
By trading some extra memory for performance, baggy
bounds checking [3] is currently one of the most efficient
object-based bounds checking approaches, although its per-
formance overhead is still prohibitively high, at an average
of 60% for the SPEC benchmarks.

Thankfully, although the impact of web server process
models on securing against memory corruption attacks has
been largely overlooked, there has been a renewed interest
in techniques that seek to thwart data-oriented attacks in
general [6, 7, 8, 9, 13, 16, 32, 37, 38]. These defenses
attempt to ensure that the data flow of a program follows
paths intended by the programmer. To see why that is
important, recall that a key aspect of the recent data-oriented
attacks is the ability to launch an exploit by corrupting
heap memory. For the most part, the defenses proposed to
counter such attacks seek to enforce the integrity of data
flow in a program by assuring that memory references only
access data in the manner intended by the programmer.
For instance, several defenses have been proposed based
on source-compatible solutions [2, 6, 8, 37] that require
no assistance from the programmer. At a high level, these
approaches instrument data accesses (e.g., using compiler
frameworks like Phoenix'”) combined with pointer analysis
techniques [19, 20] to determine whether a given data
access should be allowed at runtime. Alternatively, other
approaches [7, 10, 32] leverage programmer assistance to
identify security critical data, after which a multitude of
strategies for hardening the program against corruption or
leakage of that data are deployed. We discuss each in turn.

Data Flow Integrity Through Instrumentation
(without programmer assistance)

Most contemporary defenses against data only attacks rely
on pointer (points-to) analysis [36] to ensure the integrity
of data flows in an application. For example, KENALI [37]
uses an automated approach for identifying security critical
data paths and sequestering them in their own address
space, which is then protected by a data flow integrity
solution [2]. The goal of pointer analysis is to compute an
approximation of the set of program objects that a pointer
variable or expression can refer to. Although pointer analysis
is (in general) an undecidable problem, there are heuristics
for approximating which pointers point to what objects
[19, 20, 36]. While these approximation algorithms are
generally thought of as best effort compiler techniques for
eliminating dead code and identifying programmer errors,
their use for enforcing data flow integrity was nonetheless
popularized by Castro et al. [8] and Akritidis et al. [2]. The
idea is that given the list of objects that each pointer in
a program can access, it should be possible to instrument
programs to ensure at runtime that memory objects are
only accessed through pointers that are allowed to reference
the given memory. Although effective in certain scenarios
[2, 6, 8, 37], pointer analysis is not a holistic approach
for enforcing data flow integrity, due to the fact that the

12. See https://en.wikipedia.org/wiki/Phoenix_(compiler_framework)

algorithms are ineffective in many scenarios and do not yet
handle the complexities of real-world software [36].

As a case in point, WIT [2] uses points-to analysis to
compute the set of objects that can be modified by each
instruction in the program. Given that pointer analysis is
only an approximation algorithm and cannot provide strong
security guarantees on its own, WIT supplements pointer
analysis with software guards between objects that pre-
vent overflows from corrupting adjacent objects. Still, these
guards are not supported in the heap, which is left vulner-
able. Importantly, Akritidis et al. [2] note that WIT should
be capable of preventing attacks that violate write integrity,
but the number of attacks that violate this property depends
on the precision of the points-to analysis. Similarly, the
approach of Bhatkar and Sekar [6] hinges on the accuracy of
pointer analysis in order to provide any security assurance.
The idea of that work is to associate a mask with each
memory object in a program, so that in order to reference
memory correctly, a code path must be instrumented to first
unmask the memory before using it in an operation. In
circumstances where pointer analysis is not effective, the
approach of Bhatkar and Sekar [6] must resort to sharing
the same mask between many objects.

In a related effort, Song et al. [37, 38] suggest ap-
proaches for protecting security-critical data in operating
system kernels. Essentially, they propose an automated ap-
proach for locating security-critical data in memory as well
as a solution for isolating the data by means of a shadow
address space and context switching at runtime. Unfortu-
nately, as their approach builds upon techniques like WIT
[2] to enforce data flow integrity in the protected shadow
context, it suffers from significant drawbacks when dealing
with dynamic memory allocations.

Protection of Specific Critical Objects
(as specified by the programmer)

The second category of mitigations against data-oriented
attacks includes approaches that steer clear of the prob-
lems imposed by complex pointer analysis approximation
algorithms. That is, rather than enforcing fine-grained data
flow integrity, defenses in this category separate sensitive
(as denoted by the programmer) and non-sensitive objects
into two regions, and ensure that data does not flow between
regions or between objects in the sensitive region [7]. For
ease of annotation and data flow tracking, data structures are
often labelled with the same sensitivity as their sub-objects,
and implicit sensitivity is applied by the compiler to objects
that interact with sensitive objects.

To determine the taint propagation of object sensitivity,
all the explicitly and implicitly sensitive variables are found
at compile time using inter-procedural and field insensitive
data-flow analysis. Given the hardness of such data-flow
tracking, most proposed algorithms are forced to be conser-
vative in their approximations to avoid crashing the program
if two objects that interact at runtime were labeled with
different sensitivity levels at compile time. Consequently,
the amount of data marked as sensitive in an application
can easily blow up, even if the programmer only marks

a single object as sensitive. Hence, such defenses simply
reduce to memory safety policies like SoftBound [27] that
performs bounds checking on memory accesses to objects,
and as such, are ineffective in honing in on the truly critical
security data of the application, or protecting just the subset
of memory as originally specified by the programmer.

Container and Microservices Architectures

Recently, there has been tremendous interest in microser-
vices (i.e., architectural patterns in which complex appli-
cations are composed of small, independent processes that
communicate with each other in a secure manner). Indeed,
there are now academic conferences with sessions focused
almost exclusively on best software engineering practices for
microservices (e.g., The Software Architecture Conference).

One direction could be to follow the lead taken by mod-
ern browser designs for providing process isolation [12]. In-
deed, although the browser security community has learned
to heavily rely on code refactoring, sandboxing, and multi-
process architectures to protect its users from attacks, to date
the process architectures for web servers seem to have only
considered performance and robustness, but not security.
That said, even for the browser community where security
has been a longtime concern, data-only attacks still pose
a daunting threat and have been recently used to disclose
sensitive data from a victim domain that resides in the
same process as the attacker domain [23, 30]. Nevertheless,
although the right balance is difficult to achieve in practice,
the landscape for defenses has not been well explored and is
an area ripe for research. We hope our findings will stimulate
further research in that direction.

8. Conclusion

Taken as a whole, our instruction tracing method and live
memory analysis framework demonstrate the ease with
which an adversary can perform powerful attacks against
asynchronous web servers that service many clients in the
same process. We demonstrate how the control-flow hi-
jacking and privilege escalation steps in the web server
exploit chain can be circumvented to significantly increase
the realism of using memory corruption attacks to subvert
these critical systems. Moreover, as the rest of the server
industry has been trying to keep up with the impressive
scalability provided by Nginx through its asynchronous
architecture, Apache and other competing server solutions
are refactoring themselves to be more aligned with the
model of handling many different client requests within the
same server process. This drive in server architectures to-
wards scalability and away from memory isolation between
requests opens the door for the feasibility of non-control
data attacks against web servers that were previously not
vulnerable to such attacks in their classic architecture. As the
increasing majority of the World Wide Web’s most trafficked
server side applications share critical data between many
mutually distrusting clients, we expect this issue to only
become more prominent going forward.

9. Acknowledgments

We express our gratitude to our shepherd, Robert N. M.
Watson, and the anonymous reviewers for their suggestions
on how to improve the paper. We also thank Murray An-
deregg and Chaz Lever for their efforts in deploying the
infrastructure used in this study, and their assistance with the
collection and analysis of DNS data. This work is supported
in part by the Department of Defense (DoD) under awards
FA8750-16-C-0199 and FA8750-17-C-0016, as well as the
Office of Naval Research (ONR) under awards N0OOO14-15-
1-2378 and N00014-17-1-2891. Any opinions, findings, and
conclusions expressed herein are those of the authors and
do not necessarily reflect the views of the DoD or ONR.

References

[1] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti. Control-Flow
Integrity. In ACM CCS, 2005.

[2] P. Akritidis, C. Cadar, C. Raiciu, M. Costa, and M. Castro. Pre-
venting Memory Error Exploits with WIT. In IEEE Security &
Privacy, pages 263-277, 2008.

[3] P. Akritidis, M. Costa, M. Castro, and S. Hand. Baggy bounds
checking: An efficient and backwards-compatible defense against
out-of-bounds errors. In USENIX Security, pages 51-66, 2009.

[4] Apache. Core features and multi-processing modules, 2017. URL
https://httpd.apache.org/docs/2.4/mod/.

[5] E. Bhatkar, D. C. Duvarney, and R. Sekar. Address obfuscation:
an efficient approach to combat a broad range of memory error
exploits. In USENIX Security, pages 105-120, 2003.

[6] S.Bhatkar and R. Sekar. Data space randomization. In Detection
of Intrusions, Malware and Vulnerability Assessment, 2008.

[71 S. A.Carr and M. Payer. Datashield: Configurable data confiden-
tiality and integrity. In ACM Asia CCS, 2017.

[8] M. Castro, M. Costa, and T. Harris. Securing software by enforc-
ing data-flow integrity. In USENIX OSDI, 2006.

[9] Q. Chen, A. M. Azab, G. Ganesh, and P. Ning. Privwatcher: Non-
bypassable monitoring and protection of process credentials from
memory corruption attacks. In ACM Asia CCS, 2017.

[10] Q. Chen, A. M. Azab, G. Ganesh, and P. Ning. Privwatcher: Non-
bypassable monitoring and protection of process credentials from
memory corruption attacks. In ACM CCS, pages 167178, 2017.

[11] S. Chen, J. Xu, E. C. Sezer, P. Gauriar, and R. K. Iyer. Non-
control-data attacks are realistic threats. In USENIX Security,
2005.

[12] Chrome Team. Site isolation summit:. Overview Videos, 2015.

[13] 1. Diez-Franco and I. Santos. Data is flowing in the wind: A
review of data-flow integrity methods to overcome non-control-
data attacks. In Complex, Intelligent, and Software Intensive
Systems, 2016.

[14] Z. Durumeric, J. Kasten, D. Adrian, J. A. Halderman, M. Bailey,
F. Li, N. Weaver, J. Amann, J. Beekman, M. Payer, and V. Paxson.
The matter of heartbleed. In ACM IMC, pages 475-488, 2014.

[15] Z.Durumeric, D. Adrian, A. Mirian, M. Bailey, and J. A. Halder-
man. A search engine backed by Internet-wide scanning. In ACM
CCS, 2015.

[16] U. Erlingsson, M. Abadi, M. Vrable, M. Budiu, and G. C. Necula.
XFI: Software guards for system address spaces. In USENIX
OSDI, pages 75-88, 2006.

[17] S. Fogie, J. Grossman, R. Hansen, A. Rager, and P. Petkov. XSS

Attacks: Cross Site Scripting Exploits and Defense. Syngress
Publishing, 2007.

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[38]

J. Graham-Cumming. Incident report on memory leak
caused by cloudflare parser bug, Feb 2017. URL
https://blog.cloudflare.com/incident-report-on-memory-leak-
caused-by-cloudflare-parser-bug/.

M. Hind. Pointer analysis: Haven’t we solved this problem yet?
In ACM Workshop on Program Analysis for Software Tools and
Engineering, pages 5461, 2001.

M. Hind and A. Pioli. Which Pointer Analysis Should I Use?
SIGSOFT Softw. Eng. Notes, 25(5):113—123, Aug. 2000.

H. Hu, Z. L. Chua, S. Adrian, P. Saxena, and Z. Liang. Automatic
generation of data-oriented exploits. In USENIX Security, pages
177-192, 2015.

H. Hu, S. Shinde, S. Adrian, Z. L. Chua, P. Saxena, and
Z. Liang. Data-oriented programming: On the expressiveness of
non-control data attacks. In IEEE Security & Privacy, 2016.

Y. Jia, Z. L. Chua, H. Hu, S. Chen, P. Saxena, and Z. Liang.
The “web/local” boundary is fuzzy: A security study of chrome’s
process-based sandboxing. In ACM CCS, pages 791-804, 2016.

D. Kegel. The c10k problem, 2014. URL http://www.kegel.com/
c10k.html.

C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney,
S. Wallace, V. J. Reddi, and K. Hazelwood. Pin: Building cus-
tomized program analysis tools with dynamic instrumentation. In
ACM PLDI, pages 190-200, 2005.

MITRE. CWE-123: Write-What-Where Condition. Available
from MITRE, CWE-123: Write-what-where Condition, 2017.
URL https://cwe.mitre.org/data/definitions/123.html.

S. Nagarakatte, J. Zhao, M. M. Martin, and S. Zdancewic. Soft-
bound: Highly compatible and complete spatial memory safety
for C. In ACM PLDI, pages 245-258, 2009.

S. Nagarakatte, J. Zhao, M. M. Martin, and S. Zdancewic. CETS:
Compiler enforced temporal safety for C. In Symposium on
Memory Management, pages 31-40, 2010.

V. Pappas, M. Polychronakis, and A. D. Keromytis. Transparent
ROP exploit mitigation using indirect branch tracing. In USENIX
Security, pages 447-462, 2013.

R. Rogowski, M. Morton, F. Li, K. Z. Snow, M. Polychronakis,
and F. Monrose. Revisiting browser security in the modern
era: New data-only attacks and defenses. In IEEE Euroupean
C. Song, H. Moon, M. Alam, I. Yun, B. Lee, T. Kim, W. Lee, and

[31]

(32]

(33]

[34]

(35]

(36]

(37]

(39]
(40]

(41]

[42]

[43]

[44]

Symposium on Security and Privacy, 2017.

R. Rudd, R. Skowyra, D. Bigelow, V. Dedhia, T. Hobson,
S. Crane, C. Liebchen, P. Larsen, L. Davi, M. Franz, A.-R.
Sadeghi, and H. Okhravi. Address oblivious code reuse: On the
effectiveness of leakage resilient diversity. In ISOC NDSS, 2017.

C. Schlesinger, K. Pattabiraman, N. Swamy, D. Walker, and
B. Zorn. Modular protections against non-control data attacks.
In IEEE Computer Security Foundations Symposium, 2011.

F. J. Serna. The info leak era on software exploitation. In Black
Hat USA, 2012.

H. Shacham. The geometry of innocent flesh on the bone: Return-
into-libc without function calls (on the x86). In ACM CCS, pages
552-561, 2007.

S. Sivakorn, I. Polakis, and A. D. Keromytis. The cracked cookie
jar: HTTP cookie hijacking and the exposure of private informa-
tion. In IEEE Security & Privacy, pages 724-742, 2016.

Y. Smaragdakis and G. Balatsouras. Pointer analysis. Found.
Trends Program. Lang., 2(1):1-69, Apr. 2015.

C. Song, B. Lee, K. Lu, W. Harris, T. Kim, and W. Lee. Enforcing
kernel security invariants with data flow integrity. In ISOC NDSS,
2016.

Y. Paek. HDFI: Hardware-assisted data-flow isolation. In /IEEE
Security & Privacy, 2016.

R. Soni. Nginx: from beginner to pro. Apress, 2016.

Splunk. Operational intelligence, log management, application
management, enterprise security and compliance. Splunk, 2005.
URL https://www.splunk.com/.

W3techs. Comparison of the usage of apache vs. nginx vs.
microsoft-iis for websites. Apache vs. Nginx vs. Microsoft-IIS
usage statistics, 2009. URL https://w3techs.com/technologies/
comparison/ws-apache, ws-microsoftiis, ws-nginx.

W3techs. Historical yearly trends in the usage of web servers for
websites. Historical yearly trends in the usage of web servers,
April 2017, 2010. URL https://w3techs.com/technologies/
history_overview/web_server/ms/y.

F. Weimer. Passive DNS Replication. In Conference on Computer
Security Incident Handling, June 2005.

Wikipedia. Transport layer security, 2017.
wikipedia.org/wiki/Transport_Layer_Security.

URL https://en.

