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ABSTRACT
Network traces of Internet attacks are among the most valu-
able resources for network analysts and security researchers.
However, organizations and researchers are usually reluctant
to share their network data, as network packets may contain
private or sensitive information. To alleviate the problem of
information leakage, network traces are often anonymized
before being shared. Typical anonymization approaches san-
itize, or in some cases completely remove, certain packet
header fields, higher-level protocol fields, or even payload
information that could reveal the source and destination of
an attack incident.

Although there exists a variety of network trace anonymiza-
tion techniques, in this paper we show that in certain cases
they are proven inadequate, because attack traces may con-
tain sensitive information not only in the packet headers and
the packet payload, which are both exposed “on the wire,”
but also in the encrypted payload of the self-decrypting shell-
code carried in the attack vector of code-injection attacks.
To overcome this limitation, we extend an existing network
trace anonymization framework to identify and anonymize
sensitive information contained in the shellcode of code-
injection attack packets. Our approach takes advantage of
the certain structure of widely used shellcode decryption
schemes to produce fully anonymized attack traces.

1. INTRODUCTION
Logs and traces of network activity are a fundamental

resource for security professionals, network analysts, and re-
searchers. They provide the means for understanding net-
work operations and threats, enhance the operational and
security policies of an organization, and help in deploying
and evaluating new algorithms and applications. Thus, it is
widely recognized by the academic and research community
that it is both desirable and beneficial to share network data
for research purposes.

Due to the rapid growth of the Internet and the multitude
of new services and protocols, there have been reported large
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numbers of cases of misuse and attacks on those services, and
more continue being reported each year [10].

Sharing traces of network attacks is a useful practice that
promotes research and undoubtedly helps in developing de-
fense mechanisms against current and future threats. How-
ever, extensive access to network data and activity logs may
also help attackers perform reconnaissance attacks in a net-
work of hosts, e.g., by knowing which hosts of an organiza-
tion are active, which network services they use, and so on.
To reduce such exposure without sacrificing the ability to
share useful information, network and system administra-
tors often wish to anonymize network traces and logs before
sharing them.

The multitude of application layer protocols that are being
used today are well documented and, given the right condi-
tions, they can be easily identified, parsed, and subsequently
anonymized. Starting from the Ethernet and IP headers up
to higher level protocols, all sensitive fields are known and
can be sanitized according to the appropriate anonymiza-
tion policy. MAC and IP addresses can be mapped to non-
existent or randomly chosen addresses, while any payload
data that reveal network or system information can be san-
itized. For example, the HTTP Host filed can be changed
to a fake address:

Host: 10.123.12.123\r\n

while various SMB or DCERPC fields that contain IP ad-
dresses, host names, or other identifiers can be sanitized:

principal: xxxxxx$@XXXXXX.XXX

Server NetBIOS Name: XXXXXX

Domain DNS Name: xxxxxx.xxx

Path: \\10.123.12.12\IPC$

However, when it comes to network traces of code injec-
tion attacks, the attack code itself may contain sensitive
information that can expose the identities of the attacking
or victim hosts. In a code injection attack, the code that is
executed after exploiting a vulnerable service is provided as
part of the attack vector. Although the typical action of the
injected code in the early versions of code injection attacks
was to spawn a shell, hereby dubbed shellcode, the typi-
cal operation of the shellcode used by malware is to connect
back to the previous victim or some seeding server, download
the main malware binary, and execute it. The server or pre-
vious infected host is directly identifiable once the payloads’
behaviour is uncovered, since its IP address, hostname, or
URL is usually hardcoded in the shellcode.



Preferably, any information about the seeding host should
also be anonymized, since it identifies an infected or mali-
cious system—a system that is definitively known to host
and spread malware. An attacker could exploit the informa-
tion contained in publicly available traces of code injection
attacks to learn about unpatched or vulnerable systems. In
turn, he could launch further attacks against these systems
using the network information contained in the shellcode of
the released attack traces.

More importantly, revealing host-identifying information
about infected systems can raise legal or social concerns.
The seeding host—an infected computer—might belong to
a third-party organization or a high profile company which
would not want the public to know that hosts systems serv-
ing malware.

Traces of code injection attacks are invaluable for the secu-
rity research community, thus identifying and anonymizing
any sensitive information contained in the shellcode of code
injection attacks is of crucial importance for making such at-
tack traces publicly available. In this paper, we demonstrate
an extensible framework for the identification of executable
payloads using signatures in the form of regular expressions,
and provides users with the ability to anonymize potentially
sensitive information contained in the shellcode.

Our main contributions are: a novel approach to identify
sensitive information in IP attack packet traces; we describe
the system design, demonstrate the feasibility of our ap-
proach by providing a prototype implementation which pro-
vides the means to hide information that is present inside
attack traces, and evaluate its operation on traces of real at-
tacks spanning a time period of one year. This work is a first
step towards promoting sharing of packet traces containing
malicious or generally executable payloads between organi-
zations without exposing potentially sensitive information
carried within the packets’ payload.

The rest of the paper is organised as follows. We first
discuss the problem and the motivation behind our work
in Section 2, and the research related to this work in Sec-
tion 3. In Section 4 we present the design of our approach
and its implementation in anontool, a generic network trace
anonymization framework. We present results obtained from
use of a prototype implementation in Section 5, and conclude
in Section 6.

2. BACKGROUND
Network traces of attacks containing executable code are

collected and produced by a variety of network monitoring
applications. Packet traces can be collected from intrusion
detection systems (IDS) [23] containing an attack that has
passed through the network. Also, a source of this kind of
traces can be deployed honeypots and honeypot networks [2–
4, 8], as well as specialized code-injection attack detection
tools [20].

In their effort to hide from simple payload-based signature
matching identification, attackers often employ polymorphic
or metamorphic techniques [5, 22, 24], which typically pro-
duce a self-decrypting version of the original shellcode. The
initial shellcode is encrypted using a simple and easily re-
versible encryption algorithm, and a small decryption rou-
tine is prepended to the encrypted code. Once the attack
succeeds and the program counter of the vulnerable appli-
cation has been hijacked, the first piece of code executed is
the decryption routine, which loops over the encrypted pay-

00000836 8A06 mov al,[esi]

00000838 3C99 cmp al,0x99

0000083A 7505 jnz 0x841

0000083C 46 inc esi

0000083D 8A06 mov al,[esi]

0000083F 2C30 sub al,0x30

00000841 46 inc esi

00000842 3499 xor al,0x99

00000844 8807 mov [edi],al

00000846 47 inc edi

00000847 E2ED loop 0x836

Figure 1: A typical XOR decoder, used by the

Wuerzburg shellcode.

load data to reveal the actual shellcode that is going to be
executed.

An example of such a shellcode is the Wuerzburg shell-
code [1], shown in Figure 1, which contains an XOR de-
coder and a connect-back file transfer code segment that
connects to a host and downloads a file named ftpupd.exe.
In the Wuerzburg shellcode, the IP address and port are
XOR’ed with a secondary key (which has the static value
0xAAAAAAAA) inside the already encrypted shellcode.

In cases like the above, sharing the attack trace as-is may
leak information that the organization or owner of the host
considers confidential. Any individual can, with little ef-
fort considering the available tools, decrypt the payload and
extract any host-identifying network information. This in-
formation may be used for a subsequent attack to the or-
ganization, or for discrediting the organization as hosting
vulnerable systems.

Anonymizing the seeding host address is not straightfor-
ward. On the wire, the actual shellcode is encrypted, and
thus the address of the seeding host cannot be anonymized
simply by searching for it in the packet payload and sani-
tizing it—the address is not exposed in the packet payload
at all. The actual address will be revealed only upon exe-
cution of the shellcode on the vulnerable system, i.e., after
the decryption routine decrypts the encrypted payload.

We further explain the problem by observing an actual in-
stance of the Wuerzburg shellcode from a real attack. Fig-
ure 2 shows the original payload of the attack as seen on
the wire, captured by a tcpdump session. Due to the encryp-
tion, the whole payload appears as almost random bytes and
seems to contain no interesting information. However, when
the payload is decrypted(Figure 2), the actions of the attack
can be clearly identified.

The payload first builds a small file containing FTP com-
mands and uses this file as a parameter to the ftp program
to download the malware binary. In this example, the IP
1 address of the FTP server (128.192.216.37) might be con-
sidered as information that the corresponding organization
would not like to be released, in order not to expose vulnera-
ble hosts or not be recognized as a vulnerable organization.

3. RELATED WORK
Although recent work on anonymization of network logs

has come a long way in providing the essentials to hide sen-

1The address in this example has been anonymized by arbi-
trarily choosing a random IP address.



Figure 2: The encrypted part of the Wuerzburg shellcode, as seen on the wire. No sensitive information is

seemingly exposed at this stage.

Figure 3: The same part of the Wuerzburg shellcode shown in Figure 2, after decryption. The IP address

and port number of the seeding host in the FTP shell commands are now visible.

sitive information and promote information sharing, we are
not aware of any automated or semi-automated method of
masking sensitive information that may be contained in ma-
licious code encountered in attack packet traces.

Tcpdpriv [14] is a well-known anonymization tool that
takes as input traces written in tcpdump format and re-
moves sensitive information from packet headers. The TCP
or UDP payload is simply removed, while the entire IP pay-
load is discarded for protocols other than TCP or UDP.

Paxson and Pang [19] introduce a way to anonymize the
payload of a packet and remove sensitive information instead
of removing entirely as the other approaches do. Packets are
reconstructed into data stream flows and application level
parsers modify the data streams as specified by a policy
written in a high-level language. However they do not ad-
dress the problem of sensitive information being encoded or
obfuscated within the payload in binary form.

NetDuDe [16] is a GUI-based tool for interactive editing
of packets in tcpdump files. NetDuDe itself does not perform
parsing of application-level protocols in the payload, but of-
fers the option for plug-ins to perform packet processing such
as recomputing checksums. SCRUB-tcpdump [13] is a set of
functions that are used to anonymize a packet trace in libp-
cap format so that it can be shared without jeopardizing the
anonymity of the network represented by the captured trace.
SCRUB-tcpdump does not perform payload inspection, or
application-level protocol decoding.

Mogul et al. [17,18] propose that instead of sharing traces,
researchers can send reduction agents to the site that hosts
the network data. Despite the serious trust issues that are
still present with source code being shipped for execution

and the per-sharing request costs in verifying code manually,
we believe our approach to be complementary. The kind of
code that would be shipped could in fact be a policy in a
well-defined language that allows for integrity and privacy
checking, such as an XML-derivative.
Anontool is a complete and extensible command line tool

which enables users to anonymize both live and stored traf-
fic. Its functionality is based upon the Anonymization API
(AAPI) [15]. AAPI allows users to write their own anonymiza-
tion applications by defining which anonymization functions
are applied on each field, having complete freedom in choos-
ing their policy. The API provides a large set of anonymiza-
tion primitives, from setting fields to constant or random
values and performing basic mapping functions, to prefix-
preserving anonymization and several hash functions and
block ciphers, as well as support for regular expression match-
ing and replacement. AAPI can operate on a wide variety of
protocols, ranging from Ethernet to HTTP, FTP, and Net-
flow in the application layer. All protocol fields are being
made available for the user application to access.

Modern shellcodes are compact, self-contained pieces of
code that exploit a vulnerability in the target service, ac-
quire superuser access privileges and usually connect back
to a predefined host which is usually defined within the pay-
load and transfer a rootkit or trojans, or anything that serves
the will of the attacker. The methods used by attackers in
order to obfuscate their shellcode are several and range from
simple XOR encoding to metamorphic payloads. Ways to
identify malicious payloads range from simple regular ex-
pressions of invariant strings present within the payload (as
is most usually the case with Snort [23]) to complex taint



Figure 4: A regular expression matching the Wuerzburg shellcode.

analysis within a sandbox environment, such as the Argos
honeypot architecture [21].

It becomes clear that there is a gap to be filled when it
comes to packet trace anonymization. There are major ad-
vantages to promoting attack trace sharing for the computer
security research community and industry, and providing
the means to perform thorough anonymization could lead
to that direction. In the remainder of this paper we are go-
ing to relate our work to the modern methods that aim to
identify binary code injection attacks, and describe our pro-
posed anonymization approach that can aid in shortening
this gap.

4. ARCHITECTURE

4.1 Approach
The first important design decision to be made was to

choose the mechanism in order to detect the various types
of binary payloads and the sensitive information that may
appear within. While there is a vast variety of ways to do
that, we chose to implement regular expression matching to
identify binary payloads combined with limited emulation to
seek and match sensitive information such as IP addresses,
URLs, and so on.

The most important reasons that led to that decision are
two. First, regular expression matching is fast and can be
effectively used in deep packet inspection. It can also be
made significantly faster, in case speed is an issue [25]. This
provides the user with the option to anonymize attack traces
on-the-fly, as they are produced by analysis and detection
algorithms and tools. Second, regular expressions are ex-
pressive enough to cover both the case where sensitive in-
formation such as an IP address appears within the payload
of an attack, as well as when that information is masked by
an encoder or packer which has to be executed first, before
the actual payload is executed.

In both cases, it is important to note that we are not
aiming at providing a detection framework; several detec-
tion approaches have already been proposed. We assume
that our input is a trace of the network activity which is the
result of such a framework, when it detects suspicious be-
haviour. That means the user already knows the specifics of
the attack inside the trace and can therefore produce a reg-
ular expression to match the encoder, shellcode and private
information she wishes to anonymize.

Such regular expressions are easy to produce, share, and
acquire. There are many examples of databases of such regu-
lar expressions. Most notable are the Snort rule database [11],
the nepenthes project page [8], as well as several others re-
lated mostly to honeypots [2].

Table 1 mentions the names and short descriptions for
each binary payload currently supported by anontool, as
well as the number of attack traces each signature matched.

We don’t make mention of few other signatures which did
not match any of the traces processed. We chose the ne-
penthes project information on shellcodes as a point of refer-
ence because of its detailed information related to the code
provided. In Figure 4, you can see the regular expression
that matches the code in Figure 1.

4.2 Implementation
The core of our implementation uses the PCRE library [9],

to search for a given set of regular expressions characteriz-
ing different kinds of binary payloads within a packet trace.
When found, we provide the user with the option of anonymiz-
ing the potentially sensitive information that may be con-
tained in that piece of code. Instances of such information
may be a hardcoded IP address inside the shellcode, which
is typically the case. The external host information may as
well be obtained at runtime, so further inspection or modi-
fication of the respective instructions might be needed.

This first pass can handle straightforward shellcode which
implements a reverse shell technique. If the matched regu-
lar expression identifies a decoder, we need to emulate its
behaviour, and then search for host information in the de-
crypted parts of the payload. The emulation process is car-
ried out on a per-decoder basis. We do not use any emula-
tion frameworks or external processes for this task, because
most decoders are currently very simple in their operation.
For the decoders in our prototype implementation, we sim-
ply emulate in the application level the operations carried
out by the decoder. We do this in a very similar way to the
nepenthes low interaction honeypot.

When the decryption process finishes, another scan is nec-
essary to identify any possible information that may leak
information; IP addresses, port numbers, URLs or anything
else that may be used in order to fingerprint a host on the
Internet (Figure 2).

The user is then given the opportunity to manipulate all of
this information as she deems fit. One should also take into
account that there’s the possibility for sensitive information
to be leaked even when a host name inside a shellcode is
anonymized.

For instance, if the shellcode executed on an infected ma-
chine opens a connection to a given IP address, say a.b.c.d,
it is possible that the flow between these two hosts is also
captured. Should the sequence of packets that comprise the
conversation between these two hosts is included in the at-
tack trace, an attacker may infer that a.b.c.d is a host that
quite possibly plays some part in spreading malware or is
part of a botnet, and so on. It’s obvious that the IP address
a.b.c.d also needs to be anonymized. One needs to be aware
of the semantics of the attack trace to apply anonymization
policies efficiently.

Faster alternatives other than libpcre, which were already
mentioned above, exist. We choose not to incorporate them
into the prototype implementation for the following reason.



Name Type # of traces matched Comment

Bielefeld connectback shellcode 9552 None

Metasploit PexEnvSub xor decoder 2608 None

rbot 256 byte xor decoder 2575 None

adenau xor decoder 1133 None

halle xor decoder 987 None

schoenberg xor decoder 129 None

langenfeld xor decoder 21 None

Leimbach xor decoder 16 contains TFTP download

kaltenborn xor decoder 15 None

Wuerzburg connectback file transfer 1 None

Table 1: List of regular expressions incorporated into anontool for encrypted shellcode anonymization.

Packet trace anonymization is at the moment an off-line pro-
cess. Indeed, when it comes to anonymizing traffic as it
appears on a network interface, speed is critical. However,
when it comes to binary payloads, there are two processes
which precede anonymization: the first is detection of the
executable content, malicious or not, and the second is the
analysis needed to reverse-engineer, classify, and produce a
signature for it. Although all of them could be considered
time-critical components of computer security, analysis and
classification is a lengthy process, and is usually done man-
ually and takes even few days for newly observed payloads
(not variants of existing ones).

5. EVALUATION
In this Section, we present the evaluation of our imple-

mentation of binary payload anonymization. We tested our
implementation against a set of packet traces containing ma-
licious payloads obtained using the Network-level Emulation
attack detection method formally described in [12,20], which
identifies the presence of self-modifying polymorphic shell-
code in network streams. The alerts generated contain full
payload traces in libpcap format. Each trace corresponds
to a single attack attempt and contains all packets of the
network flow (quintuple) of the particular attack instance,
including the initial TCP 3-way handshake.

In total, the number of attack traces generated by NEMU
was 21726, spanning a time period from January 11, 2007
to April 6, 2008. Anontool detected and anonymized sensi-
tive data within 17036 of those traces, a 78.4% of the total
number of alert-generating traces.

For verification purposes, we manually checked and in-
spected some of the attack traces, to determine two things:
first, whether we anonymized the bytes at the correct off-
set(s), and second to determine whether exploits that were
not anonymized did not actually contain any sensitive data
or we just happened to lack a regular expression for the
corresponding decoder.

For the first case, we chose a random trace for which
anontool reported that an IP contained in it was identi-
fied, and tried to determine whether this IP was anonymized
correctly. Figure 5 shows the anonymized output for the ex-
ample explained in Section 2, taken from the anonymized
trace produced by Anontool. Our tool managed to find
and anonymize the sensitive information contained in the
encrypted payload. The outlined bytes show the offset at

which the IP address was identified and subsequently masked.
We therefore were able to verify the anonymization process
was correct.

We then proceeded to examine in detail a few attack
traces which anontool did not anonymize. Most of these
traces contained a remote root exploit for the Knox Arkiea
Server [6]. This exploit does not connect back to any host,
and thus its payload does not contain any sensitive infor-
mation. We do not include any regular expressions for this
kind of shellcode in our tool, since by definition it lacks any
sensitive information that could expose an innocent host to
attackers, and thus can be shared without any risk.

The user needs to be aware that the regular expressions
contained in the tool are not a panacea, and other types of
shellcode possibly exist, that are not currently handled by
our tool. On the other hand, given the fact that we designed
and implemented our tool with modularity and extensibility
in mind, adding support for a new kind of shellcode or binary
payload is easy and intuitive.

We expect that, in order for our tool to be widely de-
ployed and used, this is a necessary quality, especially since
we cannot predict future advances in the area of polymor-
phic and metamorphic shellcode construction. Experts in
that field, however, should be given the convenience of eas-
ily implementing a code module for our tool to anonymize
their traces of choice.

6. CONCLUSION
We have presented a novel method for the anonymiza-

tion of sensitive information contained in the shellcode found
in network packet traces of code injection attacks. To the
best of our knowledge, this is a novel way of performing
anonymization of sensitive data that may appear in the pay-
load of a packet, which are not exposed on the wire. This
is therefore a first step in making payloads available when
distributing and sharing network logs, and enable sharing of
traces containing malicious activity.

There are significant benefits for all concerned parties,
such as security analysts and researchers, whether it involves
sharing traces inside a group of few trusted security-related
organizations, or in the form of a centralized repository of
attack code, to aid in analysis and defense against malicious
internet activity. To this end, we have already started mak-
ing attack traces available through [7], and we will continue
to do so in the future.



Figure 5: The anonymized part of the Wuerzburg shellcode as produced by anontool as its final output. The

IP address is marked for clarity.

7. AVAILABILITY
Anontool can be downloaded from http://dcs.ics.forth.

gr/Activities/Projects/anontool.html. The application
has been installed and tested on Redhat, Ubuntu and Debian
Linux distributions. All the signatures referenced inside this
paper are also available with the source code.
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