
CSE509 Computer System Security

2023-03-23 Reverse Engineering

Michalis Polychronakis

Stony Brook University

Reverse Engineering

The process of deconstructing a human-made object to extract its
design, architecture, and other information

Not only software! Machines, electronics, chemicals, …

Various motives
Military or commercial espionage

Product security analysis

Competitive technical intelligence

Interfacing with other systems

Rescuing from obsolescence

Repurposing

Software Reverse Engineering: Security

Malicious software analysis
Dissect and analyze potentially malicious samples  develop countermeasures

Vulnerability discovery
Whitehat  find bugs and develop patches

Blackhat  write exploits and use them

Binary auditing
Verify functionality or security policy enforcement, discover backdoors, …

Cryptographic algorithms
Extract hard-coded keys, unknown logic/algorithms (bad idea: security by obscurity)

DRM cracking (media, software), game cheating, …

Software Reverse Engineering: Development

Interoperability with proprietary/legacy software/protocols
Not enough/non-existent/inconsistent documentation, lost source code, …

Developing competing software
Steal partial functionality

Re-package whole applications (e.g., malicious Android apps)

Software quality evaluation (e.g., cyber-itl.org)
Security features: many protections are introduced only at compilation
time  source code analysis is not enough

Code hygiene: use of dangerous functions, consistency, …

Code complexity: code size, number of dependencies, …

Crash testing: fuzzing using bad inputs to assess robustness

https://cyber-itl.org/

Reversing at Different Levels

System
Monitor the execution of a target program

System calls, events, files, IPC, registry, …

Code
Understand what a piece of code does

Static (code disassembly) vs. runtime (debugging)

Source code vs. intermediate representation code vs. machine code

User space vs. kernel vs. firmware/BIOS/…

Network
Monitor network traffic

Understand protocols

Tools of the trade

System monitoring
Information mostly provided by the OS: Files, registry, network, system calls, …

Disassemblers
Convert machine code to assembly language code

Extract the control flow graph, variables, dependencies, …

Decompilers
Convert machine/assembly code to higher-level language code

Debuggers
Observe the execution of a process at instruction granularity

Disassembly, software/hardware breakpoints, register/memory info, …

Various other tools
Hex editors, memory dumpers, ELF/PE analyzers, hooking libraries, …

System Monitoring Tools

Linux
strace, ltrace, netstat, ps, …

perf_events, eBPF, LLTng, …

osquery, sysdig, …

Windows
Process Explorer

procmon, filemon, regmon, sysmon,

VMMap

TCPView

… and the rest of the Sysinternals suite: https://live.sysinternals.com/

https://live.sysinternals.com/

9

Disassemblers
IDA Pro commercial, with free demo version

Ghidra NSA’s own open-source reverse engineering tool suite (!)

Radare2 powerful reversing framework

Capstone multi-platform, multi-architecture framework

distorm3 disassembler library

Hopper commercial, with demo version

Binary Ninja commercial, with free demo version

BinNavi control flow and program analysis

objdump, ndisasm, gdb, …

Decompilers
IDA Pro, Boomerang, JEB, …

Many others for specific languages: Java/.NET/…

Binary Analysis and Lifting
angr, BAP, Miasm, rev.ng, …

Beyond code disassembly and decompilation
Lifting to intermediate representation (IR)

Symbolic/concolic execution

Control-flow graph extraction

Support for multiple platforms and architectures

Extensible frameworks for building binary analysis applications
Automated ROP chain construction

Binary patching and hardening

Automated exploit generation

Debuggers
gdb, LLDB (LLVM), Visual Studio, …

OllyDbg simple and powerful, with intuitive GUI (Windows)

Windbg both user and kernel space

IDA Pro

x64dbg open-source x64/x32 debugger for Windows

edb inspired by Ollydbg, cross platform, still under development

SoftICE popular kernel debugger (last release was in 2000)

rr reverse debugging under gdb!

Binary Instrumentation and Tracing
Pin, DynamoRio, Valgrind, Frida, …

Intel Processor Trace HW tracing, supported by gdb and perf

Emulators/VMs
Qemu, Unicorn, VMware, Virtual Box, Xen, KVM, …

Debugger Basics

Software breakpoints
Replace target instruction with int 3 (breakpoint interrupt)

Once triggered, execution freezes and int 3 is replaced with the original instruction

Hardware breakpoints
Managed directly by the processor through debug registers

Triggered on code or data access

Main benefit: no modification in the program

Main drawback: just a few debug registers are available (only six for x86)

Single-stepping
When the trap flag (TF) in the EFLAGS register is set, the processor generates an
interrupt after the execution of every instruction

Modern Debugger Features

Flexible breakpoints
Column breakpoints: break at specific point within a source code line

Conditional breakpoints: break only after hit count is reached, conditional expressions, …

Tracepoints: don’t break but just log information (e.g., current value of a variable)

Data breakpoints: break when specific memory location is written

Data visualization
Beyond printing variables: data formatting, custom object views, bitmap images, …

Expression evaluation
Execute new code within the context (using the state) of the debugged process

Concurrency and multithreading
Dependencies across call stacks of different threads, freeze/unfreeze threads, …

Many other: hot patching, time travel/reverse debugging, …

14https://werat.dev/blog/what-a-good-debugger-can-do/

https://werat.dev/blog/what-a-good-debugger-can-do/

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14

