CSE509 Computer System Security QI stony Brook University

2023-03-23 Reverse Engineering

Michalis Polychronakis

Stony Brook University



Reverse Engineering

The process of deconstructing a human-made object to extract its
design, architecture, and other information

Not only software! Machines, electronics, chemicals, ...

Various motives
Military or commercial espionage
Product security analysis
Competitive technical intelligence
Interfacing with other systems
Rescuing from obsolescence

Repurposing



Software Reverse Engineering: Security

Malicious software analysis

Dissect and analyze potentially malicious samples < develop countermeasures

Vulnerability discovery

Whitehat = find bugs and develop patches

Blackhat > write exploits and use them
Binary auditing

Verify functionality or security policy enforcement, discover backdoors, ...
Cryptographic algorithms

Extract hard-coded keys, unknown logic/algorithms (bad idea: security by obscurity)

DRM cracking (media, software), game cheating, ...



Software Reverse Engineering: Development

Interoperability with proprietary/legacy software/protocols

Not enough/non-existent/inconsistent documentation, lost source code, ...

Developing competing software
Steal partial functionality

Re-package whole applications (e.g., malicious Android apps)

Software quality evaluation (e.g., )

Security features: many protections are introduced only at compilation
time = source code analysis is not enough

Code hygiene: use of dangerous functions, consistency, ...
Code complexity: code size, number of dependencies, ...

Crash testing: fuzzing using bad inputs to assess robustness


https://cyber-itl.org/

Reversing at Different Levels

System
Monitor the execution of a target program
System calls, events, files, IPC, registry, ...

Code

Understand what a piece of code does

Static (code disassembly) vs. runtime (debugging)
Source code vs. intermediate representation code vs. machine code

User space vs. kernel vs. firmware/BIOS/...

Network
Monitor network traffic
Understand protocols



Tools of the trade

System monitoring

Information mostly provided by the OS: Files, registry, network, system calls, ...

Disassemblers

Convert machine code to assembly language code
Extract the control flow graph, variables, dependencies, ...

Decompilers

Convert machine/assembly code to higher-level language code

Debuggers

Observe the execution of a process at instruction granularity
Disassembly, software/hardware breakpoints, register/memory info, ...

Various other tools

Hex editors, memory dumpers, ELF/PE analyzers, hooking libraries, ...



System Monitoring Tools

Linux
strace, Itrace, netstat, ps, ...
perf_events, eBPF, LLTng, ...
osquery, sysdig, ...

Windows
Process Explorer
procmon, filemon, regmon, sysmon,
VMMap

TCPView
... and the rest of the Sysinternals suite:


https://live.sysinternals.com/

Linux Performance Observability Tools

strace Operating System Hardware Various:
\\ ltrace ss nstat sar /proc
A opensnoop \ / // dmesg dstat
lsof \ Applications gethostlatency
fatrace d
filelife NS Librari execsnoop
pcstat \ ystem Li rarles/ // mpstat t;rbgstatt::
System Call Interface profile SHowboos
perf \ \ Y / // / runglen rdmsr
E_I'E_rrace VES Sockets scheduler # offcputime
BCC D File Systems TCP/UDP softirgs
bpftrace Volume Mana§r IP Virtual CPU
i : Memory W top ato S
ext4dist Block Devic Net Devicey \ Y os gidstgt
y extdslower / Device Drivers \ % tiot
(& for btrfs 1ptop
nfs,xfs,zfs) perf \ ; vmstat perf
i mdflush tiptop | tcpdump \ tcplife slabtop
. —> tcpretrans free
lostat - udpconnect DRAM
biosnoop /O Bridge hardirgs
biolatency | criticalstat T
biotop | I
blktrace |/O Controller Network Controller numastat
‘K\nicstat
netstat
Disk Disk Disk Port Port Port &~ ip
¥ 11
SCSl log

swapon ethtool snmpget 1lldptool

http:/iwww.brendangregg.com/

linuxperf.html, 2019



New tools developed for the book BPF Performance Tools: Linux System and Application Observability
by Brendan Gregg (Addison Wesley, 2019), which also covers prior BPF tools

filetop opensnoop c* java* node* php* javathreads gethostlatency
filelife fileslower statsnoop python* ruby* memleak
vEfscount vfsstat syncsnoop §E§:£¥i§§2f2$:; jnistacks sslsniff
; i fil
filetype fsrwstat scread | TOPFORTE bashreadline threadsnoop
vfssize mmapfiles

execsnoop exitsnoop

writesync ucalls uflow mysqld_clat pmlock pmheld
uobjnew ustat bashfunc syscount
cachestat cachetop uthreads ugc bashfunclat killsnoop
dcstat decsnoop | ] hell
mount snoop 4 sue--snoop |
leaions signals napt}me
icstat Applica y eperm setuids
bufgrow Runtimes elfsnoop modsnoop
readahead

oomkill memleak

f / / A Device DriversT \ \ \ \ shmsnoop drsnoop

zfsslower zfsdist
\ overlayfs

writeback System Libraries pidpersec
trace A cpudist cpuwalk
argdist \ B/ System Call Interface runglat runglen
funccount rungslower
funcslower ,,—,——f””’ cpuunclaimed
funclatency N VEFS f 4 Sockets - deadlock
stackcount / Scheduler‘ offcputime wakeuptime
profile v File Systems // TCP/UDP A ] —— offwaketime softirgs
/,//”/’//‘ / ™~~~ offcpuhist threaded
btrfsdist Volume Manage IP . pidnss mlock mheld
btrfsslower 7, 9 / Virtual g smpcalls workqg
ext4dist extdslower _ _ ~\“‘~\\\‘\
nfsslower nfsdist / Block Dewce// Net Device * Memory slabratetop
xfsslower xfsdist 7}

AN

i \ kmem kpages numamove
mdflush i1 I ieee8021lscan | nettxlat N\ mmapsnoop brkstack
scsilatency nvmelatency netsize ipecn faults f£faults
biotop biosnoop scsiresult superping fmapfault hfaults
biolatency £d tcptop tcplife teptracer gdisc-£fq vmscan swapin
bitesize sordsnoop tcpconnect tcpaccept \
seeksize . tcpconnlat tcpretrans hardirgs
biopattern :gctztgzoiogigié% tcpsubnet tcpdrop criticalgtat
biostacks P tcpstates ttysnoop
bicerr soconnect soaccept tcpsynbl tcpwin Other:
Legend: ; socketio socksize PSY 1 CPU
g . iosched _ .onnlat solstbvte tcpnagle tcpreset capable llcstat S
rior tool blkthrot vl udpconnect xenhyper
gew tool skbdrop skblife P kvmexits cpufreq




Disassemblers
IDA Pro commercial, with free demo version
Ghidra NSA’s own open-source reverse engineering tool suite (!)
Radare2 powerful reversing framework
Capstone multi-platform, multi-architecture framework
distorm3 disassembler library
Hopper commercial, with demo version
Binary Ninja commercial, with free demo version
BinNavi control flow and program analysis
objdump, ndisasm, gdb, ...

Decompilers

IDA Pro, Boomerang, JEB, ...
Many others for specific languages: Java/.NET/...



Binary Analysis and Lifting

angr, BAP, Miasm, rev.ngq, ...

Beyond code disassembly and decompilation
Lifting to intermediate representation (IR)
Symbolic/concolic execution

Control-flow graph extraction
Support for multiple platforms and architectures

Extensible frameworks for building binary analysis applications
Automated ROP chain construction
Binary patching and hardening

Automated exploit generation



Debuggers
gdb, LLDB (LLVM), Visual Studio, ...
OllyDbg simple and powerful, with intuitive GUI (Windows)
Windbg both user and kernel space
IDA Pro
x64dbg open-source x64/x32 debugger for Windows
edb inspired by Ollydbg, cross platform, still under development
SoftlCE popular kernel debugger (last release was in 2000)
rr reverse debugging under gdb!

Binary Instrumentation and Tracing
Pin, DynamoRio, Valgrind, Frida, ...
Intel Processor Trace H\V tracing, supported by gdb and perf

Emulators/VMs

Qemu, Unicorn, VMware, Virtual Box, Xen, KVM, ...



Debugger Basics

Software breakpoints
Replace target instruction with int 3 (breakpoint interrupt)

Once triggered, execution freezes and int 3 is replaced with the original instruction

Hardware breakpoints
Managed directly by the processor through debug registers
Triggered on code or data access
Main benefit: no modification in the program

Main drawback: just a few debug registers are available (only six for x86)

Single-stepping

When the trap flag (TF) in the EFLAGS register is set, the processor generates an
interrupt after the execution of every instruction



Modern Debugger Features

Flexible breakpoints

Column breakpoints: break at specific point within a source code line

Conditional breakpoints: break only after hit count is reached, conditional expressions, ...

Tracepoints: don't break but just log information (e.g., current value of a variable)
Data breakpoints: break when specific memory location is written

Data visualization

Beyond printing variables: data formatting, custom object views, bitmap images, ...

Expression evaluation

Execute new code within the context (using the state) of the debugged process

Concurrency and multithreading

Dependencies across call stacks of different threads, freeze/unfreeze threads, ...

Many other: hot patching, time travel/reverse debugging, ...

14


https://werat.dev/blog/what-a-good-debugger-can-do/

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14

