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Reverse Engineering

The process of deconstructing a human-made object to extract its
design, architecture, and other information

Not only software! Machines, electronics, chemicals, ...

Various motives
Military or commercial espionage
Product security analysis
Competitive technical intelligence
Interfacing with other systems
Rescuing from obsolescence

Repurposing



Software Reverse Engineering: Security

Malicious software analysis

Dissect and analyze potentially malicious samples < develop countermeasures

Vulnerability discovery

Whitehat = find bugs and develop patches

Blackhat > write exploits and use them
Binary auditing

Verify functionality or security policy enforcement, discover backdoors, ...
Cryptographic algorithms

Extract hard-coded keys, unknown logic/algorithms (bad idea: security by obscurity)

DRM cracking (media, software), game cheating, ...



Software Reverse Engineering: Development

Interoperability with proprietary/legacy software/protocols

Not enough/non-existent/inconsistent documentation, lost source code, ...

Developing competing software
Steal partial functionality

Re-package whole applications (e.g., malicious Android apps)

Software quality evaluation (e.g., )

Security features: many protections are introduced only at compilation
time = source code analysis is not enough

Code hygiene: use of dangerous functions, consistency, ...
Code complexity: code size, number of dependencies, ...

Crash testing: fuzzing using bad inputs to assess robustness


https://cyber-itl.org/

Reversing at Different Levels

System
Monitor the execution of a target program
System calls, events, files, IPC, registry, ...

Code

Understand what a piece of code does

Static (code disassembly) vs. runtime (debugging)
Source code vs. intermediate representation code vs. machine code

User space vs. kernel vs. firmware/BIOS/...

Network
Monitor network traffic
Understand protocols



Tools of the trade

System monitoring

Information mostly provided by the OS: Files, registry, network, system calls, ...

Disassemblers

Convert machine code to assembly language code
Extract the control flow graph, variables, dependencies, ...

Decompilers

Convert machine/assembly code to higher-level language code

Debuggers

Observe the execution of a process at instruction granularity
Disassembly, software/hardware breakpoints, register/memory info, ...

Various other tools

Hex editors, memory dumpers, ELF/PE analyzers, hooking libraries, ...



System Monitoring Tools

Linux
strace, Itrace, netstat, ps, ...
perf_events, eBPF, LLTng, ...
osquery, sysdig, ...

Windows
Process Explorer
procmon, filemon, regmon, sysmon,
VMMap

TCPView
... and the rest of the Sysinternals suite:


https://live.sysinternals.com/

Linux Performance Observability Tools
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New tools developed for the book BPF Performance Tools: Linux System and Application Observability
by Brendan Gregg (Addison Wesley, 2019), which also covers prior BPF tools
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Disassemblers
IDA Pro commercial, with free demo version
Ghidra NSA’s own open-source reverse engineering tool suite (!)
Radare2 powerful reversing framework
Capstone multi-platform, multi-architecture framework
distorm3 disassembler library
Hopper commercial, with demo version
Binary Ninja commercial, with free demo version
BinNavi control flow and program analysis
objdump, ndisasm, gdb, ...

Decompilers

IDA Pro, Boomerang, JEB, ...
Many others for specific languages: Java/.NET/...



Binary Analysis and Lifting

angr, BAP, Miasm, rev.ngq, ...

Beyond code disassembly and decompilation
Lifting to intermediate representation (IR)
Symbolic/concolic execution

Control-flow graph extraction
Support for multiple platforms and architectures

Extensible frameworks for building binary analysis applications
Automated ROP chain construction
Binary patching and hardening

Automated exploit generation



Debuggers
gdb, LLDB (LLVM), Visual Studio, ...
OllyDbg simple and powerful, with intuitive GUI (Windows)
Windbg both user and kernel space
IDA Pro
x64dbg open-source x64/x32 debugger for Windows
edb inspired by Ollydbg, cross platform, still under development
SoftlCE popular kernel debugger (last release was in 2000)
rr reverse debugging under gdb!

Binary Instrumentation and Tracing
Pin, DynamoRio, Valgrind, Frida, ...
Intel Processor Trace H\V tracing, supported by gdb and perf

Emulators/VMs

Qemu, Unicorn, VMware, Virtual Box, Xen, KVM, ...



Debugger Basics

Software breakpoints
Replace target instruction with int 3 (breakpoint interrupt)

Once triggered, execution freezes and int 3 is replaced with the original instruction

Hardware breakpoints
Managed directly by the processor through debug registers
Triggered on code or data access
Main benefit: no modification in the program

Main drawback: just a few debug registers are available (only six for x86)

Single-stepping

When the trap flag (TF) in the EFLAGS register is set, the processor generates an
interrupt after the execution of every instruction



Modern Debugger Features

Flexible breakpoints

Column breakpoints: break at specific point within a source code line

Conditional breakpoints: break only after hit count is reached, conditional expressions, ...

Tracepoints: don't break but just log information (e.g., current value of a variable)
Data breakpoints: break when specific memory location is written

Data visualization

Beyond printing variables: data formatting, custom object views, bitmap images, ...

Expression evaluation

Execute new code within the context (using the state) of the debugged process

Concurrency and multithreading

Dependencies across call stacks of different threads, freeze/unfreeze threads, ...

Many other: hot patching, time travel/reverse debugging, ...
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https://werat.dev/blog/what-a-good-debugger-can-do/
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