
CSE509 Computer System Security

2023-03-07 Authentication

Michalis Polychronakis

Stony Brook University

Authentication

The process of verifying someone’s identity or role
User, device, service, request, …

What is identity?
Which characteristics uniquely identify an entity?

Authentication is a critical service
Enables communicating parties to verify the identity of their peers

Many other security mechanisms rely on it

Two main types
Human to computer

Computer to computer

2

Credentials

Evidence used to prove an identity

User Authentication: credentials supplied by a person
Something you know

Something you have

Something you are

Computer authentication: crypto, location
Computers (in contrast to humans) can “remember” large secrets (keys) and perform
complex cryptographic operations

Location: evidence that an entity is at a specific place (IP, subnet, switch port, …)

Authentication can be delegated
The verifying entity accepts that a trusted third party has already established
authentication

3

Something You Know: Password-based Authentication

Passwords, passphrases, pins, key-phrases, access codes, …

Good passwords are easy to remember and hard to guess
Easy to remember  easy to guess

Hard to guess  hard to remember

Bad ideas: date of birth, SSN, zip code, favorite team name, …

Password space (bits) depends on:
Password length

Character set

Better way to think about strong passwords: long passphrases
Can be combined with custom variations, symbols, numbers, capitalization, …

4

© XKCD - https://xkcd.com/936/

https://xkcd.com/936/

Password Policies (often have the opposite effect)

Password rules (often miss the point)
“At least one special character,” “Minimum/Maximum length of 8/12 characters,” “Must
contain at least one number,” “Must contain at least one capital letter”

Makes passwords hard to remember!  encourages password reuse

Better: encourage long passphrases, evaluate strength on-the-fly

Periodic password changing (does more harm than good)
“You haven’t changed your password in the last 90 days”

Probably too late anyway if password has already been stolen

Makes remembering passwords harder more password resets

Hinders the use of password managers (!)

What users do: password1  password2  password3 …

8

9

Attacking Passwords

Offline cracking

Online guessing

Eavesdropping

Capturing

10

Brute force attacks

Password Storage

Storing passwords as plaintext is disastrous
Better way: store a cryptographic hash of the password

Even better: store the hash of a “salted” version of the password
Defend against dictionary attacks: prevent precomputation of hash values
(wordlists of popular passwords, rainbow tables, …)

Even if two users happen to have the same password, their hash values will be
different  need to be cracked separately

Salting does not make brute-force guessing a given password harder!

11

Username Salt Password hash
Bobbie 4238 h(4238, $uperman)
Tony 2918 h(2918, 63%TaeFF)
Mitsos 6902 h(6902, zour1da)
Mark 1694 h(1694, Rockybrook#1)

Password databases are
still getting leaked…

Password Cracking

Exhaustive search  infeasible for large password spaces

Dictionary attacks (words, real user passwords from previous leaks, …)

Variations, common patterns, structure rules
Prepend/append symbols/numbers/dates, weird capitalization, l33tspeak, visually
similar characters, intended misspellings, …

Target-specific information
DOB, family names, favorite team, pets, hobbies, anniversaries, language, slang, …

Easy to acquire from social networking services and other public sites

Particularly effective against “security questions”

Advanced techniques
Probabilistic context-free grammars, Markov models, …

12

13

50 Most-used (Worse) Passwords

https://en.wikipedia.org/wiki/List_of_the_most_common_passwords

123456
123456789
picture1
password
12345678
111111
123123
12345
1234567890
senha

1234567
qwerty
abc123
Million2
000000
1234
iloveyou
aaron431
password1
qqww1122

123
omgpop
123321
654321
qwertyuiop
qwer123456
123456a
a123456
666666
asdfghjkl

ashley
987654321
unknown
zxcvbnm
112233
chatbooks
20100728
123123123
princess
jacket025

evite
123abc
123qwe
sunshine
121212
dragon
1q2w3e4r
5201314
159753
0123456789

https://en.wikipedia.org/wiki/List_of_the_most_common_passwords

A birthday present every eleven wallets? The security of customer-chosen banking PINs. Joseph Bonneau, Sören Preibusch and Ross Anderson – FC ’12

Distribution of 4-digit
sequences within
RockYou passwords

https://www.cl.cam.ac.uk/%7Erja14/Papers/BPA12-FC-banking_pin_security.pdf

Wordlists

16

ce#ebc.dk
goddess5
20071002
271075711
zs3cu7za
scoopn
frygas1411
SL123456sl
12345687ee123
xuexi2010
daigoro
12345614
DICK4080
567891234
tilg80
6z08c861
:zark:
ravishsneha
150571611369
661189
passme
trolovinasveta
abdulkhaleque
007816
xLDSX
Florida2011
037037
WestC0untry
hitsugaiya
955998126
3n3rmax

4637324
bugger825
marmaris
jinjin111
170383gp
3484427
fl33321
zwqrfg
67070857
432106969
6856
704870704870
pv041886
20060814
512881535
milanimilani
472619
dbyxw888
85717221
cc841215
ariana19321
bbbnnn
ang34hehiu
wj112358
Brenda85
786525pb
shi461988
pingu
yeybozip
71477nak
stokurew

gea8mw4yz
kukumbike
260888
jordi10
lexusis
kj011a039
c84bwlrb
priyanka05
loveneverdies
u8Aqebj576
FGYfgy77
659397
327296
74748585
19720919
050769585
nicopa
2232566
bearss
n0tpublic
isitreal00
ashraf19760
48144
22471015
antyzhou115
0167005246
ec13kag
226226226226
6767537/33
mimilebrock
gueis8850

fujinshan
counter
N8mr0n
520057
adc123
bmaster
qbjh04zg
ueldaa79
EMANUELLI
yanjing
assynt
62157173
0704224950753
6903293
axaaxa
hilall
30091983
2510618981
soukuokpan
tosecondlife
p4os8m6q
015614117
acw71790
lsyljm2
2xgialdl
gaybar9
88203009
MKltyh87
quiggle
2063775206
fr3iH3it

masich
pengaiwei
coalesce
56402768
thesis
aabbcc894
marion&maxime
614850
ydz220105
584521584521
txudecp
84410545
pietro.chiara
jman1514
heryarma
39joinmam
timelapse
mwinkar
251422
willrock
YHrtfgDK
xys96exq
mercadotecnia
8s5sBEx7
0125040344
margitka
omaopa
dfTi6nh
1314520521
pixma760
pearpear

gothpunksk8er
rftaeo48
8d7R0K
5172032
aics07
34mariah
dongqinwei
samarica
cap10l4
0167387943
AE86Trueno
19700913
mcsuap
bu56mpbu
danbee
passw<>
money521
conan83
nxfjpl
rateg143
kojyihen
058336257
sarah4444
7363437
freindship
JytmvWO848
sb inbau
30907891
0515043111
1973@ati
wlxgjf

20081010
leelou44
8UfjeGbO
200358808
dellede
liang123.
captainettekt
kwiki-mart
mdovydas
tigmys2001
denial
678ad5251
woaiwuai
1591591591212
hNbDGN
cardcap
13985039393
001104
desare11
412724198
nibh1kab
asferg
hqb555
xgames7
muckerlee
choqui67
12130911
lierwei120
skytdvn
milena1995
kambala11

17

19

Password Hashing Functions

Hash functions are very fast to evaluate facilitate fast password cracking

Solution: slow down the guessing process (password “stretching”)
Benefit: cracking becomes very inefficient (e.g., 10-100ms per check)

Drawback: increased cost for the server if it must authenticate many users

Make heavy use of available resources
Fast enough computation to validate honest users, but render password guessing infeasible

Adaptable: flexible cost (time/memory complexity) parameters

Bcrypt [Provos and Mazières, 1999]
Cost-parameterized, modified version of the Blowfish encryption algorithm

Tunable cost parameter (exponential number of loop iterations)

Alternatives: Scrypt (memory-hard), PBKDF2 (PKCS standard)

20A Future-Adaptable Password Scheme – USENIX ATC 1999

https://www.usenix.org/legacy/events/usenix99/provos/provos.pdf

Online Guessing

Similar strategy to offline guessing, but rate-limited
Connect, try a few passwords, get disconnected, repeat…

Prerequisite: know a valid user name
Credential stuffing: try username + password combinations from previous breaches

Many failed attempts can lead to a system reaction
Introduce delay before accepting future attempts (exponential backoff)
Shut off completely (e.g., ATM capturing/disabling the card after 3 tries)
Ask user to solve a CAPTCHA

Very common against publicly accessible SSH, VPN, RDP, and other servers
Main reason people move sshd to a non-default port
Fail2Ban: block IP after many failed attempts  attackers may now be able to lock you out
Better: disable password authentication altogether and use a key pair  cumbersome if
having to log in from several devices or others’ computers

21

22

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

(a) Successful login

(b) Login rejected after name is entered

(c) Login rejected after name and password are typed  less information makes guessing harder

24

Before guessing, try
the default first…

Eavesdropping and Replay

Physical world
Watch user type password (shoulder surfing)

Cameras (e.g., ATM skimmers)

Lift fingerprints (e.g., Apple Touch ID)

Post-it notes, notebooks, …

Network makes things easier
Sniffing (LAN, WiFi, …)

Man-in-the-Middle attacks

Defenses
Encryption

One-time password schemes

25

Kerberos Network Authentication Protocol

Most widely used (non-web) single sign-on system
Originally developed at MIT, now used in Unix, Windows, …

Long-lived vs. session keys
Use long-lived key for authentication and negotiating session keys
Use “fresh,” ephemeral session keys for encrypted communication, MACs, …
Prevent replay, cryptanalysis, old compromised keys

Authenticate users to services: using their password as the initial key,
without having to retype it for every interaction

A Key Distribution Center (KDC) acts as a trusted third party for key distribution
Online authentication: variant of Needham-Schroeder protocol
Assumes a non-trusted network: prevents eavesdropping
Assumes that the Kerberos server and user workstations are secure…

Use cases: workstation login, remote share access, printers, …

26https://web.mit.edu/kerberos/

https://web.mit.edu/kerberos/

Password Capture

Hardware bugs/keyloggers

Software keyloggers/malware

Cameras

Phishing

Social engineering

27

29Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

(a) Correct login screen

(b) Phony login screen

Something You Have: Authentication Tokens

One-time passcode tokens
Time-based or counter-based

Various other authentication tokens
Store certificates, encryption keys, challenge–response, …

Smartcards (contact or contactless)
Identification, authentication, data storage, limited processing

Magnetic stripe cards, EMV (chip-n-pin credit cards), SIM cards, RFID tags, …

USB/BLE/NFC tokens, mobile phones, watches, …
Can be used as authentication devices

30

Something You Are: Biometrics

Fingerprint reader

Face recognition
Depth sensing, infrared cameras, …

Liveness detection (pulse, thermal) to foil simple picture attack

Retina/iris scanner

Voice recognition  broken

…

Related concept: continuous authentication
Keystroke timing, usage patterns, …

31

32

Multi-factor Authentication

Must provide several separate credentials of different types

Most common: two-factor authentication (2FA)
Example: Password + hardware token/SMS message/authenticator app, …

Example: ATM card + PIN

Motivation: a captured/cracked password is not enough to
compromise a victim’s account  not always true

Man-in-the-Middle: set up fake banking website, relay password to real website, let
the user deal with the second factor…

Man-in-the-Browser: hijack/manipulate an established session after authentication
has completed (banking Trojans)

Dual infection: compromise both PC and mobile device

More importantly: the most commonly used 2nd factor (SMS) is the least secure

33

SMS Is Not a Secure 2nd Factor
(but still better than no 2nd factor)

Social engineering
Call victim’s mobile operator and hijack the phone number

SIM swap, message/call forwarding, …

Message interception
Rogue cell towers: IMSI catchers, StingRays,…

Some phones even display text messages on the lock screen (!)

SS7 attacks
The protocol used for inter-provider signaling is severely outdated and vulnerable

Allows attackers to spoof change requests to users' phone numbers and intercept
calls or text messages

34

35

36

Better Alternative: Authenticator App

Time-based one-time password (TOTP)
Six/eight digit code provided after password validation

Code computed from a shared secret key
and the current time (using HMAC)

The key is negotiated during registration

Requires “rough” client–server synchronization
Code constantly changes in 30-second intervals

More user-friendly alternative: push notification (e.g., Duo Push)
MFA “fatigue” attacks: flood a user’s authentication app with push notifications

Phishing is still possible!
The attacker just needs to proxy the captured credentials in real time
(rather than collecting them for later use)

37

38

Evilginx2 https://github.com/kgretzky/evilginx2

Man-in-the-middle attack framework for phishing login credentials
along with session cookies

Bypasses 2-factor authentication

No need for HTML templates: just a web proxy
Victim’s traffic is forwarded to the real website

TLS termination at the proxy (e.g., using a LetsEncrypt certificate)

39© Kuba Gretzky - https://breakdev.org/evilginx-2-next-generation-of-phishing-2fa-tokens/

https://github.com/kgretzky/evilginx2
https://breakdev.org/evilginx-2-next-generation-of-phishing-2fa-tokens/

© Kuba Gretzky - https://breakdev.org/evilginx-2-next-generation-of-phishing-2fa-tokens/

https://breakdev.org/evilginx-2-next-generation-of-phishing-2fa-tokens/

Even Better Alternative: U2F Tokens (AKA Security Keys)

Universal Second Factor (U2F)
FIDO (Fast IDentity Online) alliance: Google, Yubico, …

Supported by all popular browsers and many online services

A different key pair is generated for each origin during registration
Origin = <protocol, hostname, port>

Private key stored re-generated on device

Public key sent to server

Additions to the authentication flow:
Origin (URI): prevents phishing

TLS Channel ID (optional): prevents MitM

41

42© Yubico - https://developers.yubico.com/U2F/

https://developers.yubico.com/U2F/

43© Yubico - https://developers.yubico.com/U2F/Protocol_details/Key_generation.html

https://developers.yubico.com/U2F/Protocol_details/Key_generation.html

U2F tokens

Benefits
Easy: just tap the button (no typing)

Works out of the box (no drivers to install)

USB, NFC, Bluetooth communication

No shared secret between client and server

Origin checking  effective against phishing!

Drawbacks
Can be lost  need a fallback (backup codes, 2nd U2F token, authenticator app, …)

Cumbersome: have to pull keychain out and plug token in (or have an always
pugged-in token, in which case though it can be stolen along with the device)

Cost ($10–$70)

44

45

2FA Recap – What threats does it prevent?

SMS: useful against two main threats
Credential stuffing (people tend to reuse passwords across different services)

Leaked passwords (post-it, hardware keyloggers, cameras, shoulder surfing, …)

Introduces new security/privacy issues: SIM swapping, SMS forwarding, SMS spam…

Authenticator Apps/Push Auth: much better alternative than SMS
Protects against the same threats without relying on phone numbers

U2F: additional protection against phishing
Modern phishing toolkits bypass SMS/Authenticator/Push 2FA through MitM

Humans fall for typosquatting, but U2F’s origin check doesn’t

None of the above protect against session hijacking and Man-in-the-Browser
Game over anyway if the host is compromised after the user has successfully logged in

46

Password Managers

Have become indispensable
Encourage the use of complex/non-memorable passwords

Obviate the need for password reuse: unique passwords per site/service

Protection against phishing: auto-fill won’t work for incorrect domains
As long as users don’t copy/paste passwords out of the password manager (!)

Various options: third-party applications, OS-level, in-browser

Password synchronization across devices
Can the service provider access all my passwords or not?

Preferable option: passwords should be encrypted with master password never
visible to the cloud service

Single point of failure (!)

47

Lastpass breach

48

Single Sign-on/Social Login

Pros
Convenience: fewer passwords to remember

Easier development: outsource user registration/management

Rich experience through social features

Cons
Same credentials for multiple sites: single point of failure

Third-parties gain access to users’ profiles

Provider can track users

49

WebAuthn

W3C Web Authentication standard (FIDO2): Successor of FIDO U2F

Use cases
Low friction and phishing-resistant 2FA (in conjunction with a password)

Passwordless, biometrics-based re-authorization

2FA without a password (“passwordless” login)

Authenticators: devices that can generate private/public key pairs and
gather consent (simple tap, fingerprint read, …)

Roaming Authenticators:
USB/BLE/NFC security keys

Platform Authentications:
Built-in fingerprint readers, cameras, …

50https://www.yubico.com/authentication-standards/webauthn/

https://www.yubico.com/authentication-standards/webauthn/

51

Passkeys

Completely replace passwords with cryptographic key pairs
Server only keeps a user’s public key

Based on WebAuthn: rely on biometric identification (Touch ID, Face ID)

Key enabler: identity providers who also sell hardware devices
The user’s device becomes an authenticator  what if it gets lost?

Users have more than one device  seamless syncing

52https://www.passkeys.io/

 

https://www.passkeys.io/

Multi-factor vs. Multi-step

Factor: something you know/have/are

Step: user-specific action
Type password, tap fingerprint reader, press security key, …

Example: U2F flow with passwords
Type password + tap security key  two factors, two steps

Example: FIDO2 passwordless flow

Tap biometric security key  two factors, one step

53https://medium.com/webauthnworks/its-single-step-not-factor-clarifying-more-fido-terminology-d06d9c31b4f2

********* +

https://medium.com/webauthnworks/its-single-step-not-factor-clarifying-more-fido-terminology-d06d9c31b4f2

OAuth 2.0

Open standard for secure delegated access (not authentication)
Allows users to grant third-party websites/apps access to their information

Improved security: access tokens are short-lived and can be revoked at any time

Reduced friction: users don't need to share their credentials with third parties

OAuth 2.0 Flow
Client requests authorization from the
resource owner  owner grants/denies

Client obtains an authorization grant

Client exchanges the authorization grant
for an access token from the auth server

Client uses the access token to access
protected resources from the server

54https://en.wikipedia.org/wiki/OAuth

https://en.wikipedia.org/wiki/OAuth

Recap: Crypto-based Authentication

Rely on a cryptographic key to prove a user’s identity

User performs a requested cryptographic operation on a value
(challenge) that the verifier supplies

Usually based on knowledge of a key (secret key or private key)

Can use symmetric (e.g., Kerberos) or public key (e.g., U2F) schemes

How can we trust a key? Why is it authentic?
Need to establish a level of trust

Different approaches: TOFU, PKI, Web of Trust

55

Trust on First Use (aka Key Continuity)

Use case: SSH
Performs mutual authentication

Server always authenticates the client
password, key pair, …

Client almost always authenticates the server – except the first time!
First connection: server presents its public key

No other option for the user but to accept it: MitM opportunity

Subsequent connections: client remembers server’s key, and triggers an alert on key mismatch

Pragmatic solution, but shifts the burden to users
Users must determine the validity of the presented key

Accepting a key change without verifying the new key offers no protection against MitM
(unfortunately, that’s what most users do)

56

57

58© Tina Membe – https://medium.com/@pepelephew/a-look-at-how-private-messengers-handle-key-changes-5fd4334b809a

https://medium.com/@pepelephew/a-look-at-how-private-messengers-handle-key-changes-5fd4334b809a

Certificates

How can we distribute “trusted” public keys?
Public directory  risk of forgery and tampering

More practical solution: “certified” public keys

A certificate is a digitally signed message that contains an identity and
a public key

Makes an association between a user/entity and a private key

Valid until a certain period

Most common format: X.509

Why trust a certificate?
Because it is signed by an “authority”

Requiring a signature by a third party prevents straightforward tampering

59

Public Key Infrastructures (PKI)

Facilitate the authentication and distribution of public keys with the
respective identities of entities

People, organizations, devices, applications, …

Set of roles, policies, hardware, software, and procedures to create, mange, distribute,
use, store, and revoke digital certificates and manage public key encryption

An issuer signs certificates for subjects
Trust anchor

Methods of certification
Certificate authorities (hierarchical structure – root of trust)

Web of trust (decentralized, peer-to-peer structure)

60

Certificate Authorities

Trusted third-parties responsible for certifying public keys
Most CAs are tree-structured

A public key for any website in the world will be accepted without
warning if it has been certified by a trusted CA

Single point of failure: CAs can be compromised!

Why should we trust an authority?
How do we know the public key of the Certificate Authority?

CA’s public key (trust anchor) must somehow be provided out of band
Trust has to start somewhere

61

Certificate Chains

Trust anchors: operating systems and browsers are pre-
configured with trusted root certificates

System/public store: used by OS, browsers, …

More can be added in the local/private cert store: vendor-specific
certs, MitM certs for content inspection filters/AVs, …

Server provides a chain of certificates
A certificate from an intermediate CA is trusted if there is a valid
chain of trust all the way back to a trusted root CA

Any CA can issue and sign certificates for any subject
The system is only as secure as the weakest certificate authority…

Certificate Authority Authorization (CAA): can be used to restrict
which CAs can issue certificates for a particular domain

62

Root
Cert

End Entity
Cert

Intermediate
Cert

Intermediate
Cert

Em
be

dd
ed

 in
br

ow
se

r/
O

S
Pr

ov
id

ed
 b

y
th

e
se

rv
er

https://ccadb-public.secure.force.com/microsoft/IncludedCACertificateReportForMSFT
https://ccadb-public.secure.force.com/mozilla/CAInformationReport

63

Certificate Revocation

Allow revocation of compromised or no longer needed certificates

Certificate revocation list (CRL)
Signed list of all revoked certificates that have not yet expired

Main problem: lists tend to be large, making real-time lookups slow

Can the attacker block connectivity to the CA’s server?

CRLSets (Chrome): revocation list pushed to the browser as a software update

Online Certificate Status Protocol (OCSP)
Obtain the revocation status of a single certificate  faster

But the latency, security, and privacy issues still remain

OCSP stapling (Firefox): server embeds OCSP response directly into the TLS
handshake (soft-fail issue remains: an adversary can suppress the OCSP response)

64

65

66

Certificate Transparency

Public monitoring and auditing of certificates
Identify mistakenly or maliciously issued certificates and rogue CAs

Certificate logs
Network services maintaining cryptographically assured, publicly auditable, append-
only records of certificates

Monitors
Periodically contact all log servers and watch
for suspicious certificates

Auditors
Verify that logs are behaving correctly and are
cryptographically consistent

Check that a particular certificate appears in a log

67https://certificate.transparency.dev/

https://certificate.transparency.dev/

Certificates are deposited in public,
transparent logs (append-only ledgers)

Distributed and independent: anyone can
query them to see what certificates have been
included and when

Append-only: verifiable by Monitors

Web browsers enforce Certificate Transparency

Logs are cryptographically monitored
Monitors cryptographically check which
certificates have been included in logs

Domain owners can subscribe to a CT monitor
to get updates when precertificates/certificates
for those domains are included in any of the
logs checked by that monitor

68https://certificate.transparency.dev/howctworks/

https://certificate.transparency.dev/howctworks/

Web of Trust (mainly used in PGP for encrypted email)

Entirely decentralized authentication
No need to buy certs from CAs: users create their own certificates

Users validate other users’ certificates, forming a “web of trust”
No trusted authorities: trust is established through friends (yay! key signing parties!)

Adjustable “skepticism” parameters: number of fully and partially trusted endorsers
required to trust a new certificate (1 and 3 for GnuPG)

Main problems
Privacy issues: social graph metadata

Bootstrapping: new users are not readily trusted by others

When opinions vary, “stronger set” wins: impersonation through
collusion/compromised keys

Scalability: WoT for the whole world?

69

70https://xkcd.com/364/

https://xkcd.com/364/

71

72https://xkcd.com/1553/

https://xkcd.com/1553/

73

74

Finding Public Keys

Public PGP key servers
pgp.mit.edu

keyserver.pgp.com

Cache certificates from received emails

Integration with user management systems (LDAP)

Ad-hoc approaches
List public key on home page

Print on business card

Exchange through another medium on a case-by-case basis

Association with social profiles/identities
keybase.io

76

https://pgp.mit.edu/
https://keyserver.pgp.com/
https://keybase.io/

WoT Alternative: Online Social “Tracking”

77

Keybase.io

In essence, a directory associating public keys with names

Identity established through public signatures
Identity proofs: “I am Joe on Keybase and MrJoe on Twitter”

Follower statements: “I am Joe on Keybase and I just looked at Chris's identity”

Key ownership: “I am Joe on Keybase and here's my public key”

Revocations: “I take back what I said earlier”

Keybase identity = sum of public identities
Twitter, Facebook, Github, Reddit,
domain ownership, …

An attacker has to compromise all connected identities
The more connected identities, the harder to impersonate a user

78

Best Practices

Use long passphrases instead of passwords
Never reuse the same password on different services

Use two-factor authentication when available
Avoid SMS if possible! Use an authenticator app or U2F instead

Remove phone number from account after authenticator/U2F setup

Store your backup codes in a safe location

Use a password manager
Pick non-memorable passwords and avoid copy/pasting them

Password auto-fill helps against phishing! (auto-fill will fail if the domain is wrong)

Use SSH keys instead of passwords

79

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Distribution of 4-digit�sequences within�RockYou passwords
	Slide Number 16
	Slide Number 17
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Slide Number 47
	Slide Number 48
	Slide Number 49
	Slide Number 50
	Slide Number 51
	Slide Number 52
	Slide Number 53
	Slide Number 54
	Slide Number 55
	Slide Number 56
	Slide Number 57
	Slide Number 58
	Slide Number 59
	Slide Number 60
	Slide Number 61
	Slide Number 62
	Slide Number 63
	Slide Number 64
	Slide Number 65
	Slide Number 66
	Slide Number 67
	Slide Number 68
	Slide Number 69
	Slide Number 70
	Slide Number 71
	Slide Number 72
	Slide Number 73
	Slide Number 74
	Slide Number 75
	Slide Number 76
	Slide Number 77
	Slide Number 78
	Slide Number 79

