
CSE509 Computer System Security

2023-02-23 Exploit Mitigations

Michalis Polychronakis

Stony Brook University

Defending against Vulnerability Exploitation

Finding and fixing bugs (previous lecture)
Sanitizers, fuzzing, symbolic execution, bug bounties, …

Who will find the next 0-day?

Retrofit memory safety to C/C++
Eradicate the root cause of the problem: memory errors

Performance and compatibility challenges

No protection against transient execution attacks (!)

Exploit mitigations (this lecture)
Assuming a vulnerability exists, “raise the bar” for exploitation

DEP, GS, SafeSEH, SEHOP, ASLR, CFI, sandboxing, attack surface reduction, …

2

 rewrite critical components in Rust/Go

Exploit Mitigations vs. Sanitizers

3SoK: Sanitizing for Security – IEEE S&P 2019

(Very Simple) Buffer Overflow Exploitation

4

var1

buf[16]

var2

saved EBP

return address

arg1

arg2
0xFFFFFFFF

stack

\x0f\x6a\xe8\x59

\xff\xff\xff\xff

\x5e\xc1\x46\x80

\xe0\x0a\x4c\x30

\x0b\x0e\xfa\x02

\x4b\x45\x49\x46

\x52\x4a\x4d\x4f

\x4c\x5b\x4f\x5e

\x4b\x46\x43\x5d

GET / HTTP/1.1

User-Agent: Wget

/1.10.2

Code injection

Shellcode
spawn shell

listen for connections

add user account

download and execute
malware



Stack Canaries

Goal: prevent control flow hijacking via
return address overwrite

aka:
Stack Cookie
Stack Smashing Protector
Microsoft’s /GS

Add randomly generated (secret) value
before return address

Function epilogue code checks the canary
value before returning

Exception if it has an unexpected value

5

var1

buf[16]

var2

Canary

return address

arg1

arg2

0xFFFFFFFF

stack

saved EBP

6

0xDEADBEEFbuf[]

Canarybuf[]

0x41414141AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

!=

0xBFFFFC2A

Saved EIP

0x42424242

0xDEADBEEF0x41414141

Before overflow

After overflow

 Terminate process

StackGuard (1998)

First implementation of stack canaries (GCC)

Random canary
Taken from /dev/urandom when the program starts

Terminator canary
Contains NULL (0x00), CR (0x0d), LF (0x0a), and EOF
(0xff)  should terminate most string operations

7StackGuard: Automatic Adaptive Detection and Prevention of Buffer-Overflow Attacks – USENIX Security 1998

Random XOR canary
Emsi's Vulnerability: overwrite the return address with arbitrary write
(write-what-where instead of linear overflow)

Solution: XOR the canary with the saved return address

Attacker cannot modify the return address without invalidating the canary

ProPolice (IBM Research Japan, 2000)

Security improvement over StackGuard: local variable sorting
Move all buffers (arrays) above local variables  prevent local variable overwrite

Eventually merged into GCC and became the Stack Smashing Protector (SSP)
feature (–fstack_protector)

-fstack-protector stack protection for functions that contain an array larger than 8 bytes

-fstack-protector-all stack protection for all functions

-fstack-protector-strong introduced by Google in 2012  strike a (performance) balance
between –fstack_protector and –fstack_protector-all

Microsoft’s /GS
Introduced in Visual Studio 2002, deployed in Windows XP SP2

Although 5 years after StackGuard, it beat the Linux/FOSS community into mainstream
adoption by several years

8

9

var1

buf[16]

var2

Canary

return address

arg1

arg2

0xFFFFFFFF

stack

saved EBP

var1

buf[16]

var2

Canary

return address

arg1

arg2

saved EBP

Overwrite var2
without affecting

the canary

Canary Value Brute Forcing

The canary is generated dynamically at the creation of each thread
Typically stored in the Thread Local Storage (TLS) area

Whenever a new frame is created, the canary is pushed from the TLS into the stack

Whenever a process is forked, it inherits the address space of its parent
All in-memory code and data, including canaries placed in stack frames and the TLS

Problematic for forking servers: attackers can brute-force the canary
1) Need to be able to force child processes to be forked from the same parent process

2) Need to be able to check if any of these child processes has crashed or not

Solution: randomize canary values right after fork
Update the canaries in both the TLS and all inherited stack frames in the child process

10DynaGuard: Armoring Canary-based Protections against Brute-force Attacks – ACSAC 2015

4 * 256 = 210 = 1024 possibilities  just 512 tries on average (!)
Instead of 2564 = 232 = 4 billion possibilities
8 ∗ 256 = 2048 in 64-bit architectures

11

D4buf[] C3 B2 A1

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 41 C3 B2 A1

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA D4 C3 B2 A1

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA D4 C3 B2 A1

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 41 B2 A1D4

 Crash

 No Crash

 Crash

 No Crash

…

…

…

…

…

2564  256*4

Nginx 1.3.9 < 1.4.0 - Chuncked Encoding Stack Buffer Overflow

12https://www.exploit-db.com/exploits/25775

Other Stack Smashing Defenses

StackShield
Copy the return address into a safe memory area when a function is called

Restore the return address upon returning from a function

Even if the return address on the stack is altered, it has no effect since the original
return address is remembered

Libsafe
Re-implementation of dangerous C functions such as strcpy()
Imposes a limit on the copied bytes to prevent return address overwrite

Limit determined based on the distance between the address of the buffer and the
corresponding frame pointer

Shared library that is preloaded (LD_PRELOAD) to intercept C library function calls

13

FORTIFY_SOURCE (Red Hat, 2004)
Compilation time + run time buffer overflow detection

14https://gcc.gnu.org/legacy-ml/gcc-patches/2004-09/msg02055.html

char buf[5];
/* 1) Known correct. No runtime checking is needed, memcpy/strcpy are called */
memcpy (buf, foo, 5);
strcpy (buf, "abcd");
/* 2) Not known if correct, but checkable at runtime. The compiler knows the number
of bytes in object, but doesn't know the length of the actual copy. Alternative
functions __memcpy_chk or __strcpy_chk are used that check for buffer overflow. */
memcpy (buf, foo, n);
strcpy (buf, bar);
/* 3) Known incorrect. The compiler can detect buffer overflows at compile time. */
memcpy (buf, foo, 6);
strcpy (buf, "abcde");
/* 4) Not known if correct, not checkable at runtime. The compiler doesn't know the
buffer size, no checking is done. Overflows will go undetected in these cases. */
memcpy (p, q, n);
strcpy (p, q);

Non-Executable Memory (aka: NX, PaX, Exec Shield, W^X, DEP, …)

Initial implementations were software-only
x86 processors (since 80286) supported memory segmentation, which can distinguish
between readable and executable memory

Unfortunately almost all x86 OS use a flat memory model  could not use this capability

Hardware x86 support for NX bit introduced by AMD64 (x86-64)
Followed by Intel (Pentium 4 processors based on later iterations of the Prescott core)

For 32-bit, need PAE (Physical Address Extension, 32 to 36 bit)

16

4000B12A\x6A\x07\x59\xE8\xFF\xFF\xFF\xFF\xC1

Non-Executable Stack (Solar Designer, 1997)

x86 Linux kernel patch to prevent code execution in stack pages
Sun Solaris 2.6 (SPARC) also introduced a similar feature

At that time, x86 did not have an execute bit  readable pages were
implicitly executable

Other CPUs did have an X bit, but they were far less popular

Solution: use x86 segments to isolate the stack and mark it as NX
Zero performance overhead

No need to re-compile programs

Non-executable stack was the main motivation for ret2libc attacks

17

PaX PAGEEXEC

Early software-only Linux implementation of W^X
Mark all data pages as non-executable (not just stack pages)

No NX bit in early x86: emulate it
Mark pages either as “non-present” or “supervisor”

User-space memory accesses raise page faults

Page fault handler distinguishes between instruction fetches and data accesses
(by comparing the fault address to that of the instruction that raised the fault)

Significant runtime overhead due to the additional page faults

PaX SEGMEXEC: alternative implementation using x86 segmentation
Divide user space into two halves: one for data access and one for execution

ExecShield: similar approach by Red Hat

18https://pax.grsecurity.net/docs/pageexec.txt

Data Execution Prevention (DEP)

Introduced in Windows XP SP2
Hardware-only implementation: disabled if the x86 processor did not support NX

Enabled by default for critical Windows services

Applications can opt-in (SetProcessDEPPolicy() or /NXCOMPAT)

Runtime access to the NX bit is exposed through the Win32 API
VirtualAlloc() and VirtualProtect()  flag individual pages as executable
or non-executable

Precious API functions for ROP exploits (same for mprotect() in Linux)

19

Address Space Layout Randomization

Hinders code reuse attacks by randomizing the location of code and
data  unpredictable target addresses (shellcode, ROP gadgets)

Main executable, stack, heap, libraries

DEP is highly dependent on ASLR
ROP/ret2libc payloads are trivial to construct without ASLR

Initial implementation: PaX ASLR (2001)
OpenBSD version 3.4 in 2003 was the first mainstream OS to support ASLR

Followed by Linux in 2005 (initial version was weaker than PaX/ExecShield)

Introduced in Windows with Vista in 2007

21https://pax.grsecurity.net/docs/aslr.txt

22https://learn.microsoft.com/en-us/windows/security/threat-protection/overview-of-threat-mitigations-in-windows-10#address-space-layout-randomization

ASLR Limitations

During its early deployment, ASLR was not always fully adopted
Only 66 out of 1,298 binaries in /usr/bin (2011)

Only 2 out of 16 third-party Windows applications (2010)

Non-ASLR’ed binaries can still occasionally be found even today on the latest systems

ASLR-enabled applications sometimes have statically mapped DLLs
Microsoft’s EMET mandatory randomization: force relocation even if DLL opt-out

More importantly: Information leaks break ASLR
Dynamically infer a DLL’s load address through a memory leak vulnerability

Adjust offsets of ROP gadgets/ret2libc addresses accordingly

23Q: Exploit Hardening Made Easy – USENIX Security 2011 | https://silo.tips/download/dep-aslr-implementation-progress-in-popular-third-party-windows-applications

Information Leaks Break ASLR

24https://media.blackhat.com/bh-us-12/Briefings/Serna/BH_US_12_Serna_Leak_Era_WP.pdf

Typical ROP exploits

First-stage ROP code to bypass DEP
1. Allocate/set W+X memory (VirtualAlloc, VirtualProtect, …)

2. Copy embedded shellcode into the newly allocated area

3. Execute!

Pure-ROP exploits are also possible
Example: in-the-wild exploit against Adobe Reader XI (CVE-2013-0640)

The complexity of ROP exploit code increases
ROP exploit mitigations in Windows 8/8.1

Control Flow Integrity in Windows 10

Dynamic ROP payload construction (JIT-ROP)

25

Remote Exploitation: Server-side vs. Client-side

26





Client-side applications (web browsers, document readers, etc.) offer a more feature-rich environment
for attackers to launch exploits through script code and program features

Just-in-time Code Reuse (JIT-ROP)
Build a ROP payload on-the-fly using malicious JavaScript code that scans the code segments of the
process for ROP gadgets through a memory leak vulnerability

27Just-In-Time Code Reuse: On the Effectiveness of Fine-Grained Address Space Layout Randomization – IEEE S&P 2013

Application Script some.dll

Disclose
gadgets

Execute
gadgets

...

???????? ret

???????? ret

???????? ret

...

Build
ROP

Payload

Read

Execute

1

2

3

pop edx; ret

pop eax; ret

pusha; ret

Memory Page Permissions

Old x86 CPUs have 1 bit per page: W
A page can be writable or not, but is always executable  Code injection: write data
into memory and then execute it

Modern CPUs have 2 bits per page: W, X
W^X: A page can be marked as writable but non-executable

Code injection is prevented, but code reuse is still possible

Some new CPUs support 3 bits per page: R, W, X
Before, any mapped page was implicitly readable

Advanced code reuse attacks rely on reading a process’ code before executing it

R^X: Marking a code page as executable but non-readable prevents memory reads
but still permits instruction fetches  breaks JIT-ROP

28

Exploitation vs. Mitigation

29

Code Injection

W^X (non-executable memory)

Code Reuse/ROP

ASLR

Disclosure-aided ROP

Code Randomization

JIT-ROP

R^X (execute-only memory)

…

Not fully deployed yet
(mostly academic
research efforts)

Direct vs. Indirect Branches

Direct control flow instructions jmp 0xABCD
The target is denoted by the operand (immediate value or memory address)

Relative or absolute jump: static analysis can identify the target

Indirect control flow instructions jmp eax
The target is denoted by the value of a register or memory location

Actual target can be known only at runtime

Control flow hijacking is possible because the attacker can influence
the target of indirect branches

Change them to point anywhere in executable memory

Injected shellcode, libc function, ROP gadget, …

30

Control Flow Integrity

Under normal conditions, execution will flow only into legitimate
program locations

Beginning of functions, beginning of basic blocks, return call sites

Attackers can redirect execution to arbitrary locations

CFI: restrict control flow to only legitimate paths
According to predetermined (statically computed) control flow graph

Match jmp/call/ret call sites to target destinations
Statically assign labels to all indirect jumps and their targets

Dynamically validate that the target label matches the jump site before transferring
control  runtime checks

31

32Control-Flow Integrity – ACM CCS 2005

Direct call
Indirect call
Return

Example CFI instrumentation

33

Bytes Instructions Original Code

Instrumented Code

Jump to target address only if the tag
at the destination == 0x12345678

Repurpose a no-sideffect x86
instruction to hold the tag

Forward vs. Backward CFG Edges

Forward edge
Function pointers

Virtual calls

Backward edge
Return instructions

Static analysis is not effective for return instructions
Target set would include every possible call site for a given function

Too large set to provide meaningful protection

34

Illegal Returns

Legitimate code:
ret transfers control to the
instruction right after the
corresponding call
 legitimate call sites

ROP code:
ret transfers control to the first
instruction of the next gadget
 arbitrary locations

35

Normal
Execution

ROP Code
Execution

Shadow Stack

Separate return addresses from
the data plane

Provide integrity protection for
return addresses

Dynamic defense – does not rely
on CFG analysis

Windows 10 introduced
hardware-enforced stack
protection

36https://techcommunity.microsoft.com/t5/windows-os-platform-blog/understanding-hardware-enforced-stack-protection/ba-p/1247815

38Code-Pointer Integrity – OSDI 2014

Windows 10 Exploit Mitigations (non-exhaustive list)

Data Execution Prevention (DEP): non-executable memory

Structured Exception Handling Overwrite Protection (SEHOP): prevents SEH overwrite

Address Space Layout Randomization (ASLR): loads DLLs into random memory addresses

Heap protections: metadata hardening, allocation randomization, guard pages

Control Flow Guard (CFG): CFI for indirect calls

Shadow Stack (CET): Separate stack for return addresses

Code Integrity Guard (CIG): Images must be signed and arbitrary images cannot be loaded

Arbitrary Code Guard (ACG): Prevent dynamic code generation/modification/execution

Windows Defender Application Guard (WDAG): application sandboxing

Windows Defender SmartScreen: check the reputation of downloaded applications

39

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 38
	Slide Number 39

