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Defending against Vulnerability Exploitation

Finding and fixing bugs  (previous lecture)
Sanitizers, fuzzing, symbolic execution, bug bounties, …

Who will find the next 0-day?

Retrofit memory safety to C/C++
Eradicate the root cause of the problem: memory errors

Performance and compatibility challenges

No protection against transient execution attacks (!)

Exploit mitigations  (this lecture)
Assuming a vulnerability exists, “raise the bar” for exploitation

DEP, GS, SafeSEH, SEHOP, ASLR, CFI, sandboxing, attack surface reduction, …
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 rewrite critical components in Rust/Go



Exploit Mitigations vs. Sanitizers

3SoK: Sanitizing for Security – IEEE S&P 2019



(Very Simple) Buffer Overflow Exploitation
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Stack Canaries

Goal: prevent control flow hijacking via 
return address overwrite

aka:
Stack Cookie
Stack Smashing Protector
Microsoft’s /GS

Add randomly generated (secret) value 
before return address

Function epilogue code checks the canary 
value before returning

Exception if it has an unexpected value
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Canarybuf[]

0x41414141AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

!=

0xBFFFFC2A

Saved EIP

0x42424242

0xDEADBEEF0x41414141

Before overflow

After overflow
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StackGuard (1998)

First implementation of stack canaries (GCC)

Random canary
Taken from /dev/urandom when the program starts

Terminator canary
Contains NULL (0x00), CR (0x0d), LF (0x0a), and EOF 
(0xff )  should terminate most string operations

7StackGuard: Automatic Adaptive Detection and Prevention of Buffer-Overflow Attacks – USENIX Security 1998

Random XOR canary
Emsi's Vulnerability: overwrite the return address with arbitrary write
(write-what-where instead of linear overflow)

Solution: XOR the canary with the saved return address

Attacker cannot modify the return address without invalidating the canary



ProPolice (IBM Research Japan, 2000)

Security improvement over StackGuard: local variable sorting
Move all buffers (arrays) above local variables   prevent local variable overwrite

Eventually merged into GCC and became the Stack Smashing Protector (SSP) 
feature (–fstack_protector)

-fstack-protector stack protection for functions that contain an array larger than 8 bytes

-fstack-protector-all  stack protection for all functions

-fstack-protector-strong introduced by Google in 2012   strike a (performance) balance 
between –fstack_protector and –fstack_protector-all

Microsoft’s /GS
Introduced in Visual Studio 2002, deployed in Windows XP SP2

Although 5 years after StackGuard, it beat the Linux/FOSS community into mainstream 
adoption by several years

8
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Canary Value Brute Forcing

The canary is generated dynamically at the creation of each thread
Typically stored in the Thread Local Storage (TLS) area

Whenever a new frame is created, the canary is pushed from the TLS into the stack

Whenever a process is forked, it inherits the address space of its parent 
All in-memory code and data, including canaries placed in stack frames and the TLS

Problematic for forking servers: attackers can brute-force the canary
1) Need to be able to force child processes to be forked from the same parent process

2) Need to be able to check if any of these child processes has crashed or not

Solution: randomize canary values right after fork
Update the canaries in both the TLS and all inherited stack frames in the child process

10DynaGuard: Armoring Canary-based Protections against Brute-force Attacks – ACSAC 2015



4 * 256 = 210 = 1024 possibilities   just 512 tries on average (!)
Instead of  2564 = 232 = 4 billion possibilities
8 ∗ 256 = 2048 in 64-bit architectures
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…

…

…

…

2564  256*4



Nginx 1.3.9 < 1.4.0 - Chuncked Encoding Stack Buffer Overflow

12https://www.exploit-db.com/exploits/25775



Other Stack Smashing Defenses

StackShield
Copy the return address into a safe memory area when a function is called

Restore the return address upon returning from a function

Even if the return address on the stack is altered, it has no effect since the original 
return address is remembered

Libsafe
Re-implementation of dangerous C functions such as strcpy()
Imposes a limit on the copied bytes to prevent return address overwrite

Limit determined based on the distance between the address of the buffer and the 
corresponding frame pointer

Shared library that is preloaded (LD_PRELOAD) to intercept C library function calls

13



FORTIFY_SOURCE (Red Hat, 2004)
Compilation time + run time buffer overflow detection

14https://gcc.gnu.org/legacy-ml/gcc-patches/2004-09/msg02055.html

char buf[5];
/* 1) Known correct. No runtime checking is needed, memcpy/strcpy are called */
memcpy (buf, foo, 5);
strcpy (buf, "abcd");
/* 2) Not known if correct, but checkable at runtime. The compiler knows the number 
of bytes in object, but doesn't know the length of the actual copy. Alternative 
functions __memcpy_chk or __strcpy_chk are used that check for buffer overflow. */
memcpy (buf, foo, n);
strcpy (buf, bar);
/* 3) Known incorrect. The compiler can detect buffer overflows at compile time. */
memcpy (buf, foo, 6);
strcpy (buf, "abcde");
/* 4) Not known if correct, not checkable at runtime. The compiler doesn't know the 
buffer size, no checking is done. Overflows will go undetected in these cases. */
memcpy (p, q, n);
strcpy (p, q);



Non-Executable Memory   (aka: NX, PaX, Exec Shield, W^X, DEP, …)

Initial implementations were software-only
x86 processors (since 80286) supported memory segmentation, which can distinguish 
between readable and executable memory

Unfortunately almost all x86 OS use a flat memory model   could not use this capability

Hardware x86 support for NX bit introduced by AMD64 (x86-64)
Followed by Intel (Pentium 4 processors based on later iterations of the Prescott core)

For 32-bit, need PAE (Physical Address Extension, 32 to 36 bit)
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4000B12A\x6A\x07\x59\xE8\xFF\xFF\xFF\xFF\xC1



Non-Executable Stack (Solar Designer, 1997)

x86 Linux kernel patch to prevent code execution in stack pages
Sun Solaris 2.6 (SPARC) also introduced a similar feature

At that time, x86 did not have an execute bit   readable pages were 
implicitly executable

Other CPUs did have an X bit, but they were far less popular

Solution: use x86 segments to isolate the stack and mark it as NX
Zero performance overhead

No need to re-compile programs

Non-executable stack was the main motivation for ret2libc attacks

17



PaX PAGEEXEC

Early software-only Linux implementation of W^X
Mark all data pages as non-executable (not just stack pages)

No NX bit in early x86: emulate it
Mark pages either as “non-present” or “supervisor”

User-space memory accesses raise page faults

Page fault handler distinguishes between instruction fetches and data accesses
(by comparing the fault address to that of the instruction that raised the fault) 

Significant runtime overhead due to the additional page faults

PaX SEGMEXEC: alternative implementation using x86 segmentation
Divide user space into two halves: one for data access and one for execution

ExecShield: similar approach by Red Hat

18https://pax.grsecurity.net/docs/pageexec.txt



Data Execution Prevention (DEP)

Introduced in Windows XP SP2
Hardware-only implementation: disabled if the x86 processor did not support NX

Enabled by default for critical Windows services

Applications can opt-in (SetProcessDEPPolicy() or /NXCOMPAT)

Runtime access to the NX bit is exposed through the Win32 API
VirtualAlloc() and VirtualProtect()  flag individual pages as executable 
or non-executable

Precious API functions for ROP exploits (same for mprotect() in Linux)

19



Address Space Layout Randomization

Hinders code reuse attacks by randomizing the location of code and 
data   unpredictable target addresses (shellcode, ROP gadgets)

Main executable, stack, heap, libraries

DEP is highly dependent on ASLR
ROP/ret2libc payloads are trivial to construct without ASLR

Initial implementation: PaX ASLR (2001)
OpenBSD version 3.4 in 2003 was the first mainstream OS to support ASLR

Followed by Linux in 2005 (initial version was weaker than PaX/ExecShield)

Introduced in Windows with Vista in 2007

21https://pax.grsecurity.net/docs/aslr.txt



22https://learn.microsoft.com/en-us/windows/security/threat-protection/overview-of-threat-mitigations-in-windows-10#address-space-layout-randomization



ASLR Limitations

During its early deployment, ASLR was not always fully adopted 
Only 66 out of 1,298 binaries in /usr/bin (2011)

Only 2 out of 16 third-party Windows applications (2010)

Non-ASLR’ed binaries can still occasionally be found even today on the latest systems

ASLR-enabled applications sometimes have statically mapped DLLs
Microsoft’s EMET mandatory randomization: force relocation even if DLL opt-out

More importantly: Information leaks break ASLR
Dynamically infer a DLL’s load address through a memory leak vulnerability

Adjust offsets of ROP gadgets/ret2libc addresses accordingly

23Q: Exploit Hardening Made Easy – USENIX Security 2011 | https://silo.tips/download/dep-aslr-implementation-progress-in-popular-third-party-windows-applications



Information Leaks Break ASLR

24https://media.blackhat.com/bh-us-12/Briefings/Serna/BH_US_12_Serna_Leak_Era_WP.pdf



Typical ROP exploits

First-stage ROP code to bypass DEP
1. Allocate/set W+X memory (VirtualAlloc, VirtualProtect, …)

2. Copy embedded shellcode into the newly allocated area

3. Execute!

Pure-ROP exploits are also possible
Example: in-the-wild exploit against Adobe Reader XI  (CVE-2013-0640)

The complexity of ROP exploit code increases
ROP exploit mitigations in Windows 8/8.1

Control Flow Integrity in Windows 10

Dynamic ROP payload construction (JIT-ROP)

25



Remote Exploitation: Server-side vs. Client-side
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



Client-side applications (web browsers, document readers, etc.) offer a more feature-rich environment 
for attackers to launch exploits through script code and program features



Just-in-time Code Reuse (JIT-ROP)
Build a ROP payload on-the-fly using malicious JavaScript code that scans the code segments of the 
process for ROP gadgets through a memory leak vulnerability

27Just-In-Time Code Reuse: On the Effectiveness of Fine-Grained Address Space Layout Randomization – IEEE S&P 2013

Application Script some.dll

Disclose
gadgets

Execute
gadgets

...

???????? ret 

???????? ret 

???????? ret 

...

Build
ROP

Payload

Read

Execute

1

2

3

pop edx; ret 

pop eax; ret 

pusha; ret 



Memory Page Permissions

Old x86 CPUs have 1 bit per page:  W
A page can be writable or not, but is always executable  Code injection: write data 
into memory and then execute it

Modern CPUs have 2 bits per page: W, X
W^X:  A page can be marked as writable but non-executable

Code injection is prevented, but code reuse is still possible

Some new CPUs support 3 bits per page: R, W, X
Before, any mapped page was implicitly readable

Advanced code reuse attacks rely on reading a process’ code before executing it

R^X: Marking a code page as executable but non-readable prevents memory reads 
but still permits instruction fetches   breaks JIT-ROP

28



Exploitation vs. Mitigation
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Code Injection

W^X (non-executable memory)

Code Reuse/ROP

ASLR

Disclosure-aided ROP

Code Randomization

JIT-ROP

R^X (execute-only memory)

…

Not fully deployed yet 
(mostly academic 
research efforts)



Direct vs. Indirect Branches

Direct control flow instructions jmp 0xABCD
The target is denoted by the operand (immediate value or memory address)

Relative or absolute jump: static analysis can identify the target

Indirect control flow instructions jmp eax
The target is denoted by the value of a register or memory location

Actual target can be known only at runtime

Control flow hijacking is possible because the attacker can influence 
the target of indirect branches

Change them to point anywhere in executable memory

Injected shellcode, libc function, ROP gadget, …

30



Control Flow Integrity

Under normal conditions, execution will flow only into legitimate 
program locations

Beginning of functions, beginning of basic blocks, return call sites

Attackers can redirect execution to arbitrary locations

CFI: restrict control flow to only legitimate paths
According to predetermined (statically computed) control flow graph

Match jmp/call/ret call sites to target destinations
Statically assign labels to all indirect jumps and their targets

Dynamically validate that the target label matches the jump site before transferring 
control   runtime checks

31



32Control-Flow Integrity – ACM CCS 2005

Direct call
Indirect call
Return



Example CFI instrumentation
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Bytes Instructions Original Code

Instrumented Code

Jump to target address only if the tag
at the destination == 0x12345678

Repurpose a no-sideffect x86
instruction to hold the tag



Forward vs. Backward CFG Edges

Forward edge
Function pointers

Virtual calls

Backward edge
Return instructions

Static analysis is not effective for return instructions
Target set would include every possible call site for a given function

Too large set to provide meaningful protection

34



Illegal Returns

Legitimate code:
ret transfers control to the 
instruction right after the 
corresponding call
 legitimate call sites

ROP code:
ret transfers control to the first 
instruction of the next gadget
 arbitrary locations

35

Normal 
Execution

ROP Code 
Execution



Shadow Stack

Separate return addresses from 
the data plane

Provide integrity protection for 
return addresses

Dynamic defense – does not rely 
on CFG analysis

Windows 10 introduced 
hardware-enforced stack 
protection

36https://techcommunity.microsoft.com/t5/windows-os-platform-blog/understanding-hardware-enforced-stack-protection/ba-p/1247815



38Code-Pointer Integrity – OSDI 2014



Windows 10 Exploit Mitigations (non-exhaustive list) 

Data Execution Prevention (DEP): non-executable memory

Structured Exception Handling Overwrite Protection (SEHOP): prevents SEH overwrite

Address Space Layout Randomization (ASLR): loads DLLs into random memory addresses 

Heap protections: metadata hardening, allocation randomization, guard pages

Control Flow Guard (CFG): CFI for indirect calls

Shadow Stack (CET): Separate stack for return addresses

Code Integrity Guard (CIG): Images must be signed and arbitrary images cannot be loaded

Arbitrary Code Guard (ACG): Prevent dynamic code generation/modification/execution

Windows Defender Application Guard (WDAG): application sandboxing

Windows Defender SmartScreen: check the reputation of downloaded applications

39
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