
CSE509 Computer System Security

2023-02-21 Vulnerability Discovery

Michalis Polychronakis

Stony Brook University

Defending against (0day) Vulnerability Exploitation

Finding and fixing bugs (this lecture)
Sanitizers, fuzzing, symbolic execution, bug bounties, …

Who will find the next 0-day?

Retrofit memory safety to C/C++
Eradicate the root cause of the problem: memory errors

Performance and compatibility challenges

No protection against transient execution attacks (!) (future lecture)

Exploit mitigations (next lecture)
Assuming a vulnerability exists, “raise the bar” for exploitation

DEP, GS, SafeSEH, SEHOP, ASLR, CFI, sandboxing, attack surface reduction, …

2

 rewrite critical components in Rust/Go

Finding Bugs

Code auditing: code reviews, code formatting, reverse engineering, …

Vulnerability scanning: known vulnerabilities, attack patterns, …

Automated testing: unit testing, regression testing, …

Static analysis: taint tracking, symbolic execution, …

Sanitizers (dynamic analysis): memory corruption, race conditions, …

Fuzzing: “dumb” / “smart” fuzzing, black/grey/white-box fuzzing, …
…

3

Vulnerability Scanning

Information sources
Global: NVD (National Vulnerability Database), proprietary feeds, …

Per-distribution: Ubuntu, Red Hat, …

OVAL: Open Vulnerability and Assessment Language
“A community-developed language for determining vulnerability and configuration
issues on computer systems”

One-time vs. regular scanning
Even if a server/container won’t ever change, it still has to be scanned regularly

Vulnerabilities in old code keep being discovered

Example: Shellshock (command exec vulnerability in Bash) was found in 2014;
the bug was in code written in 1989

4

Static Code Analysis

Analyze code (without running it) to identify bugs/vulnerabilities
In contrast to dynamic analysis, which depends on program input

Various techniques (and combinations)
Data flow analysis

Control flow graph analysis

Taint tracking

Model checking

Symbolic execution

Abstract interpretation

Vast number of free and commercial tools

5

Symbolic Execution

Goal: determine what inputs cause each part of a program to execute
Symbolic values instead of actual data (abstract interpretation)

Expressions for variables and statements in the program

Constraints for the possible outcomes of conditional branches

6

int f() {
y = read();
z = y * 2;
if (z == 12) {

fail();
} else {

printf("OK");
}

}

λ*2 == 12

y = λ

z = λ*2

λ*2 == 12 λ*2 != 12

TRUE FALSE

Symbolic Execution

Main benefit: simultaneously explores multiple paths that a program
may take under different inputs

Each symbolic execution path represents the whole set of runs whose concrete values
satisfy the path condition

Uses a constraint solver to generate inputs that exercise a given path

Very useful for “passing” difficult checks such as magic numbers or checksums

Main drawback: extremely slow even for moderately complex code
Path/state explosion: number of paths increases exponentially with each branch
(loops on symbolic variables are even worse)

Compromise: concolic execution (from “concrete + symbolic”)
Hybrid approach that performs symbolic execution along a concrete execution path

7

Sanitizers and Dynamic Testing

Instrument the program with various types of dynamic checks and
detect errors at runtime

Source code: compiler-level pass to add instrumentation

Binary only: static or dynamic binary instrumentation (Pin, DynamoRio, Valgrind, …)

Various types of analysis
Memory debugging

Memory leak detection

Race condition detection

Profiling (execution, heap, cache, …)

8

9SoK: Sanitizing for Security – IEEE S&P 2019

Valgrind

Dynamic binary instrumentation framework
for building dynamic analysis tools

Machine code is first translated into Valgrind’s intermediate representation (IR):
processor-neutral, SSA-based form

Valgrind tools perform transformations at the IR level

Transformed IR is translated back into machine code and then the processor runs it
(VM using JIT compilation)

No source code is needed!
But DBI is very costly: orders of magnitude slower program execution

Several tools for memory error detection and profiling

10https://valgrind.org/

Valgrind Tools

Memcheck
Instruments all memory reads, writes, and calls to malloc/new/free/delete

Shadow memory for every bit of data: tracks whether a bit is defined or not

Can detect illegal memory accesses, use of uninitialized memory, memory leaks,
double/mismatched free(), …

Cachegrind: cache profiler

Callgrind: call graph analyzer

Massif: heap profiler

Helgrind: race condition detector
…

11

Compiler-level Sanitizers (LLVM, GCC)

Specialized sanitizers based on compiler instrumentation
Main benefit: much faster

Main drawback: need for source code

ASan (Address Sanitizer)
Fast memory error detector: finds use-after-free and {heap, stack, global} buffer overflow bugs
in C/C++ programs (2x slowdown)

TSan (Thread Sanitizer)
Data race detector (5-15x slowdown)

MSan (Memory Sanitizer)
Detects uses of uninitialized memory (3x slowdown)

UBSan (Undefined Behavior Sanitizer)
Fast undefined behavior detector

12

AddressSanitizer

Two parts: compiler instrumentation module and runtime library
Directly-mapped shadow memory

Can detect the following types of bugs:
Out-of-bounds accesses to heap, stack, and globals

Use after free

Use after return

Use after scope

Double-free, invalid free

Initialization order bugs

Memory leaks (experimental)

Clang (3.1+), GCC (4.8+), and Xcode (7.0+)

13

ASan Example: Stack Buffer Overflow

14

int main(int argc, char **argv) {
int stack_array[100];
stack_array[1] = 0;
return stack_array[argc + 100]; // BOOM

}

clang -O -g -fsanitize=address %t && ./a.out
==7405==ERROR: AddressSanitizer: stack-buffer-overflow on address 0x7fff64740634 at pc 0x46c103 bp
0x7fff64740470 sp 0x7fff64740468
READ of size 4 at 0x7fff64740634 thread T0

#0 0x46c102 in main /tmp/example_StackOutOfBounds.cc:5

Address 0x7fff64740634 is located in stack of thread T0 at offset 436 in frame
#0 0x46bfaf in main /tmp/example_StackOutOfBounds.cc:2

This frame has 1 object(s):
[32, 432) 'stack_array' <== Memory access at offset 436 overflows this variable

ASan Example: Golbal Buffer Overflow

15

int global_array[100] = {-1};
int main(int argc, char **argv) {
return global_array[argc + 100]; // BOOM

}

clang -O -g -fsanitize=address %t && ./a.out
==7455==ERROR: AddressSanitizer: global-buffer-overflow on address 0x000000689b54 at pc 0x46bfd8 bp
0x7fff515e5ba0 sp 0x7fff515e5b98
READ of size 4 at 0x000000689b54 thread T0

#0 0x46bfd7 in main /tmp/example_GlobalOutOfBounds.cc:4

0x000000689b54 is located 4 bytes to the right of
global variable 'global_array' from 'example_GlobalOutOfBounds.cc' (0x6899c0) of size 400

ASan Example: Heap Buffer Overflow

16

int main(int argc, char **argv) {
int *array = new int[100];
array[0] = 0;
int res = array[argc + 100]; // BOOM
delete [] array;
return res;

}

clang++ -O -g -fsanitize=address %t && ./a.out
==25372==ERROR: AddressSanitizer: heap-buffer-overflow on address 0x61400000ffd4 at pc 0x0000004ddb59 bp
0x7fffea6005a0 sp 0x7fffea600598
READ of size 4 at 0x61400000ffd4 thread T0

#0 0x46bfee in main /tmp/main.cpp:4:13

0x61400000ffd4 is located 4 bytes to the right of 400-byte region [0x61400000fe40,0x61400000ffd0)
allocated by thread T0 here:

#0 0x4536e1 in operator delete[](void*)
#1 0x46bfb9 in main /tmp/main.cpp:2:16

ASan Example: Heap Use After Free

17

int main(int argc, char **argv) {
int *array = new int[100];
delete [] array;
return array[argc]; // BOOM

}

g++ -O -g -fsanitize=address heap-use-after-free.cc && ./a.out
==5587==ERROR: AddressSanitizer: heap-use-after-free on address 0x61400000fe44 at pc 0x47b55f bp
0x7ffc36b28200 sp 0x7ffc36b281f8
READ of size 4 at 0x61400000fe44 thread T0

#0 0x47b55e in main /home/test/example_UseAfterFree.cc:7
#1 0x7f15cfe71b14 in __libc_start_main (/lib64/libc.so.6+0x21b14)
#2 0x47b44c in _start (/root/a.out+0x47b44c)

0x61400000fe44 is located 4 bytes inside of 400-byte region [0x61400000fe40,0x61400000ffd0)
freed by thread T0 here:

#0 0x465da9 in operator delete[](void*) (/root/a.out+0x465da9)
#1 0x47b529 in main /home/test/example_UseAfterFree.cc:6

previously allocated by thread T0 here:
#0 0x465aa9 in operator new[](unsigned long) (/root/a.out+0x465aa9)
#1 0x47b51e in main /home/test/example_UseAfterFree.cc:5

18

Sanitizers are not enough

Chromium and Firefox developers are active users of AddressSanitizer
It has found hundreds of bugs in these web browsers

Bugs also found in FFmpeg, FreeType, Safari, iTunes, Opera, …

The Linux kernel has enabled ASan for x86-64 as of v4.0

They are still best-effort tools
Only as good as the test inputs used

Not all types of bugs are covered
Example: adjacent buffers in structs and classes are not protected from overflow
(backwards compatibility problems)

19

Fuzzing

Automated software testing approach for identifying bugs potential
vulnerabilities

Feed arbitrary inputs to programs to find erroneous cases

No or very little knowledge of the internal operations of the system under test (SUT)

A form of negative testing (fault injection)
Unexpected, malformed, or semi-valid inputs instead of the properly formatted data
expected by the program

Fuzzing has gradually evolved from a niche testing technique to a full
software testing and vulnerability discovery discipline

Related testing techniques: protocol mutation, robustness testing, syntax testing,
dirty testing, …

20

History of Fuzzing

1983: The Monkey
“…was a small desk accessory that used the journaling hooks to feed random
events to the current application, so the Macintosh seemed to be operated by an
incredibly fast, somewhat angry monkey, banging away at the mouse and
keyboard, generating clicks and drags at random positions with wild abandon.”

1988: Bart Miller’s fuzz project assignment

1990: Boris Beizer explains Syntax Testing

1990: “An Empirical Study of the Reliability of UNIX Utilities” [Miller et al.]
…

21

22

23

Fuzzing Like It’s 1989

Trail of Bits conducted an interesting experiment
“… let’s take a long look back 30 years and reflect on the original fuzzing paper, An Empirical Study of the Reliability
of UNIX Utilities, and its 1995 follow-up, Fuzz Revisited, by Barton P. Miller. In this blog post, we are going to find bugs
in modern versions of Ubuntu Linux using the exact same tools as described in the original fuzzing papers.”

24© Trail of Bits - https://blog.trailofbits.com/2018/12/31/fuzzing-like-its-1989/

Ubuntu 18.10
(2018)

Ubuntu 18.04
(2018)

Ubuntu 16.04
(2016)

Ubuntu 14.04
(2014)

Slackware 2.1.0
(1995)

Crashes 1 (f77) 1 (f77) 2 (f77, ul) 2 (swipl, f77) 4 (ul, flex, indent, gdb)

Hangs 1 (spell) 1 (spell) 1 (spell) 2 (spell, units) 1 (ctags)

Total Tested 81 81 81 81 55

Crash/Hang % 2% 2% 4% 5% 9%

Regression Testing vs. Fuzzing

Regression testing
Run program using well-defined normal (and abnormal) inputs and look for errors
(typically manually selected)

Goal: prevent code changes or new code from introducing bugs

Fuzzing
Run program using a vast number of random (abnormal) inputs and look for errors

Goal: identify (potentially exploitable) bugs

25

Types of Fuzzing

Can be categorized across various dimensions

Input or attack vector
Network, API/protocol, GUI, files/media, …

Structure
Black, grey, or white box

Test case complexity
“Dumb” fuzzing: random inputs or simple templates

Generation-based: generate inputs from scratch based on existing grammars/models
or simulation

Mutation-based: dynamic generation or evolution of new inputs based on a small set
of real “seed” inputs

26

Generic Architecture

Three main components
Test case generator

Execution engine

Data logger/Assessor

An orchestrator manages the whole process
Need for speed: fork servers, OS-assisted fuzzing,
in-process fuzzing (avoid forking), …

Detect erroneous conditions beyond crashing
Sanitizers can be integrated to detect security violations

27

Testcase generation

Program execution

Violation

Log process state

Y

N

Mutation-based Fuzzing

Start with a set of “seed” inputs for a given application and mutate
them to generate new inputs

libpng PNG images, Acrobat Reader PDF files, …

Various transformations: randomize fields, bit flipping,
add/remove/modify data, …

Much simpler to implement, although some intelligence is needed
Avoid useless test cases (e.g., re-compute checksums)

Automated seed selection (or test suite reduction): pick the best seeds/part of input
that is actually inducing the failure

Tools: AFL, VUzzer, ZZUF, Taof, GPF, ProxyFuzz, Radamsa, …

30

Generation-based Fuzzing

“Smart” or context-aware fuzzing: generate inputs from scratch based
on file/protocol format specifications (RFC, documentation, …)

Data modelling, state modelling, …
Extra knowledge higher quality test cases

Get “deeper” into protocol/application states

Generate more valid test cases that are not immediately rejected

Mutations are still applied, but with finer granularity
Per message, per field, per object, …

Main drawback: accurate modeling requires significant manual effort

Tools: SPIKE, Sulley, Mu-4000, Codenomicon, Peach Fuzzer, …

31

Black-box Fuzzers (“Traditional” Fuzzing)

They treat the program as a black box and are unaware of internal
program structure

Only the input and output of the SUT are known

Randomized inputs or simple heuristic/grammar-based test case generation

No feedback: each test is independent from the rest

Main benefits: simple and fast, can be easily parallelized, can work with
very complex programs

Main drawback: can expose only “shallow” bugs

Tools: Peach, Protos, Spike, Autodafe, ansvif, …

33

White-box Fuzzers

Use heavyweight program analysis to
Understand the impact of inputs (beyond crashing)

Increase code coverage and reach critical program locations

Take advantage of program specification (if available) to generate
(sequences of) inputs

E.g., model-based testing: program output can also be checked against the specification

E.g., symbolic execution: collect constraints on inputs, negate those, solve with constraint
solver, generate new inputs

Main benefit: can expose “deep” bugs

Main drawbacks: very slow, need source code

Tools: KLEE, S2E, DART, SAGE (Microsoft), Dowser, …

34

Grey-box Fuzzers

Rely on code instrumentation to get information about the program
and inform subsequent tests

E.g., monitor program states reached under different inputs, and guide subsequent
inputs to increase code coverage

E.g., use data taint tracking to identify which registers and memory locations are
related to which part of the input

Code coverage approaches:
Statement coverage: which statements have been executed

Branch coverage: which branches have been taken

Path coverage: which paths were taken.

Tools: AFL, VUzzer, Driller, honggfuzz, libFuzzer, …

35

AFL (American Fuzzy Lop)

Written by Michał Zalewski

Practical, open-source, security-oriented fuzzer
Has had a huge impact in the security community

Uses compilation-time instrumentation and genetic algorithms to
discover clean, interesting test cases

Goal: trigger new internal states in the targeted binary

Black-box testing is supported too if source code is not available

Evolutionary fuzzing: feedback loop to assess how good an input is
AFL retains any input that discovers a new path and mutates that input further to
check if doing so leads to new basic blocks

36

AFL Usage

User provides a sample command that runs the tested application and
at least one small example input file

E.g., in case of an audio player, AFL can be instructed to open a short sound file with it

AFL attempts to execute the specified command
If that succeeds, it tries to reduce the input file to the smallest one that triggers the
same behavior

AFL then begins the actual fuzzing by applying various modifications
to the input file

Inputs that result in crashes or hangs are saved for further user inspection

37

AFL Mutation Strategies

Bit or byte flips

Simple arithmetic on byte values

Known integers (e.g., -1, 256, 1024, MAX_INT-1, MAX_INT)

Attempt to set “interesting” bytes, words, or dwords

Addition or subtraction of small integers to bytes, words, or dwords

Completely random single-byte sets

Block delete, duplicate via overwrite/insertion, or memset

Test case splicing: take two distinct files that differ in at least two
locations and splice them at a random location

38https://lcamtuf.blogspot.com/2014/08/binary-fuzzing-strategies-what-works.html

39

40

41

42

LibFuzzer (part of LLVM)

Ιn-process, coverage-guided, evolutionary fuzzing engine
In-process: inputs are mutated directly in memory (no need to launch a new process
for every test case)

Coverage-guided: prioritize test cases that increase overall coverage

White-box: compilation-time instrumentation of the source code

Can fuzz individual libraries

Support for sanitizers
ASan

UBSan

MSan

43https://security.googleblog.com/2016/08/guided-in-process-fuzzing-of-chrome.html

OSS-Fuzz: Continuous Fuzzing for Open Source Software

Free fuzzing platform for open-source projects
Since 2016: over 8,800 vulnerabilities and 28,000 bugs fixed across 850 projects

Awarded over $600,000 to contributors for integrating new projects into OSS-Fuzz

Fuzzing engines
libFuzzer, AFL++, Honggfuzz

ClusterFuzz
Distributed fuzzer execution
environment and reporting

44https://security.googleblog.com/2023/02/taking-next-step-oss-fuzz-in-2023.html

Determining Exploitability

Crash != vulnerability

Look for cases where data is written to controllable addresses
or registers ability to control code execution

Are saved return address/stack variables overwritten?

Is the crash in a heap management function?

Are registers values derived from data sent by the fuzzer?

Is the crash triggered by a read operation?

Can we craft a test case to avoid this?

Is the crash triggered by a write operation?

Do we have full or partial control of the faulting address?

Do we have full or partial control of the written value?

45

Use case: Microsoft’s !Exploitable

Windows debugging extension (Windbg)

Provides automated crash analysis and security risk assessment
Assigns an exploitability rating to crashes

Uses lightweight taint tracking

Use stack snapshot (hash) as a “fingerprint” for a crash
Uses a set of patterns to filter out stack frames which are used in processing
exceptions or are OS resource functions

Ignore uninteresting parts of the stack more relevant hashes

Grouping crashes dramatically reduces the number of crashes that need to be
manually inspected

46

DARPA Cyber Grand Challenge (CGC)

CTF-like contest to develop autonomous systems that
can discover, exploit, and patch vulnerabilities

Multiple rounds, final event on August 4, 2016 (DEFCON 24)

32-bit challenge binaries (vastly simplified ABI)

Exploitation demonstrated by submitting a “proof of vulnerability”
A binary program that communicates with the opponent’s binary and exploits it

Bug finding
Most teams used a combination of AFL-like
fuzzing and symbolic execution

Collectively, all teams found vulnerabilities
in 99 out of the 131 challenge binaries

47

CGC Use Case: Mechanical Phish (UCSB, 3rd place)

Fully open source, built from open-source components

Driller: bug finding component
Fuzzing (AFL) + symbolic execution

QEMU for execution monitoring

Adding symbolic execution
Path explosion used only selectively

Symbolic execution only for paths that
AFL finds interesting

Identify transitions that have not been seen yet,
and feed the corresponding inputs back to AFL

48

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 30
	Slide Number 31
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Slide Number 47
	Slide Number 48

