
CSE509 Computer System Security

2023-02-09 Software Vulnerabilities

Michalis Polychronakis

Stony Brook University

Software Vulnerabilities

Program flaws can turn into exploitable vulnerabilities

Securing user-space applications is equally critical as securing the OS
May run with superuser privileges: system daemons, setuid programs,
anything launched by the root account, …

Non-privileged applications may be a stepping stone to
full system compromise  privilege escalation attacks

The OS is software too

Full system compromise may not even be needed (!)
User data is handled by applications  compromising an application may be enough

Browsers, password managers, messaging apps, …

2

Types of Software Vulnerabilities

Vast number of different types of programming flaws, weaknesses,
omissions, and other oversights

Many different corresponding exploitation techniques

Classifications according to different aspects include:
Type of bug

Exploitation strategy

SDL phase

Programming language

System layer

Example: MITRE’s Common Weakness Enumeration (CWE) classification

3

4© MITRE - https://cwe.mitre.org/data/pdfs.html

5

6

Another example: OWASP Top 10 “The ten most critical web application security risks”

8https://owasp.org/www-project-top-ten/

Some Basic Types of Software Vulnerabilities

Memory corruption: stack/heap buffer overflow, dangling pointers, …

Arithmetic errors: arithmetic overflow, signedness, array indexing, …

Race conditions: synchronization issues, TOCTTOU bugs, …

Unvalidated input: format strings, SQL injection, command injection, …

Confused deputy: CSRF, clickjacking, …

Side channels: timing, power, temperature, …

Program logic/design/protocol flaws: wrong/missing checks, typos, …

9

Arithmetic Overflow

Finite number of bits to represent integers

Let’s assume a 32-bit system
Integers are expressed in two’s complement notation

Signed integers
Positive numbers: 0x00000000 – 0x7fffffff 0 to 231-1
Negative numbers: 0x80000000 – 0xffffffff -(231) to -1

Unsigned integers
0x00000000 – 0xffffffff 0 to 232-1

Both can overflow or underflow

10

“Only the first five clients can connect”

11

unsigned int connections = 0;
...
/* new connection attempt */
...
connections++;
if (connections < 5) {

grant_access();
}
else {
deny_access();

}

How can an attacker connect even if there are
already five established connections?

“Only the first 5 clients can connect”

12

unsigned int connections = 0;
...
/* new connection attempt */
...
if (connections < 5) {

connections++;
}
if (connections < 5) {

grant_access();
}
else {
deny_access();

}

Upper bound of five connections is enforced

Memory-related Errors

Very broad class of undefined memory access vulnerabilities
One of the most important and widely exploited types of vulnerabilities

Buffer overflow, null pointer dereference, use after free, uninitialized memory use, …

In contrast to memory safe languages, C and C++ do not safeguard
memory against illegal accesses

Under unexpected conditions, attackers may be able to read from or write to arbitrary
memory locations

Lower-level languages  performance
Operating systems, core services, desktop applications, embedded systems, and many
other programs are still written in C/C++

Promising recent progress on low-overhead memory-safe languages (e.g., Rust, Go)

Buffer Overflow

C and C++ do not provide any automatic bounds checking capability
for allocated chunks of memory

Arrays: can be indexed past the first (underflow) or last (overflow) item

Pointers: can point outside the allocated object

Care must be taken when reading/writing user-supplied or
user-derived data from/to memory

More data than expected may be supplied  overflow

The program should perform explicit bounds checks

An attacker can intentionally overflow the buffer and access
out-of-bounds memory

Modify critical control or program data (overwrite)

Leak sensitive information (overread)

14

Simple overflow example: unbounded string copy

15

int main(int argc, char *argv[]) {
char buf[16];
strcpy(buf, argv[1]);
printf("%s\n", buf);
return 0;

}

$./overflow AAAAAAAAAAAA
AAAAAAAAAAAAAAAA
$./overflow AAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAA
Segmentation fault (core dumped)

16

buf[16]

saved EBP

return address

arg1

arg2
0xFFFFFFFF

stack

17

buf[16]

saved EBP

return address

arg1

arg2
0xFFFFFFFF

stack
\x65\x65\x65\x65

\x65\x65\x65\x65

\x65\x65\x65\x65 

18

buf[16]

saved EBP

return address

arg1

arg2
0xFFFFFFFF

stack
\x65\x65\x65\x65

\x65\x65\x65\x65

\x65\x65\x65\x65

\x65\x65\x65\x65

\x65\x65\x65\x65

\x65\x65\x65\x65

\x65\x65\x65\x65

\x65\x65\x65\x65

Overflow

Safer way

19

#define BUF_SIZE 16

int main(int argc, char *argv[]) {
char buf[BUF_SIZE];
strncpy(buf, argv[1], BUF_SIZE);
printf("%s\n", buf);
return 0;

}

Excplicit bounds check:
strncopy will never write more
than BUF_SIZE bytes into buf

What can the attacker do? Overwrite control data

20

buf[16]

saved EBP

return address

arg1

arg2
0xFFFFFFFF

stack

authenticated

\x0f\x6a\xe8\x59

\xff\xff\xff\xff

\x5e\xc1\x46\x80

\xe0\x0a\x4c\x30

\x0b\x0e\xfa\x02

\x4b\x45\x49\x46

\x52\x4a\x4d\x4f

Arbitrary code
execution
spawn shell
listen for connections
add user account
download and execute
malware

(future lecture)

What can the attacker do? Overwrite program data

21

int main(int argc, char *argv[]) {
int authenticated = 0;
char password[16];
gets(password);
if (check_password(password) == TRUE) {

authenticated = 1;
}
return authenticated;

}
$./authenticate AAAAAAAAAAAAAAAA && echo $?
0
$./authenticate AAAAAAAAAAAAAAAAA && echo $?
65
$./authenticate `printf "AAAAAAAAAAAAAAAA\x01"` && echo $?
1

22

buf[16]

saved EBP

return address

arg1

arg2
0xFFFFFFFF

stack

authenticated

23

buf[16]

saved EBP

return address

arg1

arg2
0xFFFFFFFF

stack

authenticated

\x65\x65\x65\x65

\x65\x65\x65\x65

\x65\x65\x65\x65

\x65\x65\x65\x65

\x01

What can the attacker do? Leak data

24

CVE-2014-0160: Missing bounds
check before a memcpy() call that
uses non-sanitized user input as
the length parameter.

2525© XKCD - https://xkcd.com/1354/

2626© XKCD - https://xkcd.com/1354/

2727© XKCD - https://xkcd.com/1354/

Pointer manipulation

28

void vulnerable(void *arg, size_t len) {
long val = 0;
long *ptr = NULL;
char buf[128];
...
memcpy(buf, arg, len);
*ptr = val;
...

}

“Arbitrary write” capability: The attacker can write
controlled data into a controlled location

Common Heap Errors

Initialization mistakes
malloc(), realloc() and C++ new do not initialize the allocated data.

Confusion between scalars and arrays
new and delete for scalars, new[] and delete[] for arrays

Failing to check return values
Functions like malloc() and realloc() return a NULL pointer when out of memory

Writing to already freed memory

Freeing the same memory multiple times

Writing outside of the allocated area

29

Corruption of internal memory
allocator data structures or
allocated application data

Heap-based Overflows

30© IAR Systems – https://www.iar.com/sv/knowledge/learn/programming/mastering-stack-and-heap-for-system-reliability/

int main(int argc, char *argv[]) {
char *p, *q;
p = malloc(1024);
q = malloc(1024);
strcpy(p, argv[1]);
free(q);
free(p);
return 0;

}

Arbitrary write when free() is called
by carefully corrupting heap metadata

Format String Vulnerabilities

The printf() family of functions accept a format string denoting how
a variable will be displayed

printf("%s", str)  prints str variable as string

printf("%d", num)  prints num as a decimal value

printf("%x", num)  prints num as a hexadecimal value

Format strings can also write to memory
printf("ABCD%n", &i)  write the number of bytes output so far to the memory
address of the second argument

What if…
The programmer does not supply a format string?

Fewer arguments are passed than the number of format string parameters?

31

Simple format string error example

32

int main(int argc, char *argv[]) {
printf("Input: ");
printf(argv[1]);
printf("\n");

}

$./fmt test
Input: test

$./fmt "%08x %08x %08x %08x"
input: b773c080 0804846b b7721ff4 08048460

$./fmt $(printf "\x18\xa0\x04\x08")%x%x%x%x%n

Safer way

33

int main(int argc, char *argv[]) {
printf("Input: ");
printf("%s", argv[1]);
printf("\n");

}

Other Memory-related Exploitable Conditions

NULL-termination errors

Dangling pointers

NULL pointer dereferences

String truncation

Single-byte overwrite

Off-by-one accesses

Double free
…

34

Race Conditions

Situations in which the behavior of the program depends on
the timing of some event

Critical section
Opens up a window of opportunity for the attacker

Race conditions occur in many different contexts
Multi-threaded programs with different threads operating on the same data

Distributed applications that perform multi-step transactions

Time of check to time of use (TOCTTOU): changes may happen between
checking a condition and using the results of the check

35

Filesystem race condition example

36

// setuid program

if (access("file01", W_OK) != 0) { // access() checks the real uid (not eid)
exit(1);

}

fd = open("file01", O_WRONLY);
write(fd, buffer, sizeof(buffer)); // write() modifies /etc/passwd

ln /etc/password file01

iOS 8.1 Hardware-assisted Screenlock Bruteforce

Successfully brute-force device PIN even if “wipe out after 10 failed
attempts” is enabled (!)

Vulnerable code:

1. Display “incorrect pin” message

2. ++attempts;

Correct code:

1. ++attempts; // gets written to flash memory

2. Display “incorrect pin” message

37

Power off the device

© MDSec - https://www.mdsec.co.uk/2015/03/apple-ios-hardware-assisted-screenlock-bruteforce/

Program Logic Flaws

Flaws in the design itself, or in the way the design was implemented in
the program code

Rather than lower-level bugs (overflows etc.)

Indicative examples
Abuse of functionality (e.g., lock another user out with repeated failed attempts)

Workflow circumvention (e.g., skip payment info and jump straight to delivery info)

Information leakage (e.g., through hidden form fields)

Insufficient/poor validation (e.g., negative number of items)

Diverse and complicated  very difficult to find

39

GOTO FAIL

iOS 7.0.6 signature verification error
Legitimate-looking TLS certificates with mismatched private keys were
unconditionally accepted…

40

if ((err = SSLHashSHA1.update(&hashCtx, &serverRandom)) != 0)
goto fail;

if ((err = SSLHashSHA1.update(&hashCtx, &signedParams)) != 0)
goto fail;
goto fail;

if ((err = SSLHashSHA1.final(&hashCtx, &hashOut)) != 0)
goto fail;

...

fail:
SSLFreeBuffer(&signedHashes);
SSLFreeBuffer(&hashCtx);
return err;

?!!?!?!?

Check never executed

Return with err == 0

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40

