CSE509 Computer System Security R\ stony Brook University

2023-02-09 Software Vulnerabilities

Michalis Polychronakis

Stony Brook University

Software Vulnerabilities
Program flaws can turn into exploitable vulnerabilities

Securing user-space applications is equally critical as securing the OS

May run with superuser privileges: system daemons, setuid programs,
anything launched by the root account, ...

Non-privileged applications may be a stepping stone to
full system compromise > privilege escalation attacks

The OS is software too

Full system compromise may not even be needed (!)
User data is handled by applications = compromising an application may be enough

Browsers, password managers, messaging apps, ...

Types of Software Vulnerabilities

Vast number of different types of programming flaws, weaknesses,
omissions, and other oversights

Many different corresponding exploitation techniques

Classifications according to different aspects include:
Type of bug
Exploitation strategy
SDL phase
Programming language

System layer

Example: MITRE's Common Weakness Enumeration (CWE) classification

N

///——D

119 -

Improper Resfriction of Operafions within the Bounds of a Memary

Buffer

© MITRE - https://cwe.mitre.org/data/pdfs.html

120 - Buffer Copy without Checking Size of Input ('Classic Buffer Cverflow’)

|

7

123 - Write-what-where Condition
125 - Qui-of-bounds Read
466 - Return of Pointer Value Ouiside of Expected Range
TBE - Access of Memory Location Before Start of Buffer
787 - Out-of-bounds Write
788 - Access of Memary Location After End of Buffer
805 - Buffer Access with Incorrect Length Value
822 - Untrusted Pointer Dereference
823 - Use of Out-of-range Pointer Offset
824 - Access of Uninitialized Pointer
825 - Expired Pointer Dereference
680 - Integer Overflow to Buffer Overflow

/

/N [\

124 - Buffer Underwrite (‘Buffer Underflow’)
127 - Buffer Under-read
121 - Stack-based Buffer Overflow
122 - Heap-based Buffer Overflow
126 - Buffer Over-read
806 - Buffer Access Using Size of Source Buffer

—— |-

Double Free

T ——————» | 416-

Use After Free

///—- ‘ 280- Improper Handling of Insufficient Permissions or Privileges ‘

l 252 - Unchecked Retum Value ‘
703 - Improper Check or Handling of Exceptional Conditions | —_— ‘ a9 - Unchecked Error Condition |
\- ‘ 273 - Improper Check for Dropped Privileges ‘
754 - Improper Check for Unuswal or Exceptional Conditions. ‘
— ‘ 394 - Unexpacted Status Code or Return Value ‘
L ‘ 390- Detection of Error Condition Without Action ‘
‘ 755 - Improper Handling of Exceptional Conditions ‘
— | 544 - Missing d Error Handling Mech |
R | 12- ASPNET Misconfiguration; Missing Custom Error Page
‘ 756 - Missing Custom Error Page ‘
e ‘ 7- J2EE Misconfiguration: Missing Custom Error Page
120 - Buffer Copy without Checking Size of Input ('Classic Buffer Overflow’) ‘
‘ 123- Writa-what-where Condition ‘
‘ 125 - Out-of-bounds Read ‘
A65 - FReturn of Pointer Value Outside of Expected Range | / 124 - Buffer Underwrite ('Buffer Underfiow)
‘ 786 - Accass of Memary Location Before Start of Buffer | —_— | 127- Buffer Under-read
///——b ‘ 787 - Out-of-bounds Write ‘ / ‘ 121 - Stack-based Buifer Overflow
118 - Incorrect Access of Indexable Resource [Range Error’) B — LA e Epe st c ol Opeésmcs e Banc e e e —_— l 788 - Access of Memory Location After End of Buffer ‘ e ‘ 122 Heap-based Buffer Overflow
Buifer Access with Incorrect Length Value ‘ \ | 126 - Buffer Over-read ‘

Untrusted Pointar Dereference

| \l 806 - Buffer Access Using Size of Source Buffer

Use of Qut-of-range Pointer Offset

Access of Uninitialized Pointer

Expired Pointer Dereferance

Integer Overtlow to Buffer Overflow

\» 805-
‘ B2
=
‘ 824-
‘ 825
|

Miginterpretation of Input ‘

- ‘ 415 Double Free ‘

B ‘ 416 - Use After Free ‘

Incomglete Model of Endpoint Features

O —— Inconsistent Interpretation of HTTP Requests (HTTP Request

Smuggling')

435-

Improper Interaction Between Multiple Enfifies

Behavioral Change in New Version or Environment ‘

‘ €50~ Trusting HTTP Permission Mathods on the Server Side

733 - Compisr Optimi Remaval or M

of & itical

iy
¥

—_— - i
Code 14 Compiler Removal of Code to Clear Buffers

/' ‘ 222 - Truncation of Security-relevant Information

_
I ¥
01
| |

Another exam pIe: OWASP Top 10 “The ten most critical web application security risks”

2017 2021

A01:2021-Broken Access Control
A02:2021-Cryptographic Failures

= A03:2021-Injection

(New) A04:2021-Insecure Design

A05:2021-Security Misconfiguration
A06:2021-Vulnerable and Outdated Components
A07:2021-ldentification and Authentication Failures

AD1:2017-Injection
AD2:2017-Broken Authentication
A03:2017-Sensitive Data Exposure
AD4:2017-XML External Entities (XXE)
A05:2017-Broken Access Control
A06:2017-Security Misconfiguration
AD7:2017-Cross-Site Scripting (XSS)

AD8:2017-Insecure Deserialization ,,-e"", (Mew! A08:2021-Software and Data Integrity Failures
A09:2017-Using Components with Known Vulnerabilities //I,——)AUE:ZUII-SEcurit'{ Logging and Monitoring Failures*
A10:2017-Insufficient Logging & Monitoring (New) A10:2021-Server-Side Request Forgery (SSRF)*

* From the Survey

https://owasp.org/www-project-top-ten/

Some Basic Types of Software Vulnerabilities
Memory corruption: stack/heap buffer overflow, dangling pointers, ...
Arithmetic errors: arithmetic overflow, signedness, array indexing, ...

Race conditions: synchronization issues, TOCTTOU bugs, ...

Unvalidated input: format strings, SQL injection, command injection, ...

Confused deputy: CSREF, clickjacking, ...
Side channels: timing, power, temperature, ...

Program logic/design/protocol flaws: wrong/missing checks, typos, ...

Arithmetic Overflow
Finite number of bits to represent integers

Let’s assume a 32-bit system

Integers are expressed in two’s complement notation

Signed integers
Positive numbers: ~ 0x00000000 - Ox7fffffff
Negative numbers: 0x80000000 - Oxffffffff

Unsigned integers
Ox00000000 - Oxffffffff

Both can overflow or underflow

@ to 231-1
-(231) to -1

@ to 232-1

10

“Only the first five clients can connect”
connections = 0;

/* new connection attempt */

connections++;

if (connections < 5) { How can an attacker connect even if there are
grant_access(); already five established connections?

}

else {

deny access();

¥

11

“Only the first 5 clients can connect”
connections = 0;

/* new connection attempt */

if (connections < 5) { <«—— Upper bound of five connections is enforced
connections++;

}

if (connections < 5) {
grant_access();

}

else {
deny access();

¥

12

Memory-related Errors

Very broad class of undefined memory access vulnerabilities
One of the most important and widely exploited types of vulnerabilities

Buffer overflow, null pointer dereference, use after free, uninitialized memory use, ...

In contrast to memory safe languages, C and C++ do not safeguard
memory against illegal accesses

Under unexpected conditions, attackers may be able to read from or write to arbitrary
memory locations
Lower-level languages = performance

Operating systems, core services, desktop applications, embedded systems, and many
other programs are still written in C/C++

Promising recent progress on low-overhead memory-safe languages (e.g., Rust, Go)

Buffer Overflow

C and C++ do not provide any automatic bounds checking capability
for allocated chunks of memory

Arrays: can be indexed past the first (underflow) or last (overflow) item
Pointers: can point outside the allocated object

Care must be taken when reading/writing user-supplied or
user-derived data from/to memory

More data than expected may be supplied & overflow

The program should perform explicit bounds checks

An attacker can intentionally overflow the buffer and access
out-of-bounds memory

Modify critical control or program data (overwrite)

Leak sensitive information (overread)

14

Simple overflow example: unbounded string copy

main(argc, *argv[]) {
buf[16];
strcpy(buf, argv[l]);
printf("%s\n", buf);
return 9;

¥

$./overflow AAAAAAAAAAAA

AAAAAAAAAAAAAAAA
$./overflow AAAAAAAAAAAAAAAAAAAAAAAAAAAA

AAAAAAAAAAAAAAAAAAAAAAAAAAAA
Segmentation fault (core dumped)

15

stackI

OXFFFFFFFF l

buf[16]

saved EBP

return address

argl

arg2

16

stackI

OXFFFFFFFF l

saved EBP

return address

argl

arg2

17

stack T

OXFFFFFFFF l

\RCEAVCEAVCEAV.GE)
AWCEAV CERAVCEAV G
\x65\x65\x65\x65
AW CEAVCEAVCEAV G
AW GCEAVGCEAV CEAV.CE)

\x65\x65\x65\x65
\WCEAV CEAV GCEAVGE)
\x65\x65\x65\x65

Overflow

18

Safer way
#define BUF_SIZE 16

int main(int argc, char *argv[]) {
char buf[BUF_SIZE];
strncpy(buf, argv[1l], BUF_SIZE);
printf("%s\n", buf);
return 0;

«—— Excplicit bounds check:
strncopy will never write more
than BUF _SIZE bytes into buf

19

What can the attacker do? Overwrite control data

stackT

OXFFFFFFFF l

\x0f\x6a\xe8\x59
\XFRAXFF\XFF\xff
\x5e\xc1\x46\x80
\xe0\x0a\x4c\x30
\x0b\x0e\xfa\x02
\X4b\x45\x49\x46

\x52\x4a\x4d\x4f

argl

arg2

Arbitrary code
execution

spawn shell
listen for connections
add user account

download and execute
malware

(future lecture)

20

What can the attacker do? Overwrite program data

main(argc, *argv[]) {
authenticated = 0;
password[16];
gets(password);
if (check _password(password) == TRUE) {
authenticated = 1;

¥

authenticated;
}
$./authenticate AAAAAAAAAAAAAAAA && echo $°?
%
$./authenticate AAAAAAAAAAAAAAAAA && echo $?

$./authenticate “printf "AAAAAAAAAAAAAAAA\XO1" ™ && echo $°?
1

stackI

OXFFFFFFFF l

buf[16]

authenticated

saved EBP

return address

argl

arg2

22

stackT

OXFFFFFFFF l

\x65\x65\x65\x65
\x65\x65\x65\x65
AW CEAVYCEAV CEAVGE)

AW CEAVCEAV GCEAVGE)

\x01

saved EBP

return address

argl

arg2

23

What can the attacker do? Leak data

& - C [Y heartbleed.com vl 2| =

The Heartbleed Bug

-

The Heartbleed Bug is a serious vulnerzability in the popular OpenSsL
cryptographic software library. This weakness allows stealing the

CVE-2014-0160: Missing bounds I'?”
check before a memcpy() call that !
uses non-sanitized user input as of
the length parameter.

. : b}
users and the actual content. This allows attackers to eavesdrop on
communications, steal data directly from the services and users and to

impersonate services and users.

What leaks in practice? How to stop the leak?

We have tested some of our own services from As long as the vulnerable version of OpenSSLisinuse
attacker's perspective. We attacked ourselves from it can be abused. Fixed OpenSSL has been released
outside, without leaving a trace. Without using any and now it has to be deployed. Operating system
privileged information or credentials we were able vendors and distribution, appliance vendors,

steal from ourselves the secret keys used for our independent software vendors have to adopt the fix

R e N T o e [e P Rey S P [y S P P O g R A [ST I [S

HOW THE HEARTBLEED BUG WORKS:

SERVER, ARE YOU STiLL THERE?
IF 50, REPLY *POTATO" (6 LETTERS).

y

ser Meg wants these 6 letters: POTATO.

O
S

o

ser Meqg wants these 6 letters: POTATO.

O
DD
s l

© XKCD - https://xkcd.com/1354/

25

SERVER, ARE YOU STILL THERE?
IF 50, REPLY "BIRD" (4 LETTERS).

f)

HMm ese 4 letters: BIRD.

... .
o

o

B]:F:DIL_?. @

© XKCD - https://xkcd.com/1354/

26

SERVER, ARE YOU STiLL. THERE?
IF 50, REPLY "HAT" (500 LETTERS),

/

Meg wants these 500 letters: HAT.

cticns” page. Eve (administrator) wan
ts to set server’s master key to "l48
350385347, I=zabel wants pages aboob '
snakes ik not too long'. User Karen

Meg wants these 500 letters: HAT.

© XKCD - https://xkcd.com/1354/

27

Pointer manipulation

vulnerable(*arg,
val = 0;
*ptr = NULL;
buf[128];

memcpy(buf, arg, len);
*ptr = val; <

len) {

“Arbitrary write” capability: The attacker can write
controlled data into a controlled location

28

Common Heap Errors

Initialization mistakes

malloc(), realloc() and C++ new do not initialize the allocated data.

Confusion between scalars and arrays

new and delete for scalars, new[] and delete[] for arrays

Failing to check return values

Functions like malloc() and realloc() return a NULL pointer when out of memory

Writing to already freed memory)
Corruption of internal memory

Freeing the same memory multiple times > allocator data structures or
allocated application data

Writing outside of the allocated area)

Heap-based Overflows

main(

argc,

char *p, *q;
p = malloc(1624);
g = malloc(1624);

strcpy(p, argv[1]);

free(q);
free(p);
return 0;

Arbitrary write when free () is called
by carefully corrupting heap metadata

© IAR Systems - https://www.iar.com/sv/knowledge/learn/programming/mastering-stack-and-heap-for-system-reliability/

*argv[]) {

free space

bwd_ptr

fwd_ptr

size

prev_size

user data

size

prev_size

free space

bwd_ptr

fwd_ptr

size

prev_size

30

Format String Vulnerabilities

The printf () family of functions accept a format string denoting how
a variable will be displayed

printf("%s", str) = prints str variable as string

printf("%d", num) = prints numas a decimal value

printf("%x", num) = prints numas a hexadecimal value

Format strings can also write to memory

printf("ABCD%n", &i) = write the number of bytes output so far to the memory
address of the second argument

What if...

The programmer does not supply a format string?
Fewer arguments are passed than the number of format string parameters?

31

Simple format string error example

main(argc, *argv[]) {
printf("Input: ");
printf(argv[1l]);
printf("\n");
}

$./fmt test
Input: test

$./fmt "%0O8x %08x %08x %O8x"
input: b773c080 0804846b b7721ff4 08048460

$./fmt $(printf "\x18\xa@\x04\x08")%XHX%X%X%N

32

Safer way

main(argc,
printf("Input: ");
printf("%s", argv[1l]);
printf("“\n");
}

*argv[]) {

33

Other Memory-related Exploitable Conditions
NULL-termination errors

Dangling pointers

NULL pointer dereferences

String truncation

Single-byte overwrite

Off-by-one accesses

Double free

34

Race Conditions

Situations in which the behavior of the program depends on
the timing of some event

Critical section

Opens up a window of opportunity for the attacker

Race conditions occur in many different contexts
Multi-threaded programs with different threads operating on the same data
Distributed applications that perform multi-step transactions

Time of check to time of use (TOCTTOU): changes may happen between
checking a condition and using the results of the check

35

Filesystem race condition example
// setuid program

if (access("file@l", W OK) !=0) { // access() checks the real uid (not eid)
exit(1);

< ln /etc/password file@l

fd = open("file@l", O WRONLY);
write(fd, buffer, sizeof(buffer)); // write() modifies /etc/passwd

36

iOS 8.1 Hardware-assisted Screenlock Bruteforce

Successfully brute-force device PIN even if “wipe out after 10 failed
attempts”is enabled (!)

Vulnherable code:

1. Display“incorrect pin” message

Power off the device
2. ++attempts;
Correct code:
1. ++attempts; // gets written to flash memory

2. Display “incorrect pin” message

37

Program Logic Flaws

Flaws in the design itself, or in the way the design was implemented in
the program code

Rather than lower-level bugs (overflows etc.)

Indicative examples
Abuse of functionality (e.g., lock another user out with repeated failed attempts)
Workflow circumvention (e.g., skip payment info and jump straight to delivery info)
Information leakage (e.g., through hidden form fields)

Insufficient/poor validation (e.g., negative number of items)

Diverse and complicated > very difficult to find

39

GOTO FAIL

iOS 7.0.6 signature verification error

Legitimate-looking TLS certificates with mismatched private keys were
unconditionally accepted...

if ((err = SSLHashSHA1l.update(&hashCtx, &serverRandom)) != 0)
goto fail;

if ((err = SSLHashSHAl.update(&hashCtx, &signedParams)) != 0)
goto fail;

goto fail; <— 2121212
if ((err = SSLHashSHA1l.final(&hashCtx, &hashOut)) != 0)

goto fail; /

Check never executed

=» fail:

SSLFreeBuffer(&signedHashes);
SSLFreeBuffer(&hashCtx);
return err; « Return with err ==

40

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40

