
CSE509 Computer System Security

2023-02-07 Operating System Security Primitives and Principles

Michalis Polychronakis

Stony Brook University

Security Policy

A definition of what it means for a system to be secure

Comprises a set of well-defined rules involving:
Subjects: entities that interact with the system

Objects: any resource a security policy protects

Actions: anything subjects can (or cannot) do on objects

Permissions: allowed (or not) subject-object-action mappings

Protections: rules or mechanisms that aid in enforcing a policy

A security policy typically places constraints on what actions subjects
can perform on objects to achieve specific security goals

2

Operating System

Provides the interface between the
users of a computer and its hardware

Manages devices and software resources

Provides common services for computer programs

Key OS concepts and components
Kernel

Program execution and multitasking

Memory management

Interrupts and device drivers

Core services: disk, network, …

User interface

3

Operating System

User Applications

CPU, Memory, Devices

Security mechanisms
are needed in all these
components

OS Security

Different security needs at multiple levels

The OS is (typically) a core part of the TCB
Need to protect itself against various threats: physical attacks, tampering, malicious
user-level software, software vulnerabilities, …

Multi-user OS: shared by different users with different levels of access
Protect users of the same class from each other

Protect higher-privileged users from less-privileged users

Multi-tasking OS: many programs are running concurrently
Protect running applications from interference by other (potentially malicious)
running applications

Protect an application’s resources at any given time

4

The Kernel

Runs in supervisor mode
Can execute all possible CPU instructions,
including privileged ones

Can access protected parts of memory

Can control memory management
hardware and other peripherals

Hardware-enforced protection
Example: x86 has four privilege “rings”

Kernel runs at Ring 0 (most privileged level)

User space applications run at Ring 3 (less privileged level)

Rings 1 and 2 are rarely used: most OSs rely on paging, and pages have only one bit
for privilege level (Supervisor or User)

5

Ring 3

Ring 2

Ring 1

Ring 0

Kernel

Applications

I/O

Switching protection modes is a critical operation
Unprivileged code should not be able to freely change mode

Three main ways to go from userland to kernel space:

Hardware interrupts: signals from devices that the OS should take action
E.g., key press, mouse move, network data is available, …
Asynchronous: can occur in the middle of instruction execution

Exceptions: anomalous conditions that require special handling
E.g., division by zero, illegal memory access, breakpoint, …
Also known as software interrupts: synchronous

Trap instructions: explicit transfer of control to the kernel  system calls
Before Linux v2.5: int 0x80 instruction (software interrupt)  transfer control to the 0x80th slot
of the CPU’s Interrupt Descriptor Table (IDT)
After Linux v2.5: dedicated instructions syscall/sysret and sysenter/sysexit  faster
(avoid the cost of interrupt handling)

6

System Calls

Each system call has a different system call number

The system call number and arguments are passed to the kernel
according to the Application Binary Interface (ABI)

E.g., through predefined registers

Once everything is set up, the trap instruction is invoked
Switch to kernel mode

The kernel reads the syscall number from the predefined register

Looks up the corresponding syscall handling routine

Carries out the operation and writes any return value to the proper register
(according to the ABI)

Returns back to the user-space program

7

System Libraries

Performing system calls manually is cumbersome

System libraries provide wrapper functions for easily performing
system operations

Linux: C standard library (libc)
Mostly one-to-one mapping between system calls and corresponding libc functions

Windows: Windows API
Split across several DLLs: kernel32.dll, advapi32.dll, user32.dll, …

Complex mapping to system call numbers, which change often across Windows
versions

8

10

11

Processes

An instance of a program that is being executed

Processes are created through forking
E.g., by a shell, window manager, the init process, …

A child process inherits the permissions of the parent process

Each process is identified by its PID

Process privileges
User ID (uid): the user associated with the process

Group ID (gid): the group of users for this process

Effective user ID (euid): usually the same as uid, but may be changed to the ID of the
program’s owner (through the setuid bit)

Example setuid programs: passwd, su, sudo, …

12

Memory Management

Each process has its own virtual address space
Logical (virtual) address: understood by the CPU

Containing the program code, data, stack, heap, …

The OS maintains page tables that map virtual
to physical memory (RAM) addresses

Physical address: understood by the MMU (memory
management unit)

Each process has its own set of page tables

Memory access permissions are enforced at the
granularity of a page

13© Ehamberg - https://en.wikipedia.org/wiki/Virtual_memory#/media/File:Virtual_memory.svg

Memory Page Permissions

Old x86 CPUs have 1 bit per page: W
A page can be writable or not, but is always executable  Code injection: write data
into memory and then execute it

Modern CPUs have 2 bits per page: W, X
W^X: A page can be marked as writable but non-executable

Code injection is prevented, but code reuse is still possible

Some new CPUs support 3 bits per page: R, W, X
Before, any mapped page was implicitly readable

Advanced code reuse attacks rely on reading a process’ code before executing it

R^X: Marking a code page as executable but non-readable prevents memory reads
but still permits instruction fetches

14

Kernel Memory

The kernel is always mapped to the upper part of each process’ virtual
address space

Facilitates fast user–kernel interactions

During servicing a syscall or exception handling, the kernel runs within
the context of a preempted process

The kernel can access user space directly, e.g., to read user data or write the result of a
system call

Reduced overhead: no need to flush the TLB

Unfortunately, this also facilitates local privilege escalation exploits (future lecture)

User-space processes cannot access kernel memory
Kernel pages have the supervisor bit set

15

Virtual Address Space
4GB in 32-bit mode

The kernel is always mapped into the address space of each process

© Gustavo Duarte - http://duartes.org/gustavo/blog/post/anatomy-of-a-program-in-memory/

Standard Process Memory Layout

© Gustavo Duarte - http://duartes.org/gustavo/blog/post/anatomy-of-a-program-in-memory/

Filesystem

Powerful abstraction about how non-volatile memory is organized
Typically a hierarchy of files and folders

OS-enforced access control based on file/directory permissions (previous lecture)

Often-quoted tenet of Unix systems: everything is a file
Sockets, pipes, devices, …

Pseudo-devices and virtual file systems
/dev/urandom: pseudo-random number generator

/proc: process and system information

/sys: kernel subsystems, hardware devices, …

Exposing system information to non-privileged users is dangerous!

18

Unix File Descriptors

To open a file, a process provides the file name and the desired access
rights to the kernel

int fd = open("/etc/passwd", O_RDWR);

The kernel obtains the file’s inode number by resolving the name through the file
system hierarchy

The system then determines if the requested access should be granted using the
access control permissions

If access is granted, the kernel returns a file descriptor
The variable fd in essence becomes a capability

The value of fd corresponds to an index in the process’ file descriptor table

open() creates a new entry in the file descriptor table

File Descriptor Leaks

File descriptors can be passed around between processes
fork(): a child process inherits copies of all open file descriptors of the parent

File descriptors can be sent through sockets

read()/write() checks are based solely on the permissions the
descriptor was opened with

Common vulnerability:
Privileged process opens a sensitive file

Fails to close it

Forks a process with lower privileges

Symbolic Links

Links/shortcuts to other files

Insufficient checks on symbolic links can lead to serious vulnerabilities

Common vulnerability:
Vulnerable setuid program attempts to write a file (e.g., a temporary file in /tmp)

The attacker creates a symlink with the same name as the file the program intends to
write to, and links it to a sensitive file

The vulnerable program will write (attacker-controlled) data to the file pointed to by
the symlink

21

Classic Example: Sendmail v8.8.4

When the Sendmail daemon cannot deliver a message, it stores it in
/var/tmp/dead.letter

22

$ ln /etc/passwd /var/tmp/dead.letter
$ nc -v localhost 25
HELO localhost
MAIL FROM: this@host.doesn't.exist
RCPT TO: this@host.doesn't.exist
DATA
r00t::0:0:0wned:/root:/bin/sh
.
QUIT

Windows Shortcuts

Shell Link Binary Files (LNK) have been used by malware to…

Dress up malicious files as benign
Windows hides file extensions by default (!)

.lnk icon can be changed social engineering

.lnk target can be anythingmalicious code

.lnk files are not thought of as codemay not be scanned

Infect systems
Autorun.inf, LNK exploits (e.g., Stuxent’s CVE-2010-2568), …

Achieve persistence
Shortcuts in certain system directories are automatically run

23

24© Sophos - https://nakedsecurity.sophos.com/2016/08/03/beware-of-ransomware-hiding-in-shortcuts/

25© Sophos - https://nakedsecurity.sophos.com/2016/08/03/beware-of-ransomware-hiding-in-shortcuts/

26© Appriver – https://appriver.com/blog/201702fake-ups-emails-deliver-windows-shortcut-malware

27© Appriver – https://appriver.com/blog/201702fake-ups-emails-deliver-windows-shortcut-malware

28© Appriver – https://appriver.com/blog/201702fake-ups-emails-deliver-windows-shortcut-malware

29© Appriver – https://appriver.com/blog/201702fake-ups-emails-deliver-windows-shortcut-malware

Isolating Untrusted Code

The usual tradeoff: usability vs. security
Weak isolation allows for interoperabilitymalware can access other processes/files

Strong isolation contains infection damage  limited cross-application interaction

Various mechanisms of varying “strength”
Chroot jails (file-system isolation)

User ID isolation (e.g., Android)

Containers (namespaces, cgroups, seccomp filters, capabilities)

System call sandboxing (seccopm, eBPF – e.g., Google’s gVisor)

Virtual Machines
…

30

Isolating Untrusted Code

31

Operating System

Process

Hardware

Operating System

Sandbox

Hardware

Hypervisor

OS

Hardware

OSProcess Process

Process Process Process Process Process Process

Process-based Isolation Sandbox-based Isolation Hypervisor-based Isolation

Securing the Boot Process

How can we trust the OS that is running?
Need to secure the whole boot process

BIOS OS loader Kernel

BIOS/firmware: can be infected
Low-level access, hidden by the OS (!)

Boot device: can be changed
E.g., boot from USB/DVD and then read data off the main disk

Master boot record (MBR): can be infected
First disk sector of the startup drive, containing the boot loader

Both BIOS and MBR viruses can survive OS reinstallation (!)

32

Example: Windows 7 Boot Process

33© Microsoft – https://social.technet.microsoft.com/wiki/contents/articles/11341.the-windows-7-boot-process-sbsl.aspx

Verified/Trusted/Secure Boot

Full disk encryption
Secure the disk contents (e.g., against externally-loaded OSs or hard disk removal)

UEFI Secure Boot
Prevent the loading of firmware/OS loaders/kernels/drivers that are not
cryptographically signed

Each piece of code verifies that the signature on the next piece of code in the boot
chain is valid, and if so, passes execution on to it

Trusted Platform Module (TPM)
Dedicated processor providing various cryptographic capabilities

Key generation, random number generator, remote attestation, sealed storage, …

Both UEFI and TPM assist in building a root of trust
34

35© Microsoft – https://docs.microsoft.com/en-us/windows/threat-protection/secure-the-windows-10-boot-process

Example: Windows 10 Boot Process

Secure Boot
UEFI firmware: load only trusted bootloaders

Trusted Boot
TPM: check the integrity of every component
before loading it

Early Launch Anti-Malware
Prevent unapproved drivers from loading

Measured Boot
Remote attestation: each loaded component is
logged, and the log is sent to a trusted host for
verification

Example: ChromeOS

Automatic updates
OS manages updates automatically

Sandboxing
For both web pages and local applications

Verified Boot
Detect any system tampering/corruption

Data Encryption
Local data is always encrypted

Recovery Mode
Restore the OS in a known good state

36https://chromium.googlesource.com/chromiumos/docs/+/HEAD/security/chromeos_security_whitepaper.md

ChromeOS Security Boundaries

Chrome renderer process to Chrome browser process
Chrome sandbox: prevent renderer processes from tampering with the browser
process or the rest of the system

Chrome browser process to system services
UID separation: prevent Chrome from directly accessing system resources

ARC++ container to Chrome browser or ChromeOS system
Cgroups: prevent a container from directly accessing resources outside the container

Userspace processes to kernel
Seccomp: prevent user-space processes from gaining kernel code execution

Kernel to firmware
Verified boot: prevent compromised kernel from persistently altering the firmware

37

From ARC++ to ARCVM
Android Runtime for Chrome: run unmodified Android apps on Chrome OS

Container vs. VM: stronger isolation for running untrusted Android apps

Allows the execution of custom Linux containers

38https://chromeos.dev/en/posts/making-android-more-secure-with-arcvm

Monitoring and Logging

“Situational awareness:” keep track of system activities
To detect suspicious or unanticipated incidents
To understand how a breach happened and recover from it

Myriad events: login attempts, file accesses, spawned processes, network
connections, DNS resolutions, inserted devices, …

Many OS facilities
System-wide events: Windows event log, /var/log, …
Fine-grained monitoring: process-level events, system call monitoring, library interposition, …

What to log?
Everything: costly in terms of runtime and space overhead
Pick carefully: crucial information may be missed/ignored

Can the attacker scrub the logs?
Append-only file system, remote location, …

41

AUDITD(8) System Administration Utilities AUDITD(8)

NAME
auditd - The Linux Audit daemon

SYNOPSIS
auditd [-f] [-l] [-n] [-s disable|enable|nochange]

DESCRIPTION
auditd is the userspace component to the Linux Auditing System. It's
responsible for writing audit records to the disk. Viewing the logs is
done with the ausearch or aureport utilities. Configuring the audit
system or loading rules is done with the auditctl utility. During
startup, the rules in /etc/audit/audit.rules are read by auditctl and
loaded into the kernel. Alternately, there is also an augenrules proβ��
gram that reads rules located in /etc/audit/rules.d/ and compiles them
into an audit.rules file. The audit daemon itself has some configuraβ��
tion options that the admin may wish to customize. They are found in
the auditd.conf file.

OPTIONS
-f leave the audit daemon in the foreground for debugging. Messages

also go to stderr rather than the audit log.

-l allow the audit daemon to follow symlinks for config files.

-n no fork. This is useful for running off of inittab or systemd.

-s=ENABLE_STATE
specify when starting if auditd should change the current value

Patches and Updates

Legacy systems: on demand
Often neglected systems remain unpatched and vulnerable

Updating software is not always a trivial process
Updates often break the system administrators spend considerable amount of time and
effort in testing new updates before rolling them out

Sometimes it is even harder for special-purpose systems: ATMs, kiosks, medical devices,
industrial control systems, IoT, …

Patching not always an option at all!

Recent OSs have switched to more aggressive software auto-update
schemes

Securing the software update process is critical
An attacker can push infected updates bypass even strict allowlist protection mechanisms

Some package managers don’t even check signatures!

49

Is a Secure OS Enough?

The OS is the facilitator of user applications, but:
Applications are plagued by vulnerabilities too

Social engineering is hard to defend against

The OS can provide some extra help
Mechanisms to prevent (or at least challenge) the exploitation of software vulnerabilities

Additional security services: firewall, anti-virus, password manager, file/disk encryption, …

Mobile OSs have taken it to the next step
Allow the installation only of “curated” apps

OS vendors use manual/static/dynamic code analysis techniques to verify that a candidate app
is not malicious

PC OSs slowly move to that direction too

At the end, it’s the app that handles sensitive user data - Ηow can we trust it?

51

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Slide Number 47
	Slide Number 48
	Slide Number 49
	Slide Number 50
	Slide Number 51

