
CSE509 Computer System Security

2023-02-02 Policy, Models, and Trust

Michalis Polychronakis

Stony Brook University

Security Policy

A definition of what it means for a system to be secure

Comprises a set of well-defined rules involving:
Subjects: entities that interact with the system

Objects: any resource a security policy protects

Actions: anything subjects can (or cannot) do on objects

Permissions: allowed (or not) subject-object-action mappings

Protections: rules or mechanisms that aid in enforcing a policy

A security policy typically places constraints on what actions subjects
can perform on objects to achieve specific security goals

2

Security Model

An scheme for specifying and enforcing security policies
Systems are large, complex, and dynamic hard to manage

Abstract the system into a simpler model

Deal with the information confinement problem
Information should not flow into the wrong parties

Access control: who has access to what

Need ways to represent access control rights
ACLs, Capabilities, …

Need ways to grant specific rights
DAC, MAC, RBAC, …

3

Access Control Matrix

Abstract representation of a system’s security state
Each cell defines the access rights for the given combination of subject and object

Empty cells mean that no access rights are granted

Objects: set of protected entities
Files, directories, devices, resources, …

Subjects: set of active objects
Users, groups, processes, systems, …

Rights: set of possible actions
Read, write, execute, own, append, …

Meaning may vary depending on the object involved

4

Access Control Matrix

Useful conceptual representation, but not practical
Size: number of subjects/objects will be too large

Efficiency: too many cells will be empty (no access) or the same (default permissions)

Management: addition/removal of subjects/objects requires non-trivial operations

/etc/passwd /usr/bin/ /home/bob/ /admin/

root read, write read, write, exec read, write, exec read, write, exec

bob read read, exec read, write, exec -

backup read read, exec read, exec read, exec

5

Access Control Lists

List of permissions attached to an object
Object-centered approach: enumeration of all subjects and their access rights for the
given object (i.e., the columns of the access control matrix)

No entry in the ACL subject has no rights

Facilitates the efficient implementation of default permissions
Wasteful to have separate entries for many different subjects that have the same
rights over a given object

Better idea: define a “wildcard” to match any unnamed subject

Groups of subjects can also be represented in a similar way

Tied to the object
Can be stored along with the object in the form of metadata

6

Access Control Lists

Advantages
Dramatically smaller size (empty cells are collapsed)

Disadvantages
No efficient way to enumerate all the rights of a given subject

/etc/passwd /usr/bin/ /home/bob/ /admin/

root read, write read, write, exec read, write, exec read, write, exec

bob read read, exec read, write, exec -

backup read read, exec read, exec read, exec

ACL

7

Example: Unix File Permissions

A form of abbreviated ACL: a list of permissions attached to each file

Users are divided in three classes: owner, group, all
Separate read (r), write (w), and execute (x) permissions per class

One octal digit (3 bits) per class, with R=4, W=2, X=1

rw-r----- == 640 == Owner: RW, Group: R, All: none

Coarse-grained control
How can we express “everyone except Bob”?

Non-standard arrangements require separate groups

Must create a group of all users except Bob (cumbersome: only root can create
groups)

8

Example: Windows

9

Example: Windows File Permissions

10

ACL(5) BSD File Formats Manual ACL(5)

NAME
acl - Access Control Lists

DESCRIPTION
This manual page describes POSIX Access Control Lists, which are used to
define more fine-grained discretionary access rights for files and direc-
tories.

ACL TYPES
Every object can be thought of as having associated with it an ACL that
governs the discretionary access to that object; this ACL is referred to
as an access ACL. In addition, a directory may have an associated ACL
that governs the initial access ACL for objects created within that
directory; this ACL is referred to as a default ACL.

ACL ENTRIES
An ACL consists of a set of ACL entries. An ACL entry specifies the
access permissions on the associated object for an individual user or a
group of users as a combination of read, write and search/execute permis-
sions.

An ACL entry contains an entry tag type, an optional entry tag qualifier,
and a set of permissions. We use the term qualifier to denote the entry
tag qualifier of an ACL entry.

The qualifier denotes the identifier of a user or a group, for entries
with tag types of ACL_USER or ACL_GROUP, respectively. Entries with tag
types other than ACL USER or ACL GROUP have no defined qualifiers

11

[let’s open the console]

12

Capabilities

List of access rights granted to a subject
Subject-centered approach: enumeration of all objects and the access rights a given
subject has on them (i.e., the rows of the access control matrix)

A capability can be a single token of authority
Unforgeable: must be validated by the OS

Communicable: can be passed on to other subjects or converted to less-privileged
versions (in accordance to the enforced policy)

Tied to the subject
Typically stored in a privileged data structure

The subject should not be able to forge access rights or change the object a capability
is related to

13

Capabilities

Advantages
Dramatically smaller size (empty cells are collapsed)

Disadvantages
No efficient way to enumerate all the rights on a given object

/etc/passwd /usr/bin/ /home/bob/ /admin/

root read, write read, write, exec read, write, exec read, write, exec

bob read read, exec read, write, exec -

backup read read, exec read, exec read, exec

Capability

14

Example: Unix File Descriptors

To open a file, a process provides the file name and the desired access
rights to the kernel

int fd = open("/etc/passwd", O_RDWR);

The kernel obtains the file’s inode number by resolving the name through the file
system hierarchy

It then determines if access should be granted using the access control permissions

If access is granted, the kernel returns a file descriptor
The variable fd in essence becomes a capability

The value of fd corresponds to an index in the process’ file descriptor table

It can be passed around to other processes (e.g., as a result of fork() or by sending it
through a socket)

15

Linux Privileges

Two types of user accounts

Superuser (root): bypasses all permission checks

Standard user: subject to permission checks

Non-privileged users often need to perform privileged operations

Example: change password
passwd needs to modify /etc/passwd and /etc/shadow (both owned by root)

Their file permissions prevent unprivileged processes from modifying them

Example: ping a host
ping needs to use a raw socket to send/receive ICMP packets, a feature limited to root

16

17

Dennis Ritchie
Protection of Data File Contents
U.S. patent 4135240
1979

Setuid

Unix access rights flags setuid (“set user ID”) and setgid
Allow users to run an executable with the file system permissions
of the executable's owner or group, respectively

Pragmatic solution for allowing unprivileged users to execute
programs with superuser privileges

Violation of the principle of least privilege (!)
Setuid programs have full privileges to perform any critical operation

Can lead to disastrous outcomes
Vulnerabilities in setuid programs are prevalent

Allow attackers to achieve arbitrary code execution with root privileges

18

Linux Capabilities

Linux divides superuser privileges into distinct capabilities
Each capability is (typically) associated with a specific privileged operation

CAP_SETUID, CAP_SYS_ADMIN, CAP_NET_RAW, …

Introduced with kernel v2.2 (January 1999)

Capabilities are independently assigned to non-privileged programs
Example: CAP_NET_BIND_SERVICE allows a non-root process to bind a network
socket to privileged ports

19

snum = ntohs(cma_port(cma_src_addr(id_priv)));
if (snum < PROT_SOCK && !capable(CAP_NET_BIND_SERVICE))

return -EACCES;

Linux kernel v5.17 (May 2022) provides 41 capabilities

20

CA
P_

FS
ET

ID

CA
P_

IP
C_

LO
CK

CA
P_

IP
C_

OW
NE

R

CA
P_

KI
LL

CA
P_

LI
NU

X_
IM

MU
TA

BL
E

CA
P_

NE
T_

AD
MI

N

CA
P_

NE
T_

BI
ND

_S
ER

VI
CE

CA
P_

NE
T_

BR
OA

DC
AS

T

CA
P_

CH
OW

N

CA
P_

DA
C_

OV
ER

RI
DE

CA
P_

DA
C_

RE
AD

_S
EA

RC
H

CA
P_

FO
WN

ER

CA
P_

NE
T_

RA
W

CA
P_

SE
TG

ID

CA
P_

SE
TP

CA
P

CA
P_

SE
TU

ID

CA
P_

SY
S_

AD
MI

N

CA
P_

SY
S_

BO
OT

CA
P_

SY
S_

CH
RO

OT

CA
P_

SY
S_

MO
DU

LE

CA
P_

SY
S_

NI
CE

CA
P_

SY
S_

PA
CC

T

CA
P_

SY
S_

PT
RA

CE

CA
P_

SY
S_

RA
WI

O

CA
P_

SY
S_

RE
SO

UR
CE

CA
P_

SY
S_

TI
ME

CA
P_

SY
S_

TT
Y_

CO
NF

IG

CA
P_

MK
NO

D

CA
P_

LE
AS

E

CA
P_

AU
DI

T_
WR

IT
E

CA
P_

AU
DI

T_
CO

NT
RO

L

CA
P_

SE
TF

CA
P

CA
P_

MA
C_

OV
ER

RI
DE

CA
P_

MA
C_

AD
MI

N

CA
P_

SY
SL

OG

CA
P_

WA
KE

_A
LA

RM

CA
P_

AU
DI

T_
RE

AD

CA
P_

BL
OC

K_
SU

SP
EN

D

CA
P_

PE
RF

MO
N

CA
P_

BP
F

CA
P_

CH
EC

KP
OI

NT
_R

ES
TO

RE

v5.8 v5.9

v3.16

v3.0 v3.5Linux Kernel v2.2 v2.4 v2.6.11

v2.6.24

v2.6.25

v2.6.37

Setuid  Linux Capabilities

Is this really necessary? What if ping is vulnerable?

Remember the principle of least privilege?

21

$ ls -l /bin/ping
-rwsr-xr-x 1 root root 44K May 7 2014 /bin/ping*

$ ls -l /bin/ping
-rwxr-xr-x 1 root root 84K Feb 4 2022 /bin/ping
$ getcap /bin/ping
/bin/ping = cap_net_raw=ep

22

Out of 201 setuid programs in Ubuntu 18.04, only seven have become capability-
aware in Ubuntu 21.10

Program Ubuntu 18.04
(April 2018)

Ubuntu 20.04
(April 2020)

Ubuntu 21.10
(October 2021)

ping ⤬ ✓ ✓
ping6 ⤬ ✓ ✓
noping ⤬ ⤬ ✓
traceroute6.iputils ⤬ ✓ ✓
arping ⤬ ✓ ✓
oping ⤬ ⤬ ✓
pinger ⤬ ✓ ✓

Decap: Deprivileging Programs by Reducing Their Capabilities. Md Mehedi Hasan, Seyedhamed Ghavamnia,
and Michalis Polychronakis. In Proceedings of the 25th International Symposium on Research in Attacks, Intrusions
and Defenses (RAID), pp. 395–408. October 2022, Limassol, Cyprus.

\

CAPABILITIES(7) Linux Programmer's Manual CAPABILITIES(7)

NAME
capabilities - overview of Linux capabilities

DESCRIPTION
For the purpose of performing permission checks, traditional UNIX
implementations distinguish two categories of processes: privileged
processes (whose effective user ID is 0, referred to as superuser or
root), and unprivileged processes (whose effective UID is nonzero).
Privileged processes bypass all kernel permission checks, while unpriv-
ileged processes are subject to full permission checking based on the
process's credentials (usually: effective UID, effective GID, and sup-
plementary group list).

Starting with kernel 2.2, Linux divides the privileges traditionally
associated with superuser into distinct units, known as capabilities,
which can be independently enabled and disabled. Capabilities are a
per-thread attribute.

Capabilities list
The following list shows the capabilities implemented on Linux, and the
operations or behaviors that each capability permits:

CAP_AUDIT_CONTROL (since Linux 2.6.11)
Enable and disable kernel auditing; change auditing filter
rules; retrieve auditing status and filtering rules.

CAP_AUDIT_READ (since Linux 3.16)
Allow reading the audit log via a multicast netlink socket

24

[let’s open the console]

25

Access Control Policies

Different approaches to granting access rights
Who is responsible? admin, user, owner, …

Based on what? identity, role, group, rule, …

Main Types of Access Control

Discretionary

Mandatory

Role-based

Rule-based
…

26

Discretionary Access Control

Subjects determine who has access to their objects
Key concept: the owner

Determines the access rights of other subjects on that object

A subject with a certain access permission can pass it on to any other subject

Commonly used in most operating systems
Example: Linux and Windows allow non-root users to specify file and folder
permissions based on ACLs

On existing files they can already access, or any new files they will create

27

28

Mandatory Access Control

An administrator grants all access rights
Cannot be altered by subjects  users cannot override decisions either accidentally
or intentionally

MAC-enabled systems allow policy administrators to implement strict
organization-wide security policies

Multilevel security (MLS) and specialized military systems

Getting traction in mainstream OSes as a means of minimizing abuse
and preventing misconfigurations

Linux: SELinux, AppArmor

Windows: Mandatory Integrity Control

29

Example: The Bell-LaPadula Model

Inspired by the military multilevel security paradigm
Used for document classification and personnel clearance

Security levels
Each object is classified at one of the security levels

Each use obtains clearance at one of the security levels

Example: MLS classification
Unclassified  Confidential  Secret  Top Secret

Goal: protect the confidentiality of information
Prevent read access to objects at a security classification higher than the subject’s
clearance

30

Example: The Bell-LaPadula Model

Access to objects is controlled by two rules

31

Simple security property
A subject cannot read an object
of higher sensitivity

“no read up”

Star (*) property
A subject cannot write to an object
of lower sensitivity

“no write down”

Top Secret

Secret

Confidential

Unclassified

N
o w

rite dow
nN

o
re

ad
 u

p

Role-based Access Control

Access to an object is governed by the role of the subject within an
organization

Administrators define roles, specify access rights for each role, and
assign subjects to roles

Much more convenient than managing subjects individually

Example: roles for a computer science department
Student, faculty, administrative personnel, sysadmin, …

Role hierarchies
More privileged roles may inherit the access rights of less privileged roles

Key difference from user groups

32

Rule-based Access Control

Allow or deny access to resources based on conditions other than the
subject’s identity

Time of day, location, type of device, …

Attribute-based Access Control

Policies based on user, resource, environmental, or other attributes
Can be expressed in the form of complex Boolean logic rules

Context-based Access Control

Take into account relevant state information
E.g., block externally-initiated but allow internally-initiated TCP connections

…

33

Trust

A security policy is in essence a set of axioms that the policy makers
believe can be enforced

Relies on several assumptions
The policy correctly captures all possible secure and insecure states of the system

The enforcement mechanisms prevent the system from entering an insecure state

The associated risks have been adequately assessed

How can we trust the policy?
Is it correct? Complete? Unambiguous?

How can we trust the mechanisms?
Do they contain flaws? Are they configured correctly? Do they enforce all aspects of
the policy? Is there a backdoor?

34

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34

