
CSE509 Computer System Security

2023-01-31 Threat Landscape and Basic Security Principles

Michalis Polychronakis

Stony Brook University

Threats, Vulnerabilities, and Attacks

A threat is a potential cause of an incident, malicious or otherwise, that
could harm an asset

Loss of service, compromise of information or functions, technical failure, …

Different origins: deliberate, accidental, environmental, …

A vulnerability is a weakness that makes a threat possible
Hardware, software, protocol, network, personnel, physical, organizational, …

An attack is an action that exploits a vulnerability or enacts a threat
Active (observable effect) vs. passive (imperceptible collection of information)

Inside (initiated by an authorized “insider” entity) vs. outside (“outsider” entity)

2

Threats, Vulnerabilities, and Attacks

3© Neil Smithline – https://commons.wikimedia.org/wiki/File:2010-T10-ArchitectureDiagram.png

Threat Classification

Example classification scheme: Microsoft’s STRIDE

Spoofing: TCP/IP, identity, HTTP headers, email address, poisoning, …

Tampering: network traffic, code, HTTP cookies/URLs/parameters, …

Repudiation: deniability, audit log scrubbing/modification, …

Information disclosure: unauthorized data access, data leakage, …

Denial of Service: crashing, flooding, resource stagnation, …

Elevation of privilege: gain admin access, jailbreaking, …

4

Risk Assessment

Example risk assessment scheme: Microsoft’s DREAD

Damage: how bad would an attack be?

Reproducibility: how easy is it to reproduce the attack?

Exploitability: how much work is it to launch the attack?

Affected users: how many people will be impacted?

Discoverability: how easy is it to discover the threat?

5

Threat Model

Assumptions about possible attacks a system tries to protect against
Understanding potential threats is crucial for taking appropriate measures

Various threat modeling approaches: attacker-centric, software-centric,
asset-centric, …

Example: data flow approach
View the system as an adversary: identify entry/exit points, assets, trust levels,
defenses, usage patterns, …

Characterize the system: identify usage scenarios, roles, objectives, components,
dependencies, security alerts, implementation assumptions, …

Identify threats: what can the attacker do? How? What is the associated risk? How can
the respective vulnerabilities be resolved?

6

Policies and Mechanisms

Threat model  security policy  security mechanisms

Security policy: a definition of what it means for a
system/organization/entity to be secure

Access control, information flow, availability, …

Computer, information, network, application, password, …

Enforced through security mechanisms
Prevention: antivirus, firewall, email filtering, 2-factor authentication, …

Detection: intrusion detection system (IDS/IPS, SIEM, EDR), honeypots, …

Recovery: backup, forensics, configuration management, software provisioning, …

Awareness: training, monitoring, asset inventory, …

7

Threat Actors
’90s: script kiddies

’00s: criminals

’10s: states

Different motives
$$$$$$$$$$$

Honest but curious individuals

Political or social ends

Bribed or angry insiders

Espionage/sabotage/military

Different resources: $$$$, skills, infrastructure  Know your enemy!

8

Then: fun Now: profit


(OK, much earlier, but now we talk about it)

Vulnerability

“A property of a system or its environment which, in conjunction with an internal
or external threat, can lead to a security failure, which is a breach of the system’s
security policy.” [Anderson]

Various classifications based on…
SDL: design, implementation, operation, maintenance

Abstraction level: low vs high level, OSI network layers, system vs. process,
hardware/firmware/OS/middleware/application, …

Type of error/condition/bug: memory errors, range and type errors, input validation, race
conditions, synchronization/timing errors, access-control problems, environmental/system
problems (e.g., authorization or crypto failures), protocol errors, logic flaws, …

Disclosure process: zero-day vs. known, private vs. public, “coordinated” vs. full disclosure, …

Multiple vulnerabilities are often combined for a single purpose

9

Vulnerability (Another Definition)

“The intersection of a system susceptibility or flaw, access to the flaw, and the
capability to exploit the flaw.” [AFRL ATSPI]

System Susceptibility: focus on what’s critical
Reduce access points to only those that are absolutely necessary

Access to the flaw: move it out of band
Make critical access points and associated security elements less accessible to the adversary

Capability to exploit the flaw: prevent, detect, react
Appropriate response upon detection of an attack

Related term: attack surface
The different points through which an attacker can interact with the system/environment

10

Zero-Day Vulnerabilities/Exploits

A previously unknown vulnerability discovered before the vendor
becomes aware of it

0-day exploits: become known once they are detected “in the wild”
Vendors then rush to release a patch

Intrusion detection systems are updated to detect the threat

N-day exploits: developed immediately after a patch is released
Vulnerability is discovered and fixed by the vendor (not the attacker)

Once the patch is released, attackers reverse engineering it (e.g., using binary diffing)
to build an exploit

“Window of vulnerability” is open until most vulnerable systems are patched

11

Intrusions

12

Intrusions

“Any set of actions that attempt to compromise the integrity,
confidentiality or availability of information resources” [Heady et al.]

“An attack that exploits a vulnerability which results to a compromise
of the security policy of the system” [Lindqvist and Jonsson]

Most intrusions…
Are carried out remotely

Exploit software vulnerabilities

Result in arbitrary code execution or unauthorized data access
on the compromised system

13

Attack Source

Local
Unprivileged access  privilege escalation

Physical access  I/O ports (launch exploits), memory (cold boot attacks), storage
(just remove it), shoulder surfing (steal credentials), dumpster diving (steal
information), bugging (e.g., keylogger, antennas/cameras/sensors, HW parts), …

Remote
Internet

Local network (Ethernet, WiFi, cellular, bluetooth, …)

Phone (social engineering, SMS)

Infected media (disks, CD-ROMs, USB sticks, …)

Pre-infected SW/HW components (libraries, third-party services, BIOS, NIC, router, …)

14

Intrusion Method

Social engineering (phishing, spam, scareware, …)

Viruses (disks, CD-ROMs, USB sticks, downloads, …)

Network traffic interception (access credentials, keys, phishing, …)

Password guessing/leakage (brute force, root:12345678, …)

Physical access (reboot, keylogger, screwdriver, …)

Supply chain compromise (backdoor, infected update, …)

Software vulnerability exploitation

15

16© CVE Details – https://www.cvedetails.com/browse-by-date.php

Just this past month

Remote Exploitation: Server-side vs. Client-side

17





(Very Simple) Buffer Overflow Exploitation

18

var1

buf[16]

var2

saved EBP

return address

arg1

arg2
0xFFFFFFFF

stack

\x0f\x6a\xe8\x59

\xff\xff\xff\xff

\x5e\xc1\x46\x80

\xe0\x0a\x4c\x30

\x0b\x0e\xfa\x02

\x4b\x45\x49\x46

\x52\x4a\x4d\x4f

\x4c\x5b\x4f\x5e

\x4b\x46\x43\x5d

GET / HTTP/1.1

User-Agent: Wget

/1.10.2

Code injection

Shellcode
spawn shell

listen for connections

add user account

download and execute
malware



19

Malware and Botnets

spam

DDoS

port scanning

malicious websites

click fraud

phishing
illegal content

extortion

code injection

Basic Phases of a Typical Targeted Attack

Reconnaissance and information gathering

Exploitation

Privilege Escalation

Persistent access

Internal reconnaissance

Lateral movement

Data exfiltration/damage/other goal

20

…subject of future lectures

Many more threats…

Password attacks Social engineering

Information leakage Denial of service

Repudiation Tampering

Privilege escalation Information disclosure

Information gathering Sniffing

Session hijacking Spoofing

Supply chain attacks

21

…subject of future lectures

Basic Security Principles

In the 1970s, Saltzer and Schroeder had been working on Multics

Identified a set of design principles intended to help designers
of time-sharing operating systems protect information

Some of the earliest thinking on building secure systems

22

Economy of Mechanism

23

Economy of Mechanism

Security mechanisms should be as simple as possible

Simper design and implementation  fewer possibilities for flaws
Facilitates understanding by developers and users

Facilitates careful review and verification

Minimizes interfaces and interdependencies

Trusted computing base (TCB)
Those portions of the system that are critical to its security

Vulnerabilities in the TCB may jeopardize the security of the entire system

The TCB should be as small as possible

24

Fail-safe Defaults

25

Fail-safe Defaults

“Deny” should be the default, unless privileges have been explicitly granted
E.g., default user group has minimal access rights

Oversights regarding handling of corner cases are a common cause
of vulnerabilities

Deny by default  denial of service
Will be reported by legitimate users and corrected quickly

Allow by default  potential for unauthorized access
Will not be detected and turn into a vulnerability

Main challenge: usability vs. security
Logging in as root, disabling Windows’ UAC, jailbreaking, …

Striking the right balance is not always easy

26

Complete Mediation

27

Complete Mediation

Every access should be checked to ensure it is allowed
E.g., each transaction on an ATM requires re-entering the PIN

The mediation mechanism should be part of the TCB
E.g., the OS kernel mediates access to memory, files, devices

Main challenge: performance vs. security
Checking file permissions before opening a file vs. on every access:
permissions may change after opening

Caching DNS responses vs. always asking the authority:
an attacker may be able to poison the cache

More frequent checks  higher runtime overhead

28

Open Design

29

Open Design

The security of a mechanism should not rely on the secrecy of its design
or implementation

Open design encourages scrutiny by multiple parties
Earlier discovery of potential design or implementation errors

Security through obscurity is fragile
Secrets may leak (e.g., insiders, neglect, theft), reverse engineering, …

Especially true in cryptography
Kerkhoff’s principle: a cryptosystem should be secure even if everything about the
system, except the key, is public knowledge

Secret keys/passwords are not algorithms: easily replaceable

30

Separation of Privilege

31

Separation of Privilege

It is more secure to grant permission based on multiple conditions instead
of a single one

E.g., transfers of $50K or more must be signed off by two officers

Two-factor authentication
Attackers have to achieve more than simply stealing a password

Related implication: system compartmentalization
Limit the damage caused by a compromise of any individual component

Separation: Monolithic OS kernel vs. microkernel, single process vs. multiple
cooperating processes, …

Confinement: virtualization, containers, sandboxing, …

32

Least Privilege

33

Least Privilege

The system should grant the bare minimum set of privileges necessary to
complete a given task

Fewer privileges  smaller damage upon compromise

Granularity matters
All or nothing (e.g., root or non-root) vs. fine-grained permissions (e.g., capabilities,
seccomp, access control lists)

Poor design: root just for a single activity  full system access when compromised

Permissions may be needed only temporarily: start as root (e.g., for binding to a port
<1024) and drop privileges right after

Another example: Android app permissions (used to be all-or-nothing, now can be
modified individually, and granted temporarily)

Main challenge: identify the minimal set of privileges needed

34

Least Common Mechanism

35

Least Common Mechanism

Mechanisms allowing resources to be shared by multiple processes or users
should be minimized

More shared state more ways for inadvertent information flows
Shared system surfaces are attractive targets for attackers

Confinement and compartmentalization can help

Main challenge: less state requires more careful (and potentially more
complex) design

Structured programming: avoid global state, avoid a single DB table for everything, …

Additional challenge: side channels
Cryptographic algorithm implementations, microarchitectural attacks, …

36

Psychological Acceptability

37© Johnathan Nightingale – http://blog.johnath.com/2007/10/11/todo-break-internet/

Psychological Acceptability

38© Johnathan Nightingale – http://blog.johnath.com/2007/10/11/todo-break-internet/

Psychological Acceptability

User interfaces should be intuitive and adhere to ordinary users’
expectations

If users (including administrators) can’t understand the system, they
won’t use it correctly

Increased complexity leads to misconfigurations and mistakes: TLS certificates, PGP,
Tor onion services, …

Too much interruption leads to annoyance: ignore flood of IDS alerts, turn off AV, …

Too much burden leads to workarounds: use a VPN to bypass firewall rules, write
password on post-it note due to complex password requirements, …

Repeated friction leads to weakened attention: training users to mindlessly clicking
on cookie banners

39

Work Factor

40

Work Factor

The cost of bypassing a security mechanism should be compared with the
resources an attacker must spend

Know your enemy: different threat models require different security
mechanisms

Online vs. offline password cracking, script kiddie vs. NSA, …

Quite challenging in practice due to advances in the state of the art
Encryption key sizes that were considered safe are not anymore

Code reuse replaced code injection

Elusive goal: “raise the bar for successful exploitation”
The work factor is often hard to quantify

41

Compromise Recording

42

Compromise Recording

Detection and logging is equally important

Defense in depth
If prevention mechanisms fail, detection mechanisms can be an additional layer of
defense

Intrusion detection
Monitor networks or hosts for malicious activities or policy violations

Situational awareness
Have a clear understanding of what is happening on the network and in the IT
environment

Audit logs facilitate incident response and forensics

43

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43

