
CSE508 Network Security

2021-04-08 Malware

Michalis Polychronakis

Stony Brook University

Malicious Software

viruses worms

keyloggers RATs

droppers injectors

adware spyware

rootkits trojans

backdoors dialers

downloaders flooders

ransomware …

2

Brain: the first IBM PC virus

Petya Ransomware, 2016

3

AIDS Ransomware, 1989

4

Malware Characteristics

Code Environment
Machine code (executables, DLLs, drivers, shellcode, firmware), higher-level
languages/interpreters (e.g., VB, macro, JS, Java), shell scripts, …

Attack vector
Network request, web page, email, document, USB, supply chain, …

Infection point
SMM/BIOS, firmware, boot sector, kernel, daemons, executables, memory-only, browser-only…

Propagation strategy
File infection (local disk, remote shares, cloud drives, USB sticks), network scanning,
contact/host/peer list, physical access, …

Armoring techniques
Packing, polymorphism, obfuscation, anti-VM/sandbox tricks, anti-debugging tricks, …

5

(Some) Common Malware Types

Downloaders/droppers
Fetch additional modules from remote locations and plant them

Launchers/loaders
(unpack and) drop a more complex module

Backdoors
Provide access to infected system (Reverse shells, RATs, bots, …)

Keyloggers/credential stealers
Capture passwords and authentication tokens (keyloggers, hash dumpers, …)

Ransomware
Demands a ransom to recover the victim’s encrypted files or prevent their leakage

6

Worms vs. Viruses

Worm
A program that self-propagates across a network by exploiting security or policy flaws
in widely-used services

Malicious code (standalone or file-infecting) that propagates over a network, with or
without human assistance

Classification not always clear

Main differences of worms from typical viruses
May not require user intervention

May not need to infect files

Network-oriented infection strategy

7

Worms: It all started back in 1988…

Morris worm
Created with no malicious intent

“Gauge the size of the internet”

Exploited multiple vulnerabilities
finger (stack smashing)

sendmail (DEBUG command allowed for remote cmd exec)

Weak passwords (cracking using dictionary)

rsh/rexec (/etc/hosts.equiv or .rhosts host-based authentication)

Infected about 10% of the internet
6.000 out of 60.000 hosts

8

9

Less sophisticated than Morris worm…

And then…

13 July 2001 – CodeRed: Buffer overflow in Microsoft IIS
GET /default.ida?NN
NNN
NNN
NNNN%u9090%u6858%ucbd3%u7801%u9090%u6858%ucbd3%u7801%u9090%u6858%ucbd3%u7801%u9
090%u9090%u8190%u00c3%u0003%u8b00%u531b%u53ff%u0078%u0000%u00=a HTTP/1.0

Defaced affected website:

HELLO! Welcome to http://www.worm.com! Hacked By Chinese!

Days 1–19: propagation through random scanning

Days 20–27: DoS attack against www.whitehouse.gov

4 August 2001 – CodeRed II
Localized scanning

10

More to come…

18/9/2001 – Nimda

Many infection vectors
Code Red IIS buffer overflow

Bulk email to harvested addresses from victim host

Open network shares

Infect visitors of compromised web sites

Microsoft IIS 4.0/5.0 directory traversal vulnerabilities

Backdoors left behind by the Code Red II and Sadmind/IIS worms

11

Faster…

25 January 2003 – Slammer
Stack overflow in MS SQL Server 2000, just a single 376-byte UDP packet

13

Slammer, 30 min after its release: 75,000+ infected hosts, 90% of the vulnerable population

Massive…

11 August 2003 – Blaster
Buffer overflow in the DCOM RPC Windows service

TFTP connect-back, download, and execute

6176-byte UPX-compressed binary

SYN-flooding DDoS attack against
windowsupdate.com

18 August 2003 – Welchia
“helpful” worm: deletes Blaster
and downloads patch

Caused side-effects…

14

More…

19 March 2004 – Witty
Vulnerability in ISS firewall products

30 April 2004 – Sasser
Vulnerability in LSASS Windows service

13 August 2005 – Zotob
MS05-039 PnP vulnerability

17 January 2007 – Storm
Mass-mailing worm, built P2P botnet

21 November 2008 – Conficker
MS08-067 RPC vulnerability

15

16© Microsoft - https://www.microsoft.com/en-us/security/pc-security/conficker.aspx

https://www.microsoft.com/en-us/security/pc-security/conficker.aspx

17

Added by Conficker

By selecting it the worm runs and
begins spreading to other computers

© Microsoft - https://www.microsoft.com/en-us/security/pc-security/conficker.aspx

https://www.microsoft.com/en-us/security/pc-security/conficker.aspx

18

Win32/Conficker detections by Microsoft antimalware products, 1Q ’09 – 4Q ’11

Three years later

© Microsoft - https://www.microsoft.com/en-us/security/pc-security/conficker.aspx

https://www.microsoft.com/en-us/security/pc-security/conficker.aspx

19

Generic Structure of Internet Worms

Target discovery

Infection propagator

Activation

Payload

20

Target Discovery

Network scanning
Random scanning (CodeRed, Sasser, Slammer, Witty)

Localized random scanning (CodeRed II)

Linear subnet scanning (Blaster)

Combinations (Slapper, Welchia)

E-mail address harvesting
Address books, files, web crawling, monitoring SMTP activity, …

Network share enumeration/topology
Network Neighborhood, /etc/hosts, known_hosts, …

Other mediums
P2P shared folders, IM, Google (MyDoom.O, Santy), …

21

Target Discovery Nowadays

Worms rely mostly on lateral movement techniques
Credentials harvesting (Mimikatz, keyloggers, sniffing, …)

Internal reconnaissance (network shares, VPN conections, …)

Pivoting attacks (RDP, PsExec, VBScript, WMI, …)

WannaCry (May 2017)
Internal/external spreading via the patched MS17-010 SMB bug

NotPetya (June 2017)
PsExec pass the hash, WMI, Mimikatz, MS17-010

BadRabbit (October 2017)
Propagation strategy similar to NotPetya

22

Infection Propagator

Self-carried
CodeRed, Slammer, Witty, …

Second channel
Blaster, Conficker, …

TFTP, FTP, HTTP, SMB, …

23

Activation

Self-activation
Vulnerability exploitation, file infection, …

Human activation
Social engineering

“Attached is an important message for you” [Melissa virus, 1999]

“Open this message to see who loves you” [ILOVEYOU virus, 2000]

Human activity-related activation
User login, insert USB stick, reboot, …

24

Payload

25

spam

DDoS

port scanning

malicious websites

click fraud

phishing illegal content

extortion

code injection

Botnets

Networks of compromised hosts
Controlled remotely by an attacker

Used for malicious activities

Command and Control (C&C)
Centralized, P2P, web-based, …

Early botnets: bots just join an IRC channel
Origin: benign IRC bots that perform
automated actions

Push vs. pull model
Example: IRC vs. HTTP

26

Botnets: what for?

Spam relaying

DDoS (for hire)

Mass information/identity theft

Extortion (DoS, ransomware)

Spreading new malware

Malicious page proxying/hosting

Manipulating online polls/games

Click fraud

Adware affiliate programs

Phishing web servers

Cryptocurrency mining
…

27

Some files are coded.
To buy decoder mail: <user>@yahoo.com
with subject: PGCoder000000000032

– Trojan.Gpcoder.C, 2005

© Bloomberg

Use Case: Torpig (trojan distributed as part of Mebroot MBR rootkit)

28Your Botnet is My Botnet: Analysis of a Botnet Takeover – CCS 2009

1: Victim visits malicious/infected website
2-4: Mebroot infection through a drive-by download attack

5: Mebroot downloads and installs Torpig
6: Torpig exfiltrates stolen data
7: Torpig downloads page templates to opportunistically launch man-in-the-browser attacks against banking websites

29

Torpig’s man-in-the-browser phishing attack

Your Botnet is My Botnet: Analysis of a Botnet Takeover – CCS 2009

DGA Botnets

What if the C&C server is gone?
Hardcoding domains or IP addresses in the bots may result in loss of communication

Domain Generation Algorithm
Resilient C&C communication: generate and contact new domains periodically

If a domain is not available, just move on to the next one

Torpig’s DGA
Initial seed: current date

Weekly and daily domains

Hard-coded fall-back domains
refreshed with each config file
received from the C&C server

30Your Botnet is My Botnet: Analysis of a Botnet Takeover – CCS 2009

Botnet Infiltration

Step 1: register future domains; Step 2: profit

The availability of a unique bot ID allowed for an accurate estimation of
the botnet’s size

Previous studies relied on the number of unique IP addresses observed,
which is less accurate

NAT underestimation: many bots behind the same IP address

DHCP overestimation: the same bot uses many IP addresses

31

Sample URL requested by a Torpig bot:
POST /A15078D49EBA4C4E/qxoT4B5uUFFqw6c...SZG1at6E0AaCxQg6nIGA
Corresponding decrypted submission header:
ts=1232724990&ip=192.168.0.1:&sport=8109&hport=8108&os=5.1.2600&cn=United%20S
tates&nid=A15078D49EBA4C4E&bld=gnh5&ver=229

Your Botnet is My Botnet: Analysis of a Botnet Takeover – CCS 2009

32

Activity observed through the hijacked C&C domains involved

1,247,642 unique IP addresses, but only 182,800 unique identifiers

Your Botnet is My Botnet: Analysis of a Botnet Takeover – CCS 2009

Fast Flux

Goal: resilient malicious server hosting
Hide phishing and malware delivery sites behind an ever-changing network of
compromised hosts acting as proxies

Harder to take down

One domain, many IP addresses
Periodic change in DNS responses, short TTL

Return only a few from a pool of many IP addresses

Usually belonging to compromised machines (“flux agents”)

In essence, a content distribution network using bots as proxies

33

34Measuring and Detecting Fast-Flux Service Networks – NDSS 2008

DNS Lookup 1

;; ANSWER SECTION:
thearmynext.info. 600 IN A 69.183.26.53
thearmynext.info. 600 IN A 76.205.234.13
thearmynext.info. 600 IN A 85.177.96.105
thearmynext.info. 600 IN A 27.129.178.13
thearmynext.info. 600 IN A 24.98.252.230

DNS Lookup 2

;; ANSWER SECTION:
thearmynext.info. 600 IN A 213.47.148.82
thearmynext.info. 600 IN A 213.91.251.16
thearmynext.info. 600 IN A 69.183.207.99
thearmynext.info. 600 IN A 91.148.168.92
thearmynext.info. 600 IN A 195.38.60.79

Many other C&C possibilities…

35© Jose Nazario - https://www.arbornetworks.com/blog/asert/twitter-based-botnet-command-channel/

https://www.arbornetworks.com/blog/asert/twitter-based-botnet-command-channel/

Besides $$$

Espionage, intelligence gathering, sabotage, …
Mostly by state-sponsored actors

Example: Stuxnet (2008)
Used multiple Windows 0days

Infiltrated and physically destroyed Iranian nuclear centrifuges

Other examples
Duqu: collection of malware modules, related to Stuxnet

PlugX: RAT targeting government-related institutions/industries

Regin: found in Belgacom, Belgium’s largest telco

Flame: cyber espionage in Middle Eastern countries

Gauss: cyber-espionage toolkit based on Flame
…

36

Persistence

Startup folder and registry keys
Example: HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\Run

Browser helper objects (BHO)

Winlogon Notify: hook malware DLL as a handler that will be triggered by a given event

System services
Example: DLL injection into svchost.exe (Win32/Conficker)

Malware also often names its process “svchost.exe” to disguise itself

AppInit DLLs
Easy way to hook system APIs by allowing custom DLLs to be loaded into the address space of every interactive
application (can be disabled using secure boot)

DLL Load-order (Windows)/LD_PRELOAD (Linux)
Exploit loader’s search order to load malicious DLLs

Trojanized binaries, kernel modification, module injection, …

37

Autoruns

38

Covert Malware Launching

IAT (Import Address Table) Hooking

Code patching
Just overwrite exiting code with a JMP

DLL Injection
E.g., CreateRemoteThread() + LoadLibrary()

Code injection
More cumbersome: have to dynamically resolve any API dependencies (in the same
way as regular shellcode does)

Process replacement
Overwrite whole memory segments of a process

39

Evasion – “Stay under the radar”

Both anomaly and misuse detection systems can be evaded by
breaking the detector’s assumptions

Detectors rely on certain features

Make those features look legitimate or at least non-suspicious

Many techniques
Packing/mutation/polymorphism/metamorphism

Fragmentation

Mimicry

Rate adjustment (slow and stealthy vs. fast and noisy)

Distribution and coordination (e.g., DoS vs. DDoS)

Spoofing, stepping stones, redirection
…

42

Polymorphism

Used to evade content-based detection (AVs, IDS, …)
Known since the early 90’s from the virus scene

Each malware/attack instance is a different mutation of the original
signature matching fails

Might actually make an attack look more suspicious!

43

Different decryptor/key used in each attack instance

\x6A\x07\x59\xE8\xFF\xFF\xFF\xFF\xC1\x5E\xE8\xFF\xFF\xC1\x6B\x80

…

\x6A\x07\x59\xE8\xFF\xFF\x6A\x07\x59\xE8\xFF\xFF\xFF\x6A\x07\x59\xE8\xFF\xFF\xFF\xFF\x6A\x07\x59\xE8\xFF\x6A\x07\x59\xE8

Packers and Unpacking

Goals
AV evasion
Payload compression
Hinder analysis/reverse engineering

Typical steps
Decrypt packed code (compression, encryption, …)
Load code into memory (disk, same or section, heap, …)
Resolve imports of original executable (automated or manual)
Transfer control to original entry point

Virtualizers
Turn x86 code into code of a random ISA that runs on an embedded VM

Many free and commercial packer/crypters/protectors
UPX, PECompact, ASPack, Petite, WinUpack, Themida, …

44

Code Obfuscation (Metamorphism)

NOP interspersion

Instruction substitution

Βlock transposition

Register reassignment

Dead code insertion

Many more: opaque predicates, jump in the middle of instructions,
stack frame manipulation, exception handling, …

45

inc ecx
dec ecx

push 0xF3
pop eaxmov eax,0xF3

sed –i 's/eax/ebx/g'

Anti-debugging/Reverse Engineering

Make the life of malware analysts and automated malware analysis
systems hard…

Obfuscate everything
Obscure strings, IAT, function calls, code, …

Erase headers from memory (anti-dumping)

Debugger detection
Windows APIs (e.g., IsDebuggerPresent())

Read TEB debugging flag

Generate exceptions

On-the-fly checksums of the code image (detect breakpoints)

Timing checks (debuggers are slow)

Many other techniques…

46

VM Detection and Environment-aware Malware

Evade automated malware analysis sandboxes

VMware artifacts
VMware Tools, MAC address, BIOS vendor, …

Instruction inconsistencies: different behavior on bare metal vs.
emulator/virtualized system

cpuid, sidt, sgdt, sldt, smsw, …

Detect existing hooks/instrumentation

Detect (past) user activity

47

Fileless Malware

Malicious software that resides solely in volatile memory (RAM)
Nothing is written on disk, and its artifacts do not persist across reboots

Infection origin: vulnerability exploitation in-memory code injection

Slightly different than “memory-resident” malware
Malware that stays in memory after its host program is terminated
Generally originates from an on-disk executable

Infection origin: attachment, USB stick, drive-by download, …

Related type: “living off the land” malware
Uses only preinstalled legitimate system tools to carry out its task

PowerShell, WMI, PsExec, .NET, MS Office macros, …

May leave non-volatile artifacts behind (e.g., a PowerShell command may be logged,
or a script may remain on disk)

48

Kernel-level Rootkits

Typically implemented as kernel modules/drivers

Modern OSes use signed drivers, but this protection is still bypassable
Install an existing signed driver with an exploitable vulnerability

Sign malware with acquired/stolen certificate

Exploit a kernel vulnerability

Hooking
Interrupt Descriptor Table (IDT), System Service Dispatch Table (SSDT), I/O request
packet (IRP) handlers, …

Relatively easy to detect

Code patching
Detectable using checksumming

49

Direct Kernel Object Manipulation (DKOM)

Hide malware footprints from object manager, event scheduler, logs, …
Also, add privileges/groups to tokens

Processes, drivers, files, network connections, …

Checksumming not effective: kernel structures that are frequently updated during
normal system operation

More stealthy (but more complex) technique

EPROCESS Object manipulation
Doubly linked list of structures that represent processes

Can be modified to hide a malicious process

DRIVER_SECTION manipulation
Similar technique for drivers

50

Covert Channels

Transfer information without being noticed
Myriad ways to achieve this

Hide in commonly used traffic
HTTP, DNS, ICMP, …

Protocol tunneling, packet field manipulation, size, timing, …

Contact only non-suspicious destinations
Host C&C on Google, Amazon, …

Use forums, twitter, comments, etc. for communication

Steganography
Hide communication or exfiltrated data within images or other files

Many other mediums
Radio/electrical signals, sounds, vibrations, temperature, …

51

Indicators of Compromise (IoCs)

Artifacts observed on a host or network that with high confidence
indicate a computer intrusion

Host level
Hashes of malware executables/modules/files

Strings in malware binary

System-wide changes/behaviors

Network level
Resolved domains

Accessed IP addresses

URLs

Network request/packet content

53

54© XKCD - https://xkcd.com/350/

https://xkcd.com/350/

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Slide Number 47
	Slide Number 48
	Slide Number 49
	Slide Number 50
	Slide Number 51
	Slide Number 53
	Slide Number 54

