
CSE508 Network Security

2021-03-23 TLS

Michalis Polychronakis

Stony Brook University

TLS (Transport Layer Security)
Predecessor: SSL (Secure Socket Layer)

Most widely used protocol for encrypted data transmission
Same basic design, different crypto algorithms

Designed to provide secure communication over the insecure Internet
Authentication, confidentiality, and integrity

Used in many services and secure versions of protocols
HTTP, POP, IMAP, SMTP, OpenVPN, CalDAV, CardDAV, LDAP, NNTP, FTP, IRC, SIP, …

Separate port number: HTTPS: 443, FTPS: 990, IMAPS: 993, DoT: 853, …

2

History

SSL developed at Netscape
v1: never released

v2 (1994): serious weaknesses

v3 (1995): re-design, basis of what we use today

TLS working group was formed to migrate SSL to IETF
TLS 1.0 (1999): minor differences but incompatible with SSL 3 (different crypto algorithms)

TLS 1.1 (2006): mostly security fixes, TLS extensions

TLS 1.2 (2008): authenticated encryption, more flexible

TLS 1.3 (2018): removal of legacy/weak algorithms, lower latency, perfect forward secrecy, …

Endless cycle of vulnerabilities and improvements
Insecure renegotiation, RC4 weaknesses, compression side channels, padding oracle attacks,
buggy implementations, PKI attacks, …

BEAST, CRIME, TIME, Lucky 13, BREACH, POODLE, FREAK, Heartbleed, DROWN, …

3

Handshake protocol

Negotiate public key crypto algorithms and establish shared secret keys

Authentication (server and optionally client)

Up to TLS 1.2, took 6–10 messages, depending on features used

Record Protocol

Uses the established secret keys to protect the transmitted data

Message transport: [header|data] records (16K)

Encryption and integrity: after handshake completion

Compression: before encryption… not a good idea
Side-channel attacks (e.g., CRIME)

Subprotocols: allow for extensibility
TLS defines four core subprotocols: handshake, change cipher spec, application data, alert

4

TLS 1.2 Handshake (Ephemeral DH)

5

Client Server

ClientHello

ClientKeyExchange

ChangeCipherSpec

Finished

ServerHello

Certificate

ServerKeyExchange

ServerHelloDone

ChangeCipherSpec

Finished

1

2

3

4

5 GET /login HTTP/1.1\r\n

Cipher Suite Negotiation

ClientHello: here are the cipher suites I support
TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256
TLS_DHE_RSA_WITH_AES_128_GCM_SHA256
TLS_RSA_WITH_AES_128_GCM_SHA256
TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA
TLS_DHE_RSA_WITH_AES_128_CBC_SHA
TLS_RSA_WITH_AES_128_CBC_SHA
...

ServerHello: let’s use this one
TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256

The server might not support the best of the client’s suites
Offers some other version hoping that the client will accept it

6

Downgrade Attacks

Force a weaker cipher suite selection through MitM
SSL 2: no handshake integrity

SSL 3: protocol rollback protection (still breakable)

TLS 1.0 and on: additional protections

Due to server bugs and interoperability issues, browsers responded by voluntarily
downgrading the protocol upon handshake failure

Retrying connection with lower SSL/TLS version

Attackers can exploit this by blocking the initial handshake attempts, or alter the client’s list of supported suites

7

Client Server

ClientHello (TLS 1.1)

RST

Attacker

ClientHello (TLS 1.0)

RST

ClientHello (SSL 3)

10https://en.wikipedia.org/wiki/Transport_Layer_Security

SSL 3.0, TLS 1.0, and TLS 1.1 are now completely removed by most browsers

https://en.wikipedia.org/wiki/Transport_Layer_Security

TLS 1.2 Session Resumption

Full handshake: 6-10 messages and two network round-trips
Along with CPU-intensive crypto operations, cert validation, …

Avoid re-negotiation by remembering security parameters
Server assigns and sends a unique Session ID as part of ServerHello
In future connections, the client sends the Session ID to resume the session

Alternative: session tickets (all state is kept at client)

11

Client Server

ClientHello [SessionID]

ChangeCipherSpec

Finished

ServerHello [SessionID]

ChangeCipherSpec

Finished

TLS 1.3 Handshake (Ephemeral DH)

12

Latest draft supports even zero-RTT handshakes
Clients include encrypted data in the initial messages based on config. ID previously sent by server

Client Server

ClientHello [KeyShare]

ServerHello [KeyShare]

EncryptedExtensions

Certificate

CertificateVerify

Finished

1

2

3

Finished

GET /login HTTP/1.1\r\n

Server (and Client) Authentication

After handshake completion, the client knows it can “trust” the
information in the server’s certificate

Assuming it trusts the issuing certificate authority

SSL/TLS certs are based on the X.509 PKI standard

How is the certificate associated with the server?
Common Name (CN): server’s hostname

The same process is supported for authenticating clients
Highly-secure web services, some VPN services, cloud applications, …

Rarely used in practice for user authentication
Common alternative: username + password over TLS connection

13

Certificate Fields

Version: v1 (basic), v2 (additional fields), v3 (extensions)

Serial Number: high-entropy integer

Signature Algorithm: encryption and hash algorithm used to sign the cert

Issuer: contains the distinguished name (DN) of the certificate issuer

Validity: starting and ending date of validity period

Subject: DN of the entity associated with the certificate’s public key
Deprecated in favor of the Subject Alternative Name (SAN) extension: DNS name, IP address,
or URI (also supports binding to multiple identities)

Public Key: The subject’s public key

Signature

14

19

20

21

Certificate Chains

Trust anchors: systems are pre-configured with ~200
trusted root certificates

System/public store: used by OS, browsers, …

More can be added in the local/private cert store: vendor-specific
certs, MitM certs for content inspection filters/AVs, …

Server provides a chain of certificates
A certificate from an intermediate CA is trusted if there is a valid
chain of trust all the way back to a trusted root CA

Any CA can issue and sign certificates for any subject
The system is only as secure as the weakest certificate authority…

Certificate Authority Authorization (CAA): can be used to restrict
which CAs can issue certificates for a particular domain

22

Root
Cert

End Entity
Cert

Intermediate
Cert

Intermediate
Cert

Em
be

dd
ed

 in
br

ow
se

r/
O

S
Pr

ov
id

ed
 b

y
th

e
se

rv
er

25

Certificate Revocation

Allow revocation of compromised or no longer needed certificates

Certificate revocation list (CRL)
Signed list of all revoked certificates that have not yet expired

Main problem: lists tend to be large, making real-time lookups slow

Can the attacker block connectivity to the CA’s server?

CRLSets (Chrome): revocation list pushed to the browser as a software update

Online Certificate Status Protocol (OCSP)
Obtain the revocation status of a single certificate faster

But the latency, security, and privacy issues still remain

OCSP stapling (Firefox): server embeds OCSP response directly into the TLS
handshake (soft-fail issue remains: an adversary can suppress the OCSP response)

26

HTTPS

Most common use of TLS: most web traffic is now encrypted

Crypto is expensive, needs more CPU cycles
Not a big deal these days (native hardware support)

Mixed content: Ad networks, mashups, …
Stop using them! (easier said than done: lost revenue, increased development time)

Incentives: Google rewards HTTPS sites with higher ranking

Virtual Hosting: initially incompatible
Not anymore: solved as of TLS 1.1 through the Server Name Indication (SNI) extension

Needs expertise and certs cost $$$$
Not anymore: letsencrypt.org

27

https://letsencrypt.org/

28

30https://transparencyreport.google.com/https/overview

https://transparencyreport.google.com/https/overview

Browser Security Indicators

Convey information about the security of a page
Locks, shields, keys, green bars…

“This page was fetched using SSL”
Page content was not viewed or altered by a network adversary

Certificate is valid (e.g. not expired), issued by a CA trusted by the browser, and the
subject name matches the URL’s domain

“This page uses an invalid certificate”

“Parts of the page are not encrypted”

“The legal entity operating this web site is known”
Extended Validation (EV) certificates

32

Browser Security Indicators

Convey information about the security of a page
Locks, shields, keys, green bars…

“This page was fetched using SSL”
Page content was not viewed or altered by a network adversary

Certificate is valid (e.g. not expired), issued by a CA trusted by the browser, and the
subject name matches the URL’s domain

“This page uses an invalid certificate”

“Parts of the page are not encrypted”

“The legal entity operating this web site is known”
Extended Validation (EV) certificates

33

Mixed Content Warning is Unnecessary

39https://googleonlinesecurity.blogspot.com/2015/10/simplifying-page-security-icon-in-chrome.html

Fewer security states for users to remember

Reflects better the security state of the page
Non-HTTPS traffic is a vulnerability! MitM/MotS attacks on the HTTP part are trivial

Basically the same in
terms of security

https://googleonlinesecurity.blogspot.com/2015/10/simplifying-page-security-icon-in-chrome.html

Marking HTTP as Not Secure

Phase 1: page is marked “Not secure” when
The page contains a password field

The user interacts with a credit card field

40https://www.chromium.org/Home/chromium-security/marking-http-as-non-secure

https://www.chromium.org/Home/chromium-security/marking-http-as-non-secure

Marking HTTP as Not Secure

Phase 2: page is marked “Not secure” when
The page contains a password field

The user interacts with any input field

The user is browsing in incognito mode

41https://www.chromium.org/Home/chromium-security/marking-http-as-non-secure

https://www.chromium.org/Home/chromium-security/marking-http-as-non-secure

Marking HTTP as Not Secure

Phase 3: all plain HTTP pages are marked “Not secure”

42https://www.chromium.org/Home/chromium-security/marking-http-as-non-secure

https://www.chromium.org/Home/chromium-security/marking-http-as-non-secure

Marking HTTP as Not Secure

Current state: HTTPS pages are marked in a more neutral way, while
HTTP pages are affirmatively marked “Not secure”

43https://blog.chromium.org/2018/05/evolving-chromes-security-indicators.html

HTTPS

HTTP

https://blog.chromium.org/2018/05/evolving-chromes-security-indicators.html

44

Current indicators
in Chrome 89

SSL stripping

Browsing sessions often start with a plain HTTP request
Web sites used to switch to HTTPS only for login or checkout

Example: Facebook in 2010 (optional full HTTPS in 2011, HTTPS by default in 2013)

Users type addresses without specifying https://
Browser connects over HTTP by default site may redirect to HTTPS

SSLstrip [Moxie Marlinspike, Black Hat DC 2009]
MitM attack to prevent redirection to HTTPS

Watch for HTTPS redirects and links, and map them to HTTP links

…or homograph-similar valid HTTPS links:

https://www.bank.com.attacker.com

45

https://www.blackhat.com/presentations/bh-dc-09/Marlinspike/BlackHat-DC-09-Marlinspike-Defeating-SSL.pdf

SSL stripping

46

Victim ServerAttacker

HTTP HTTPS

Location: http://…do

<form action=“http://…”>

Location: https://…do

<form action=“https://…”>

Missing lock icon or different domain, but who is going to notice?

HSTS (HTTP Strict Transport Security)

Defense against SSL stripping and other similar issues
Force the use of HTTPS instead of HTTP before accessing a resource

Treat all errors (e.g., invalid certificate, mixed content, plain HTTP) as fatal: do not
allow users to access the web page

Servers implement HSTS policies by supplying an extra HTTP header
Strict-Transport-Security: max-age=31536000
“Use only HTTPS for future requests to this domain for the next year”

An instance of trust on first use (TOFU)
Problem: the initial request remains unprotected because it is sent over HTTP

HSTS preloading: browsers come preloaded with a list of known HSTS sites

47

50

51

52

53

Chrome 89

54

Upcoming Chrome 90

MitM is Still Possible…

Rogue certificates
Most governments have a trusted root CA planted in our systems

Attackers may break into CAs and forge certificates

Pre-planted/generated certificates
Default static keys: Lenovo, Dell, anti-malware software, …

Low entropy during key generation: repeated or factorable keys

Self-signed certificates
If desperate… will trigger scary browser warning

Exploitation of certificate validation flaws
Programming errors while checking date, hostname, …

55

56

57

58

Self-signed Certificate Warning: One click away…

59

60

Self-signed Certificate Warning: Two clicks away…

61

Self-signed Certificate Warning: Two clicks away…

GOTO FAIL

iOS 7.0.6 signature verification error
Legitimate-looking TLS certificates with a mismatched private keys were
unconditionally accepted…

62

if ((err = SSLHashSHA1.update(&hashCtx, &serverRandom)) != 0)
goto fail;

if ((err = SSLHashSHA1.update(&hashCtx, &signedParams)) != 0)
goto fail;
goto fail;

if ((err = SSLHashSHA1.final(&hashCtx, &hashOut)) != 0)
goto fail;

...

fail:
SSLFreeBuffer(&signedHashes);
SSLFreeBuffer(&hashCtx);
return err;

?!!?!?!?

Check never executed

HPKP (HTTP Public Key Pinning)

Prevent certificate forgery: strong form of web site authentication

Browser knows the valid public keys of a particular website
If a seemingly valid chain does not include at least one known pinned key, the cert is rejected
Doesn’t apply for private root certificates (would break preconfigured proxies, anti-malware,
content filters, …)

Many incidents involving rogue certificates were discovered after browsers
started rolling out pinning

Similar deployment as HSTS
TOFU: HTTP response header
Built-in pins in browsers

Must be used very carefully – things can go wrong
HPKP suicide: site can be bricked if keys are lost/stolen
RansomPKP: compromise the server and push a malicious HPKP key

63

HPKP (HTTP Public Key Pinning)

Prevent certificate forgery: strong form of web site authentication

Browser knows the valid public keys of a particular website
If a seemingly valid chain does not include at least one known pinned key, the cert is rejected
Doesn’t apply for private root certificates (would break preconfigured proxies, anti-malware,
content filters, …)

Many incidents involving rogue certificates were discovered after browsers
started rolling out pinning

Similar deployment as HSTS
TOFU: HTTP response header
Built-in pins in browsers

Must be used very carefully – things can go wrong
HPKP suicide: site can be bricked if keys are lost/stolen
RansomPKP: compromise the server and push a malicious HPKP key

64

Deprecated in favor of
Certificate Transparency
and the Expect-CT header

65

Certificate Transparency

Public monitoring and auditing of certificates
Identify mistakenly or maliciously issued certificates and rogue CAs

Certificate logs
Network services maintaining cryptographically assured, publicly auditable, append-
only records of certificates

Monitors
Periodically contact all log servers and watch
for suspicious certificates

Auditors
Verify that logs are behaving correctly and are
cryptographically consistent

Check that a particular certificate appears in a log

66https://certificate.transparency.dev/

https://certificate.transparency.dev/

69

70

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 30
	Slide Number 32
	Slide Number 33
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Slide Number 47
	Slide Number 50
	Slide Number 51
	Slide Number 52
	Slide Number 53
	Slide Number 54
	Slide Number 55
	Slide Number 56
	Slide Number 57
	Slide Number 58
	Self-signed Certificate Warning: One click away…
	Self-signed Certificate Warning: Two clicks away…
	Self-signed Certificate Warning: Two clicks away…
	Slide Number 62
	Slide Number 63
	Slide Number 64
	Slide Number 65
	Slide Number 66
	Slide Number 69
	Slide Number 70

