CSE508 Network Security

2/1/2016 Lower Layers

Michalis Polychronakis
Stony Brook University
Basic Internet Protocols (OSI Model vs. Reality)

<table>
<thead>
<tr>
<th>Layer</th>
<th>Protocol Layer</th>
<th>End-to-End</th>
<th>Deliver to</th>
<th>Based on</th>
</tr>
</thead>
<tbody>
<tr>
<td>L7</td>
<td>Application</td>
<td></td>
<td>HTTP, BGP, DHCP, DNS, SPDY, SMTP, FTP, SMTP, IMAP, SSH, SSL/TLS, LDAP, NTP, RTP, SNMP, TFTP, ...</td>
<td></td>
</tr>
<tr>
<td>L6</td>
<td>Presentation</td>
<td></td>
<td>TCP, UDP, SCTP, ...</td>
<td>Dst. application, Port</td>
</tr>
<tr>
<td>L5</td>
<td>Session</td>
<td></td>
<td>IP, ICMP, IPsec, ...</td>
<td>Dst. machine, IP</td>
</tr>
<tr>
<td>L4</td>
<td>Transport</td>
<td></td>
<td>Eth, 802.11, ARP, ...</td>
<td>Next hop, MAC</td>
</tr>
<tr>
<td>L3</td>
<td>Network</td>
<td></td>
<td></td>
<td>Wire/air/pigeon, NIC</td>
</tr>
<tr>
<td>L2</td>
<td>Data Link</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L1</td>
<td>Physical</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Streams vs. Packets

send (data);

socket

Segment

TCP data chunk 1 TCP data chunk 2 ...

Packet

IP TCP data chunk 1 IP TCP data chunk 2 ...

Frame

ETH IP TCP data chunk 1 ETH IP TCP data chunk 2 ...

Network
Active vs. Passive Attacks

Passive: the attacker eavesdrops but does not modify the message stream in any way

- Traffic snoopig, wiretapping, passive reconnaissance, listening for unsolicited/broadcast traffic, traffic analysis, …

Active: the attacker may transmit messages, replay old messages, modify messages in transit, or drop selected messages from the wire

- Spoofing, session replay, data injection/manipulation (man-in-the-middle), DoS, malicious requests/responses, …
Physical Layer Attacks

Network eavesdropping
 NIC in promiscuous mode captures all traffic

Wiretapping (wire, optical fiber)
 Not needed for WiFi networks! ➔ WPA

Wirecutting

Jamming

Electronic emanations/side channels

Tracking
 Device fingerprinting
 Location tracking (cellular, WiFi)
 Many techniques of varying precision: trilateration/triangulation,
 nearest sensor, received signal strength, …
Network Taps

Up to 100Mbit/s can be completely passive

Most high-end switches can also mirror traffic
Ethernet

Most commonly used data link layer protocol for LANs

Communication based on frames

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-
| 48 bits |
| Destination Address | |
+-
| 48 bits |
| Source Address |
+-
| 16 bits |
| Type (16 bits) |
+-
| Payload (46-1500 bytes) |
+-
| 32 bits |
| CRC |
+-

Link Layer Attacks

Eavesdropping

WiFi: shared medium \Rightarrow trivial
Hub: broadcasts packets to all ports \Rightarrow trivial
Switch: learns which device is connected to which port and forwards packets only to the appropriate port \Rightarrow still possible!
ARP cache poisoning, CAM table exhaustion

Spoofing

Impersonate another machine and receive its traffic
Bypass address-based authentication
Change MAC address to get 30’ more of free WiFi
Hide the device’s vendor (first three bytes of MAC address)

DoS: flooding, deauth (WiFi), … (future lecture)

Rogue access point
Address Resolution Protocol (ARP)

Allows mapping of IP addresses to physical addresses

A new machine joins a LAN; How can it find the MAC addresses of a neighbor machine?

ARP request (broadcast): Who has IP 192.168.0.1?

ARP reply by 192.168.0.1: Hey, here I am, this is my MAC address

Each host maintains a local ARP cache

Send request only if local table lookup fails

ARP announcements (gratuitous ARP)

Voluntarily announce address updates

(NIC change, load balancing/failover, …)

Can be abused…
ARP Cache Poisoning

ARP replies can be **spoofed**: IP to MAC mapping is not authenticated!

Enables traffic sniffing/manipulation through MitM
ARP Cache Poisoning

Attack steps

ARP reply to victim, mapping gateway’s IP to attacker’s MAC
ARP reply to gateway, mapping victim’s IP to attacker’s MAC
Just forward packets back and forth

Tools: arpspoof (sslstrip), ettercap, nemesis, ...

Various Defenses

Static ARP entries: ignore ARP reply packets
OS configuration: ignore unsolicited replies, ...
ARPwatch and other detection tools
Managed switches
CAM Table Exhaustion

Switches use Content Addressable Memory (CAM) to keep MAC address to port mappings

 Finite resource!

Flooding a switch with a large number of randomly generated MAC addresses can fill up the CAM table

 Failsafe operation: send all packets to all ports
 Essentially the switch turns into a hub ➔ eavesdropping!
 Noisy attack, can be easily detected

Tool: macof (part of dsniff)
Rogue Access Points

No authentication of the AP to the client

Set up fake access point with an existing SSID or just an enticing name
 Starbucks-FREE-WiFi
 “Auto-connect”/”Ask to join network” mobile phone features greatly facilitate this kind of attacks
 Pineapple, Power Pwn, ...

Wireless backdoor
 Ship an iPhone/special purpose device to an office and use 4G connection for C&C
 Hide a tiny AP in a wall plug etc.

Detection
 NetStumbler: show all WiFi networks
 RF monitoring systems
 Wireless IDS/IPS
Internet Protocol (IP)

Routing: deliver packets from a source to a destination based on the destination IP address
 Through several hops (routers) – see traceroute
 Connectionless, best effort: no ordering or delivery guarantees
 Source IP address is not authenticated ➔ can be easily spoofed!

IPv6: most recent version, uses 128-bit addresses
 IPv4 space has been exhausted
 IPv6 deployment is slow

If a packet is too large for the next hop, it can be fragmented into smaller ones
 Maximum transmission unit (MTU)
Network Layer Attacks

ICMP (Internet Control Message Protocol): Used to exchange error messages about IP datagram delivery
 - Smurf Attack (DoS with spoofed broadcast Echo request)
 - Reconnaissance
 - Exfiltration using ICMP Tunneling
 - ICMP redirect MitM
 - Organizations typically block incoming/outgoing ICMP traffic

IP spoofing: conceal the real IP address of the sender
 - Mostly used in DDoS attacks
 - Ingress and egress filtering limit its applicability

IP fragmentation: confuse packet filters and intrusion detection systems
 - Split important information across two or more packets
Transmission Control Protocol (TCP)

Provides *reliable* virtual circuits to user processes

- Connection-oriented, reliable transmission
- Packets are shuffled around, retransmitted, and reassembled to match the original data *stream*

Sender: breaks data stream into packets

- Attaches a sequence number on each packet

Receiver: reassembles the original stream

- Acknowledges receipt of received packets - lost ones are resent
TCP

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| +--+
| | Source Port | Destination Port |
| +--+
| | Sequence Number |
| +--+
| | Acknowledgment Number |
| +--+
| | Data | U|A|P|R|S|F |
| Offset | Reserved | R|S|Y|I |
| | | G|K|H|T|N|N |
| +--+
| | Checksum | Urgent Pointer |
| +--+
| | Options | Padding |
| +--+
| | data |
| +--+
TCP Handshake

Sequence/acknowledgement numbers

Retransmissions, duplicate filtering, flow control

Seq: the position of the segment’s data in the stream

The payload of this segment contains data starting from X

Ack: the position of the next expected byte

All bytes up to X received correctly, next expected byte is X+1
TCP Issues

Sequence Number Attacks
 TCP connection hijacking/spoofing
 DoS (connection reset)

Port scanning (future lecture)

OS Fingerprinting
 Intricacies of TCP/IP stack implementations

DoS: (future lecture)
 Resource exhaustion
 Blind RST injection

Content injection/manipulation (MitM, MotS)
TCP Sequence Number Prediction

Goal: spoof a trusted host

Initially described by Robert Morris in 1985

Construct a valid TCP packet sequence without ever receiving any responses from the server

Exploits predictability in Initial Sequence Number generation

TCP sessions are established with a three-way handshake.

Client ➔ Server: SYN(ISN_C)

Server ➔ Client: SYN(ISN_S), ACK(ISN_C)

Client ➔ Server: ACK(ISN_S)

If the ISNs generated by a host are predictable, the other end-point need not see the SYN response to successfully establish a TCP session
Impersonating a Trusted Host

Old TCP stacks would increment the sequence number by a constant amount once per second

Highly predictable with a single observation at a known time

Attacker impersonates trusted host, predicts ISN_S

- Attacker \rightarrow Server: SYN(ISN_A), SRC = Trusted
- Server \rightarrow Trusted: SYN(ISN_S), ACK(ISN_A)
- Attacker \rightarrow Server: ACK(ISN_S), SRC = Trusted
- Attacker \rightarrow Server: ACK(ISN_S), SRC = Trusted, **attack data**

Execute commands based on trusted hosts

- `rsh`, `rcp`, other “r” commands… (hopefully not used these days)

Solution: randomized ISN generation
Man-on-the-Side Attack

Packet capture + packet injection
Sniff for requests, and forge responses

Requires a privileged position between the victim and the destination server
Attackers can observe transmitted packets and inject new ones
Attackers cannot modify or drop transmitted packets

But a less privileged position than what is required for a man-in-the-middle attack!
Also much easier: no need to keep per-connection state and relay traffic

Example: unprotected (non-encrypted) WiFi network
MotS: any client that joins the network can mount it
MitM: need to compromise the access point
Man-on-the-Side Attack

Race condition: attacker’s forged response should arrive before the actual server’s response

Most OSes will accept the first packet they see as valid

No need to guess TCP seq/ack numbers!

The rest of the original stream can follow after the injected packet

Powerful: redirect to malicious server, manipulate content, inject exploits, …
Airpwn

Listens to wireless packets and acts on interesting HTTP requests based on predefined rules

Beating server’s response is easy: the server is several hops away (10s-100s ms) while the attacker is local
A Close Look at the NSA’s Most Powerful Internet Attack Tool

BY NICHOLAS WEAVER 03.13.14 | 12:47 PM | PERMALINK

A close look at the NSA's most powerful internet attack tool.
Passive Network Monitoring

Packet capture
- Headers or full payloads
- Network taps
- Router/switch span/mirror ports

Netflow export
- Connection-level traffic summaries
- Built-in capabilities in most routers

Non-intrusive: invisible on the network

Basis for a multitude of defenses

IDS/IPS
- Anomaly detection
- Network forensics

Sophisticated attackers might erase all evidence on infected hosts
- Captured network-level data might be all that is left
Packet Capture Tools

Libpcap/Winpcap: user-level packet capture
 Standard interface used by most passive monitoring applications

PF_RING: High-speed packet capture
 Zero-copy, multicore-aware

tcpdump: just indispensable

Wireshark: tcpdump on steroids, with powerful GUI

dsniff: password sniffing and traffic analysis

ngrep: name says it all

Kismet: 802.11 sniffer

many more…
Packet Parsing/Manipulation/Generation

Decode captured packets (L2 – L7)

Generate and inject new packets

Tools

Libnet: one of the oldest
Scapy: powerful python-based framework
Nemesis: packet crafting and injection utility
Libdnet: low-level networking routines
dpkt: packet creation/parsing for the basic TCP/IP protocols

many more...