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Abstract. RF spectrum is a limited natural resource under a signif-
icant demand and thus must be effectively monitored and protected.
Recently, there has been a significant interest in the use of inexpensive
commodity-grade spectrum sensors for large-scale RF spectrum moni-
toring. The spectrum sensors are attached to compute devices for signal
processing computation and also network and storage support. However,
these compute devices have limited computation power that impacts the
sensing performance adversely. Thus, the parameter choices for the best
performance must be done carefully taking the hardware limitations into
account. In this paper, we demonstrate this using a benchmarking study,
where we consider the detection an unauthorized transmitter that trans-
mits intermittently only for very small durations (micro-transmissions).
We characterize the impact of device hardware and critical sensing pa-
rameters such as sampling rate, integration size and frequency resolution
in detecting such transmissions. We find that in our setup we cannot de-
tect more than 45% of such micro-transmissions on these inexpensive
spectrum sensors even with the best possible parameter setting. We ex-
plore use of multiple sensors and sensor fusion as an effective means to
counter this problem.

Keywords: Distributed Spectrum Monitoring, Transmission Detection.

1 Introduction

RF spectrum is a natural resource that is in limited supply but is neverthe-
less in great demand due to the exponentiating increase of mobile network use.
Naturally, just like any such resource the spectrum must be protected against
unauthorized use. This issue has recently been exacerbated by the increasing
affordability of software-defined radio technologies making RF transmissions of
arbitrary waveforms in arbitrary spectrum bands practical.

One way to protect spectrum is via large-scale spectrum monitoring. Var-
ious spectrum monitoring efforts have been underway for many years (e.g.,
[14][13][15]). One issue in such efforts is that lab-grade spectrum sensors are
large and expensive both to procure and operate. This issue has recently been
addressed by promoting the use of small and inexpensive spectrum sensors that
can potentially be crowdsourced, e.g., SpecSense [8], Electrosense [30] and other
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projects [19][32][6]. This enables much wider deployment in practical settings.
Some of these works [8][30] use inexpensive software-defined radios (such as
RTL-SDR which costs ≈$20 [27]) and inexpensive compute devices (such as the
RaspberryPi which costs ≈$40 [25]) attached to these spectrum sensors to enable
compute, storage and network capability. ElectroSense has already deployed us-
ing these inexpensive spectrum sensors1 to successfully monitor wide-area spec-
trum [26].

However, one major concern here is that these inexpensive spectrum sensors
are too resource limited and may not be able to perform resource intensive spec-
trum sensing and detection tasks, e.g., Fast Fourier Transform (FFT) computa-
tion and signal detection algorithms [7]. Several sensor related parameters (such
as sampling rate, FFT size) and device related parameters (CPU and memory)
affect the signal detection performance. A natural question here is to ask how
much of these parameters impact the transmitter detection performance given
the fact that there are diverse heterogeneous sensors with diverse capabilities.
Understanding the impact of these parameters is crucial to design and deploy
this class of spectrum sensors.

To address this question, we consider detecting an intermittent transmitter
as an example problem and characterize the impact of these parameters on
detection performance. In our setup, the transmitter here generates a tone of
certain duration (e.g., 1µs) periodically. Detecting such ‘micro-transmissions’ on
these inexpensive devices is hard because we cannot use the optimal parameters
that are used in general, due to poor compute capabilities. To quantify this,
we use detection ratio as a metric to evaluate the system. Detection ratio is
the percentage of transmissions detected by the sensor. We characterize the
detection ratio for four different parameters: (1) sampling rate, (2) integration
size, (3) FFT size, and (4) device hardware. Our goal is to understand how each
of these parameters on the inexpensive compute devices affect the detection of
micro-transmissions.

Our key finding is that the inexpensive sensors perform very poorly (<45%
accuracy) in detecting micro-transmissions on Odroid-C2 board [24] using USRP-
B210 [1] and RTL-SDR [27] sensors. In particular, the detection ratio drops by
almost 90% for an intermittent transmitter when the transmission duration drops
from 1s to 1µs (§2.3). This is because the limited capabilities of the compute
devices lead to dropping of samples while computing FFT and power spectral
density (PSD). We also observe that increasing sampling rate from 1Msps to
32Msps leads to a drop in the detection ratio by 85% and decreasing it from
1Msps to 512Ksps drops by 30%. This performance impact is due to buffer
overflow at the higher sampling rate or insufficient number of samples at lower
sampling rate.

We also find that the detection ratio is greatly impacted by device hardware.
For example, on Odroid-C2 the detection ratio is 70% and 30% less relative to a
desktop PC during local and remote detection, respectively (§3.2). The detection
performance can also be impacted by the received power which depends on sensor

1 We use the term spectrum sensor as sensor and compute device together.
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Fig. 1: Architecture of distributed spectrum patrolling. The sensors and attached
compute devices are inexpensive and thus suitable for crowd sourcing, but are
performance limited.

location, channel conditions as well as the Tx power. To model this behavior at
different received power levels, we vary the Tx gain. As expected, the detection
ratio reduces significantly on reducing the gain of transmitter (§3.3). Finally
to tackle the above challenges in using low-cost spectrum sensors, we deploy
multiple sensors in a given location. We show that using multiple sensors and
sensor fusion the detection performance improves significantly (§4.2).

2 Distributed Spectrum Patrolling

2.1 Background

The increasing cost of spectrum has made it necessary to monitor its usage
and detect illegal spectrum transmissions. Crowdsourcing approaches have been
proposed in the past to deploy distributed spectrum sensors at a large-scale.
However, that necessitates use of inexpensive sensors. To perform large-scale
spectrum monitoring, the most commonly proposed technique is to deploy a dis-
tributed set of inexpensive sensors (see in Fig. 1). For example, SpecSense [8]
and ElectroSense [30] are two successful, well-known examples of distributed
spectrum monitoring. Each such spectrum sensor consists of a low-cost embed-
ded compute platform device such as a RaspberryPi or Odroid-C2 connected to
an RF front end such as RTL-SDR or USRP. Each sensor scans the different
frequency bands and transfers the sampled IQ data to compute device over USB
interface.2 The compute device either runs signal detection algorithms on the
data locally or sends the data to a remote server for processing. We refer to these
two configurations as local and remote processing respectively. A number of such
spectrum patrolling systems have been proposed and deployed [8][30][18].

2 I refers to the in phase component of the signal and Q refers to the quadrature
component of the signal. I and Q representation of a signal contains information
about the amplitude as well as the phase of the signal. The received IQ samples are
used to reconstruct the received signal which is later demodulated to extract the
message signal.
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Parameters RTL USRP
SDR B210

Sampling Rate (Msps) 2.5 62
Spectrum (MHz-GHz) 24-1.7 50-6
Bits/Sample 8 12
Interface (USB version) 2 2/3
Cost (≈$) 20 1200

Parameters Desktop Odroid RPi3 RPi1
C2

Max Clock (GHz) 3.35 1.5 1.2 0.7
CPU Cores 4 4 4 1
Memory (GB) 8 2 1 0.5
Interface 2/3 2 2 2
Cost (≈$) 1000 40 40 20

Table 1: Spectrum sensor and compute configurations used in our experiments.

A key design challenge for these distributed sensing systems is to decide the
type of compute device, the sensor and the associated parameters to use. De-
vices with better compute power and spectrum sensors with higher sampling
rates provide much higher accuracy, but also cost more. The higher sampling
rate also increases the network bandwidth requirement which is challenging in a
wireless environment. While various deployments use different compute devices
and sensors, the performance impact of different device choices is not well under-
stood. To address this question, we systematically benchmark the performance
of multiple sensor and compute device parameters in the context of of a spe-
cific spectrum patrolling problem where an intermittent transmitter needs to be
detected.

2.2 Measurement Setup

Our measurement setup includes the type of spectrum sensors used, the compute
devices attached with the sensors, and the data collection process. Each of these
are explained below.

Spectrum Sensors: Commodity spectrum sensors vary widely in terms of cost,
performance, and the maximum frequency that they can scan. We experiment
with two types of sensors — a higher performing but relatively expensive sensor,
USRP-B210 ( $1200) [1], and popular, inexpensive sensor, RTL-SDR ( $20) [27].
The RTL-SDR has a maximum sampling rate of 2.5Msps while the maximum of
the USRP-B210 is 62Msps. The number of bits per sample is 8 for RTL and 12
for USRP. More bits means better accuracy because of lower quantization noise.
The sensor capabilities are summarized in Table 1.

Compute Devices: This device is essentially a small form factor single board
embedded computer that acts as a USB host to the sensor. There are many such
platforms. We experiment with three different types of devices — Odroid-C2 [24],
RaspberryPi-3 (RPi-3) [25] and RaspberryPi-1 (RPi-1) [25], along with a desktop
for a basline comparison. Each of these devices vary significantly in terms of
cost and performance. The CPU performance directly influences the transmitter
detection performance because of the processing needed for the signal detection
algorithms. Table 1 summarizes the capabilities of these devices.

Data Collection: For all the experiments, we place the transmitter and sensor
at a distance of five meters. This transmitter is a USRP-B210 based software
radio that transmits an intermittent tone in the 915 MHz band. The default
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Fig. 2: Detecting intermittent transmissions using USRP-B210 and RTL-SDR
sensors on Odroid-C2 board. The detection performance deteriorates signifi-
cantly as we decrease the transmission length.

transmitter gain for all the experiments is 100. We use an energy-based signal
detection algorithm for detecting the transmitter [7]. The algorithm calculates
total power within a frequency band by computing FFT on the IQ samples. The
signal is detected if the total power in the channel is more than a predetermined
threshold. The threshold can be determined by measuring noise in the channel
when there is no transmission. For all the experiments, we use 1 ms transmission
on Odroid-C2 board with either USRP or RTL sensors. We consider a single
transmitter transmitting with a center frequency of 915MHz. The default sam-
pling rate is 1Msps.

2.3 Motivation

As explained in §2.1, these systems employ expensive compute operations on the
received signals at the deployed spectrum sensor. For example, most of this prior
work performs FFT on the received IQ samples at the sensor itself, computes
the PSD and sends the results to a remote server for further analysis. This com-
putation however can slow down the sensor, leading to dropping of IQ samples
and thereby making it hard to detect micro-transmissions. To quantify this, we
conduct experiments to study the performance of detecting shorter intermittent
transmissions by varying the Tx lengths from 1µs to 1s (see Fig. 2).

Based on the length of transmitted signal, a significant difference exists in de-
tection performance even if all other parameters and configurations are identical.
While the sensor is able to detect almost all the 1s transmissions, the detection
performance for 1µs falls to less than 30% and 10% on USRP and RTL-SDR
sensors respectively. This difference must stem from the sensing parameters used
on both the sensor and compute device (see §3) as we observe significantly better
performance on high-end desktops with the same sensors (not shown here). Note
that the desktop machine has sufficient compute power, and we do not expect
any drop of samples on it.

Based on this initial study, our goal is to i) understand the factors that
influence the performance of detecting micro-transmissions on the inexpensive



6 M. Dasari et.al

110 100 90 80 70 60 50
Power (dB)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

RTL-1
RTL-2
USRP-1
USRP-2
USRP-4
USRP-8
USRP-16
USRP-32

Fig. 3: Sampling rate versus Noise floor (the number in the label indicates sam-
pling rate in Msps). Higher sampling rates bring challenges in detection in terms
of noise floor and data rates.

spectrum sensors and ii) explore an alternative to improve the signal detection
performance.

3 Micro-benchmarking of Spectrum Sensors

Four different spectrum sensor parameters (Table 1) could influence the de-
tection performance— sampling rate, integration size, FFT size, and compute
device hardware. Sampling rate here is the number of IQ samples received per
second. Integration size is the number of samples (i.e., the length of the signal in
time) used in a single FFT computation. FFT size is the number of FFT bins.
Apart from these parameters, placing the detection locally versus remote, and
the transmitter behavior can also influence the detection performance. We study
the impact of these properties.

3.1 Sensor Performance

Impact of sampling rate: In general, more the sampling rate, better the
transmission detection performance. However, distributed spectrum patrolling
with inexpensive sensors brings many challenges in using higher sampling rates:
1) Not all sensors support multiple sampling rates. For example, USRP B210
supports sampling rates from 64Ksps to 62Msps while RTL supports only from
1Msps to 2.4Msps. 2) Higher sampling rates also require proportionately higher
backhaul network capacity. 3) Finally, there is a general concern where increas-
ing the sampling rate increases the noise floor which makes it harder to detect
micro-transmissions. We study this impact of sampling rate on the inexpensive
spectrum sensors.

Fig. 3 shows that the noise-floor increases from -110dB to -90dB when the
sampling rate increases from 1Msps to 32Msps on USRP. This becomes much
worse, greater than -70dB, for RTL-SDR because of its inaccurate analog con-
verter [5]. This increase in noise-floor makes it hard to choose a threshold for
the transmission detection, especially given the fact that there can be many
heterogeneous sensors deployed with different sampling rates.
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Fig. 4: Detection performance vs. Sampling rate for 1ms transmission. Increase
in sampling rate is decreasing the detection performance on USRP-B210.
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Fig. 5: Integration size vs. detection ra-
tio. We use an FFT bin size of 1024 and
run the experiment on Odroid-C2.
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Fig. 6: FFT size vs. detection ratio. We
use an integration size of 256 and run
the experiment on Odroid-C2.

Fig. 4 shows the impact of sampling rate on detection performance. The
detection performance using local and remote processing decreases by 30% and
80% respectively from 1Msps to 32Msps sampling rate. This is a counterintuitive
result because we expect to see an increase in detection ratio with the increase
in sampling rate. This is because the sensor is unable to cope with the speed at
which the samples are received under higher sampling rates (remote), and FFT
and PSD computation (local). Hence, the sensor is losing many of the important
samples that could otherwise detect transmissions. The result is different with
RTL-SDR against sampling rate. When sampling rate increases from 1Msps
to 2Msps, the detection ratio increases by 15% and 20% for local and remote
detection respectively. We explain this by noting that the bits per sample of RTL-
SDR is less than USRP, and hence RTL-SDR data require less. Also, reducing the
sampling rate below 1Msps decreases detection ratio due to insufficient number
of samples.

Impact of integration size: Integration size is a critical parameter in detecting
micro-transmissions in terms of both FFT accuracy and compute requirement.
Increasing the integration size increases the accuracy of FFT computations, but
also increases the amount of computation power needed to compute it. We study
the impact of integration size while computing the PSD locally on both USRP
and RTL-SDR sensors.

Fig. 5 shows local detection performance against integration size on USRP
and RTL-SDR on an Odroid-C2. We set the FFT size at 1024 for this experiment,
as we find in the next experiment that it provides the best detection performance.
The detection drops by more than 30% from an integration size of 256 to 8192 on
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Fig. 7: Impact of device performance on detection performance

USRP. The reason behind this impact is that more number of samples the FFT is
computed on, harder it is to detect micro-transmissions as the power is averaged
over many noise samples. Another interesting result is that if we decrease the
integration time from 256 to 128, the detection rate also drops by over 20%. This
discrepancy is because the increased number of FFTs become computationally
intensive, and consequently, it is not able to handle all the incoming IQ samples.
Similar trend exists with RTL-SDR. Therefore, we observe that the integration
size should neither be too low nor be too high.

Impact of FFT size: FFT size defines the number of bins while computing the
FFT. Each bin represents the resolution of frequency. For example, if sampling
rate is 1Msps and FFT size is 1024, then the frequency resolution should be
1MHz/1024 which is 1024Hz. Smaller the frequency resolution (i.e., more bins),
more accurately we can detect the power at a given frequency. Also, it increases
the amount of computation needed. We evaluate detection ratio with different
FFT sizes from 128 to 8192 with local processing on an Odroid-C2. We use an
integration size of 256 samples, as we have observed in the previous experiment
that it provides the best detection performance.

Fig. 6 shows the impact of FFT size on detection performance. Both RTL and
USRP sensors perform better at 1024 FFT size. Having more than 1024 FFT
size causes compute and buffer overflow thereby missing IQ samples. Whereas
having less than 1024 FFT size makes it hard to detect micro-transmissions.
This is because the signal power gets averaged with noise floor due to larger bin
size. On the other hand, we find that the optimal FFT size on desktop to detect
micro-transmissions is 8192.

3.2 Device Performance

In the previous section, we studied impact of low-end hardware on the sensor
parameters that affect detection performance. In this section, we study the direct
influence of device hardware on detection. We keep the best performing sensor
parameters such as sampling rate (1Msps) and integration size (256) and evaluate
the detection ratio across different devices – Odroid-C2, RPi-3, RPi-1, and a
desktop (See Table 1).

Detection performance across devices: Fig. 7 shows the performance of
detection for both local and remote processing. We observe that in each case,
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Fig. 8: Impact of CPU clock frequency on detection performance

performance of detection reduces with a reduction in the computation power of
the computing device. For both USRP and RTL sensors, as we go from more
powerful to less powerful computing devices, the local detection ratio drops by
over 50% and becomes the worst in case of RPi-1 (<20%). This must be due to
the compute capacity of the device as the other parameters are unchanged.

We also find that remote processing has much higher detection ratio than
local processing when other sensor and transmitter-related parameters are iden-
tical. The compute capacity is a bottleneck for local detection because of the
FFT and PSD computation, as we observe that remote detection is as high as
97% on Odroid-C2. Even the remote detection performance degrades to only
60% of total transmissions on RPi-1 as its poor hardware is not able to cope
with the sampling rate at which the sensors are sampling.

Critical device bottleneck: To further understand the impact of the device,
we experiment with the most critical parameter of the device – CPU clock fre-
quency (as we have seen relatively less impact with other device parameters such
as memory and number of cores). A reduction in CPU clock frequency leads to
slower computation on the board, and thus lower detection ratio. This is espe-
cially important because many such single board compute devices have varied
clock frequencies. We conduct the same study for six different clock frequencies
available on the Odroid-C2 board. Fig. 8 shows the detection ratio against clock
frequency. From 1536MHz to 100MHz clock frequency, the detection ratio for lo-
cal and remote processing on USRP drops by almost 30% and 62% respectively.
Similar trends can also be observed with RTL-SDR. An interesting observation
is that the decrease in detection ratio in case of RTL-SDR is less than USRP
despite being much cheaper. This is because RTL-SDR has smaller number of
bits per sample compared to USRP and hence the compute requirement is less.3.

3.3 Variation in Transmitter’s Behavior

The detection performance depends on the received signal power relative to the
noise floor. To model this we vary the transmitter’s gain. Gain here is a scaling

3 Note that RTL-SDR has detection ratio similar USRP when the received signal
power is high. RTL-SDR performs poorly when the transmitter gain is very low and
signal power is close to noise floor (See §3.3)
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Fig. 9: Detection performance vs. transmitter gain. The poor detection perfor-
mance is because of a combination of factors – dropped IQ samples due to
additional computation and poor received signal power level.

factor that decides the power of the transmitted signal. When the received signal
power is low (due to the low gain in the Tx for example) there is a significant
chance of false alarms. When the signal power is close to the noise floor, it
becomes difficult for the sensors to differentiate between noise and the signal.
As a result, signal detection becomes difficult because the sensors can falsely tag
noise as signal. The false alarm rate increases in this scenario as it is very hard to
detect the low power signals unless we keep the threshold close to noise. Keeping
the threshold closer to noise increases the probability of false alarm (PFA). We
choose a threshold similar to [5] by assuming the PFA as 10% and compute the
detection performance based on this threshold.

We experiment with the transmitter changing its gain from 100 to 1000 in
steps of 100. Fig. 9 shows the detection performance during local and remote
processing. The detection ratio drops to zero when the transmitter changes its
gain to 50 during local processing on USRP-B210.4 The performance is much
worse on RTL-SDR, in that it becomes almost zero for gain around 200. This
performance degradation also exists for remote processing. The detection ratio
drops to 50% and 30% on USRP and RTL-SDR sensors respectively. The reason
behind the poorer performance during the local processing is because of the dual
impact of PSD computation overheads and lower received signal power levels at
lower gain values. During remote processing, only lower gain has an impact on
the the detection performance.

4 Discussion

In this section, we discuss the major findings of our study and provide a possible
solution to improve the detection performance of the inexpensive sensors.

4 Note that it is well known that signal power deteriorates as the transmitter decreases
its gain. The goal of this experiment is to understand the significance of detecting
micro-transmissions under poor capabilities.
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Fig. 10: Improvement in detection performance with number of sensors used.

4.1 Summary of main observations

The key takeaways of our benchmark study are:

– The optimal parameters for spectrum sensing such as effective sampling rate,
FFT size, integration size need to be rethought for low-end inexpensive sen-
sors. For example, the optimal sampling rate of detecting 1ms length micro-
transmissions on a Desktop is 8Msps while on Odroid-C2 it is 1Msps.

– Even when all signal processing is done remotely, the performance impact of
using low-end processors in the spectrum sensor could be significant (< 75%
on RPi-1 compared to Desktop, for 1ms transmission). This is attributed to
two factors– (1) inaccurate spectrum sensors, and (2) poor compute hard-
ware that is not able to process high sampling rates.

– For local processing, availability of compute power is a much bigger factor
affecting detection performance than the type of spectrum sensor. However,
this is not true for remote processing as the amount of samples dropped in
the network during shipping for remote processing is never high enough to
reduce detection ratio significantly.

4.2 Data Fusion

In §3, we observed that inexpensive compute devices are limited in terms of
computation power because of their hardware. Moreover, the spectrum sensors
are also inaccurate in detecting the signal. We now overcome these limitations
and improve the signal detection performance while retaining the cost-effective
motivation behind distributed sensing. We follow a similar idea from the previous
work [8] where the authors show that the inaccuracy of radios can be mitigated
by having more radios that are sensing together. This is because the samples are
dropped randomly by the devices due to computation bottleneck. The data is
later fused from all the sensors. Taking this further, we deploy 10 sensors each
with RTL-SDR and Odroid-C2 board at the same location in a campus area.

We use the same transmitter and the setup described in §2.1. The 10 sensors
sense the single channel continuously, compute the PSD, and send the power data
to our central server. We use Kaa framework [16] and MongoDB [21] to collect
the data and store it in a central database. We use a fusing algorithm similar to
[5] to combine the data from all the sensors. The detection performance is shown
in Fig. 10. We observe that using 8 sensors, a detection ratio of almost 99% and
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95% is reached in case of transmission lengths of 1ms and 1µs respectively. This
trade-off of cost versus performance benefits shows that detection performance
of inexpensive spectrum sensors can be improved by deploying more sensors. A
more complicated scenario is to detect the transmissions where the transmitter
is changing its gain. This brings the challenges of dealing with PFA while fusing
data and requires more sensors to detect all transmissions.

5 Related Work

The advent of inexpensive software radios has made the spectrum vulnerable to
unauthorized use [10][17][9][2][31][23]. We discuss two related lines of research:
1) distributed spectrum patrolling, and 2) benchmarking of spectrum sensors.

Distributed spectrum patrolling: Multiple studies such as SpecSense [8],
ElectroSense [30] and RadioHound [18] have proposed deploying distributed
spectrum patrolling systems using commodity spectrum sensors. However, they
all deploy one or two different varieties of sensors and compute devices. For ex-
ample, RadioHound uses RPi’s and laptops as the compute device whereas Elec-
troSense and SpecSense use RPi’s and Odroid-C2’s respectively. Other studies
such as [4] and [5] have focused on the heterogeneity of the sensors and their im-
pact on detection, or various performance issues related to distributed sensing,
such as inaccurate clocks [3] and noisy outputs [22][19]. However, these studies
do not investigate impact of sensing parameters or device hardware.

Benchmarking of spectrum sensors: A number of studies benchmark the
performance of individual spectrum sensors and the compute devices. For exam-
ple, [28][7] benchmarks the energy and performance trade-off of RPi and compare
it with a smartphone and a laptop based sensor. Other studies investigate the
performance of multiple compute devices such as RPi-2, RPi-3 and Beaglebone-
Black in the context of audio processing [20][11][12]. Finally, [29] benchmark FFT
computations on multiple inexpensive compute devices to study their utility for
on-board processing for space missions.

6 Conclusion

The demand for wireless spectrum sharing and co-existence technologies makes
large-scale, real-time spectrum measurements necessary. In this work, we ex-
plain the key issues that current wide-area distributed spectrum sensing systems
face, by benchmarking the impact of sensor and device-related parameters when
detecting unauthorized micro-transmissions. We show that the detection per-
formance is no more than 45% even with optimal parameter settings for a 1ms
transmission. The poor performance is mainly attributed to limited computation
capability of the device that results in lost samples. To improve this detection
performance, we deploy multiple sensors and demonstrate a 98% of detection
performance by fusing the data from all the sensors. We believe that this study
also serves the validation and reappraisal of distributed sensing systems such as
SpecSense [8] and ElectroSense [26].
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