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ABSTRACT
With the next generation immersive video applications, network
capacity is becoming a growing bottleneck to deliver a high quality
video to end-users. Recent advances to tackle this challenge intro-
duced super-resolution (SR) for video quality enhancement through
neural computations by leveraging client-side compute capacity.
However, the existing SR models are bulky, compute-, and memory-
expensive, which makes it difficult to deploy them in practice. In
this work, we present dcSR, a lightweight data-centric SR approach
that enables a practical neural quality enhancement for videos. On
the server-side, dcSR constructs micro SR models trained on a few
selected frames from each video through a data-centric paradigm
by employing a long term video scene understanding mechanism.
On the client-side, dcSR integrates the micro SR models into the
regular video decoder and enhances the video quality in real-time
without compromising on quality enhancement. We evaluate dcSR
and show its benefits by comparing it with previous methods.

CCS CONCEPTS
• Information systems → Multimedia streaming; • Comput-
ingmethodologies→Reconstruction; •Human-centered com-
puting → Ubiquitous and mobile devices;
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1 INTRODUCTION
Internet video has seen a rapid growth in multitude of ways in
recent years— users, applications, and network protocols. However,
with the evolution of current generation streaming applications
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(e.g., Netflix or YouTube) and future generation immersive applica-
tions (e.g., AR/VR and 360◦ video), the demand for network capacity
is increasing exponentially [3]. While the applications and the In-
ternet protocols are constantly evolving in parallel, delivering the
best video quality to end users remains a challenging problem.

Though various advances have improved the video quality of
experience (QoE) [18, 23], majority of the work relies on a single
resource dimension— network capacity, resulting in a fundamental
limitation where users with poor network capacity are always
delivered a poor quality video. The problem becomes more acute
with the increased number of end-users competing for the shared
network resource.

To overcome the above limitations, recent advances in this space
introduced a neural video quality enhancement paradigm by lever-
aging an additional client-side resource dimension— compute ca-
pacity along with network capacity [7, 26, 27]. In particular, most
of the related works use a deep learning based super-resolution
(SR) approach [7, 26, 27], where a client with poor network capacity
downloads a low quality video, which is then enhanced through
neural computations before the playback.

Practical Challenges. Given the growing compute capacity on
client devices (e.g., GPUs/NPUs) [6], neural enhancement appears
to be a natural fit to improve the end-user experience. However,
realizing the state-of-the-art SR-driven streaming methods in prac-
tice poses two nontrivial challenges: 1) current SR models are ex-
tremely expensive in terms of computation and memory, 2) these
models suffer from generalization-specialization trade-off. The first
challenge mainly arises from the need to train bulky SR models to
achieve good quality enhancement. The second challenge is more
general and attributed to either 1) training the SRmodel on standard
datasets with an aim to generalize across all videos, consequently
improving little quality on unseen video content [27] or 2) tailor-
ing a SR model specific to each video at the cost of downloading
the model along with the corresponding video on-demand [26, 27].
Thus, the existing SR methods cannot be easily adopted in prac-
tice for today’s real-time on-demand video streaming on compute
constrained client devices.

dcSR. We propose dcSR (Data-Centric SR), a practical super-
resolution approach for video streaming that overcomes the above
limitations and enables real-time neural video quality enhancement
on heterogeneous client devices. dcSR, in its core relies on a data-
centric AI paradigm [8], where SR models are trained with a special
understanding of the video data. Unlike the existing model-centric
approaches [26, 27] that optimize models to deal with the noise in
the data, dcSR targets improving the data consistency for training.
To this end, dcSR constructs several lightweight micro SR models
for each video by automatically analysing the long term spatio-
temporal redundancy in the video and applying SR on a few selected
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frames. The resulting system is one that effectively minimizes the
client-side computation (i.e., inference) time without compromising
on the video quality enhancement.

Insights. The key insight behind dcSR is the frame structure
followed by the current generation video codecs [24], called group
of pictures (GOP) structure classifying each frame as I, P, or a B
frame. During the encoding, to exploit the redundancies across the
frames for compression efficiency, these frames refer to each other
to encode residual, which is the difference between two pixel blocks
instead of the entire pixel block. For this, while I frames do not
make reference to any frame, P frames make reference to I or P
frames. Similarly, B frames make reference to previous and future
frames [24]. The insight here is that enhancing the I frames alone is
sufficient because the P and B frames are automatically enhanced as
they depend on I frames. Additionally, we also observe that videos
with longer duration tend to have repeated GOP structures, mean-
ing the scenes in the video repeat sometimes resulting in similar I
frames but at longer time intervals (see §3.1). This suggests another
insight that the model trained for one I frame can be reused for other
similar I frames.

Using the above insights, on the server-side, dcSR constructs
several lightweightmicro SR models for each video with each model
corresponding to a selected group of I frames (§3.1). We realize this
by using a feature extraction and clustering mechanism to group vi-
sually similar I frames, and train each micro model for each cluster
of I frames. The resulting system is one that optimizes the number
of models for each video and the model parameters without com-
promising on the quality enhancement, which effectively resolves
the inference and model download challenges. On the client-side,
we develop a video decoder integration pipeline that seamlessly en-
hances I-frames in the decoded picture buffer and caches the models
for future I frames that belong to the same cluster (§3.2).

We have built dcSR prototype on top of FFMPEG [9], a multime-
dia framework with standard video codecs (e.g., H.264/265), and
evaluated its performance across diverse contents, video resolu-
tions, and devices. Our evaluation shows that dcSR can perform SR
in real-time (>30FPS) across diverse devices without compromising
on video quality enhancement for the same bandwidth, compared
to state-of-the-art methods. We also show that dcSR reduces band-
width usage by 25% for the same video quality compared to previous
methods. In summary, we make the following contributions:
• We design and develop a practical super-resolution approach
for real-time neural video quality enhancement.
• We build SR-FFMPEG by integrating dcSR into H.264 decoder
implementation from FFMPEG. We are releasing SR-FFMPEG,
hoping it brings value to the community in fostering research
in this space [2].
• We comprehensively evaluate and showcase the benefits of
dcSR by comparing with state-of-the-art SR methods.

2 BACKGROUND AND MOTIVATION
2.1 Client-side Video Quality Enhancement
High quality video applications are fundamentally limited by net-
work capacity.When network capacity is limited, the clients have no
other choice than to download and display poor quality videos. To
overcome the above fundamental limitation of single dimensional
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Figure 1: Challenges of realizing SR in practice

resource (i.e., poor network capacity) in video content delivery,
recent advances introduced a video quality enhancement paradigm
using neural super-resolution models [26, 27] by leveraging client-
side compute capacity as an additional resource. The key idea of
super-resolution is to reconstruct a high-resolution (quality) video
from its lower-resolution (quality) version. Recent developments in
the computer vision literature has seen tremendous success in super-
resolving low quality videos using convolutional neural networks
(CNN) [1, 11]. However, deploying these SR models in practice
for on-demand streaming brings several nontrivial challenges as
discussed below.

2.2 Practical Challenges of Video SR
Ideally, a universal SR model that can enhance the quality of any
video can eliminate the need for downloading a model every time
a client requests a video. However, given that the Internet video
ecosystem is vast and new contents are continuously generated,
generalizing a single model for all videos that can provide adequate
quality enhancement is likely infeasible. Therefore, we choose to
construct SR models specialized for each video at the cost of down-
loading the corresponding model along with the video. Video spe-
cific SR models are more efficient because they can overfit on the
extracted nonlinear relations among the pixels for a particular video
and greatly enhance the video even from a relatively low quality.
While video-specific SR model is indeed promising for efficient
quality enhancement, realizing it in a practical setting poses several
nontrivial challenges. To illustrate this, we run a series of bench-
marks using the experimental setup described in §4. We train a
DNN model similar to a recent SR model, NAS [27]. Figure 1 shows
the impact of video resolution on model size and inference rate.
High inference latency: Figure 1(a) shows the impact of video
resolution on inference speed. The SR inference is less than 15 FPS
for all resolutions. However, for a good user experience, the player
has to display the video at least 30 frames per second, which is not
possible with the existing SR models. As we show in §4, this high
inference also leads to excessive power consumption because of
the frequent and heavy usage of GPU for neural computations.
Model download overhead: Figure1(b) shows that for a given
quality, the model size grows significantly with the increase in
resolution. Moreover, training a single SR model for the entire
video leads to inefficient utilization of the network capacity as the
model needs to be downloaded in the beginning of the streaming
which leads to even when the users do not watch some part (e.g.,
ending credit) of the video.
Large quality variance: The third challenge is when trained on
longer videos, SR models try to generalize across the entire video,
making it to difficult to retain the details of each frame uniformly. As
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Figure 2: Workflow of Server-side dcSR

a result, for a givenmodel, the quality enhancement varies by almost
5dB even when trained on a single video (≈ 12 mins). Such frequent
fluctuations in quality can hurt the user experience [18, 23].

3 SYSTEM DESIGN
dcSR consists of two components. First, on the server-side, dcSR
constructs a few micro SR models for each video based on the
insights gathered from video codecs and its content. Note that a
micro SR model has a simpler model architecture trained on only
a few video frames, which makes the overall number of trainable
hyperparameters less than those in the literature [26, 27]. Second,
on the client-side, dcSR seamlessly reflects quality of SR-enhanced
frames to the rest of the frames.

3.1 Server-side dcSR
Figure 2 shows the pipeline of our server-side dcSR design that
includes: 1) video split and feature extraction, 2) video segment
clustering, and 3) training micro models. We explain each of these
components in the following.

3.1.1 Video split & feature extraction. On the server-side, raw
videos are encoded using standard video codecs (e.g., H.264 [12])
to reduce the bandwidth. Each frame is classified into either I, P,
or a B frame. The P and B frames are mostly reconstructed from
I frames. Thus, they consume much lower bitrate, while I frames
have a higher bitrate. Most of the existing works [26, 27] split a
video into multiple fixed length segments to reduce the complexity
for adaptive bit rate algorithms. However, this leads to content-
agnostic placement of I frames at the beginning of each segment,
resulting in encoding overheads. To avoid this, recent solutions
started practicing variable length video split [5, 22]. This method
considers appropriate placement of I frames when splitting the
video. This requires fewer I frames while achieving lower bitrate
without quality degradation. Specifically, we follow a video split
method from Netflix that detects visually noticeable changes in
subsequent frames to split a video into segments [5]. To detect such
changes, we estimate how different each frame is from its previous
one. If the difference is above the predefined threshold value, we
start a new segment. Note that we can adjust the fixed-length based
adaptive bitrate algorithms to the variable length as proposed in [4].

The variable-length video split allows each video segment to be
represented by its I frame as all other frames in the segment are
visually similar. By using the high level features from each I frame,
we cluster the I frames into groups with similar features to con-
struct a micro SR model for each cluster. To extract the high level
features from I frames, we use a Variational Autoencoder (VAE), a
well-known generative and unsupervised neural network model [13].

𝑥 ො𝑥 = decoder(z)Sampling

DecoderEncoder

𝜇𝑥, 𝜎𝑥 Z ~ 
N(𝜇𝑥, 𝜎𝑥)

Figure 3: Variational Autoencoder Structure

As shown in Figure 3, the VAE consists of an encoder and a de-
coder neural network, aiming to minimize the reconstruction error
between the input (𝑥 ) and the reconstructed data (𝑥 ). Through iter-
ative training process, it learns two mappings: one that maps the
input images (𝑥 ) into the distribution of the latent space represented
as the mean 𝜇𝑥 and covariance 𝜎𝑥 matrices (encoder), and the other
that maps the latent vector back to the reconstruction (𝑥) of the
original images (decoder). A subtle but important point to note
here is that we train both encoder and decoder, but we use only
encoder to get the latent features which are then fed as input to the
clustering algorithm. The training loss function of the VAE consists
of a reconstruction term and a regularization term as below:

𝐿(𝑥, 𝑥, 𝜇𝑥 , 𝜎𝑥 ) = 𝑐 | |𝑥 − 𝑥 | |2 + 𝐾𝐿[𝑁 (𝜇𝑥 , 𝜎𝑥 ), 𝑁 (0, 1)], (1)

where 𝐾𝐿 and 𝑁 denote the Kulback-Leibler divergence [14] and
normal (Gaussian) distribution, respectively. As in the normal Au-
toEncoder, the reconstruction loss term (| |𝑥 − 𝑥 | |2) aims to make
the 𝑥 as close to 𝑥 as possible. Whereas, the regularization term
(𝐾𝐿[𝑁 (𝜇𝑥 , 𝜎𝑥 ), 𝑁 (0, 1)]) aims to regularize the organization of the
latent space by making the distributions returned by the encoder
close to a standard normal distribution. By adding the regulariza-
tion term to the loss function, we can enforce the VAE to organize
the latent space in such a way that two close latent vectors in the
latent space return similar reconstructions once decoded, capturing
the high level features efficiently. Unlike the VAE, normal autoen-
coders do not guarantee that two close latent vectors in the latent
space return similar reconstructions once decoded. In other words,
two adjacent vectors in the latent space built by a normal autoen-
coder can return totally different reconstructions, which is against
what we want to achieve through feature extraction and segment
clustering processes.

3.1.2 Video Segment Clustering. Once we extract latent features
using the VAE, we leverage the 𝐾-means algorithm [17], unsuper-
vised machine learning algorithm to group visually similar seg-
ments together. 𝐾-means algorithm divides a set of 𝑁 samples into
disjoint 𝐾 clusters, each of which can be represented by a centroid.
To group similar data points together while separating the dissimi-
lar, the 𝐾-means algorithm iteratively searches the centroids that
minimize the inertia that measures how internally coherent clusters
are. Given the latent vectors from the feature extraction step, the 𝐾-
means algorithm groups visually similar video segments together,
while separating the different ones as far as possible as shown in
Figure 4. Even though the 𝐾-means algorithm generally works well
and fast by heuristically solving the clustering problem, there is a
downside that it can converge to the local optimum. Thus, to land
on the global optimum in our clustering problem, we use the global
𝐾-means algorithm [15] instead of the original 𝐾-means algorithm.
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Figure 4: Video Segment Clustering

When using the 𝐾-means clustering, a general challenge is to
decide the optimal hyperparameter 𝐾 that can affect the overall
clustering performance. A commonly used metric, called, silhouette
coefficient [21] can be used to find the optimal 𝐾 . The silhouette
coefficientmeasures how far away a data point is from other clusters
(separation) as well as how similar a data point is to its own cluster
(cohesion). A high silhouette coefficient indicates that a data point
is well matched to its own cluster and separated from neighboring
clusters. Normally, silhouette coefficient alone can be sufficient to
decide the optimal𝐾 in the normal clustering problem. To decide the
optimal𝐾 , we iteratively calculate silhouette coefficients increasing
𝐾 and select the 𝐾 with the maximum silhouette coefficient as the
optimum 𝐾 . Figure 5 shows that the optimal number of clusters
can be 16, at which we achieve the maximum silhouette coefficient.

However, relying only on silhouette coefficient can result in sub-
optimal clustering performance for dcSR because of the underlying
constraints such as the SR model size and minimum SR performance.
As we deploy 𝐾 number of micro models instead of one large model
for an entire video, the overall size of the micro models should not
exceed that of the large model. Such a constraint limits the range
of 𝐾 , the number of micro models we can deploy for a video.

We tackle the above challenge by finding the size of the min-
imum working model that not only achieves the smallest micro
model size, but also enables comparable SR performance to the
large model. We achieve this by profiling all possible configurations
(e.g., convolution filter size) of the model architecture empirically.
Note that the configuration of a minimum working model can vary
for each video as each video has different visual feature distribution.
Therefore, we find theminimum configuration and decide the range
of possible 𝐾 for each video separately. The detailed description on
how to find the minimum working configuration can be found in in
Appendix (§A.1). Formally, the 𝐾 value that achieves the maximum
silhouette coefficient can be decided as follows:

𝑘∗ = argmax
𝑘∈𝐾

𝑆𝐶 (𝐾), (2)

1 ≤ 𝑘 ≤
|𝑀𝑏𝑖𝑔 |
|𝑀𝑚𝑖𝑛 |

, (3)

where 𝑆𝐶 (𝑘) and𝐾 denote the silhouette coefficient given𝑘 number
of clusters and a set of possible 𝑘 , respectively. |𝑀𝑏𝑖𝑔 | and |𝑀𝑚𝑖𝑛 |
represent the size of one large model and that of the minimum
working model, respectively.

3.1.3 Training Micro SR Models. After we cluster the video seg-
ments, we construct a micro SRmodel corresponding to each cluster.
We extract the I frames of all segments in each cluster and train
a model by feeding a low quality version of I frames with their
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Figure 5: Optimal Number of Clusters

corresponding high quality frames as ground-truth. To train micro
models, dcSR adopts an enhanced deep super resolution network
(EDSR) [16] that stacks residual blocks to enhance the SR perfor-
mance, and follows similar procedure for training.

3.2 Client-side dcSR
On the client-side, we integrate dcSR into a video decoder to achieve
two key goals: 1) after decoding and enhancing I frames, the rest of
the frames (P and B) need to reflect the enhanced I frame quality,
and 2) we want to avoid redundant model downloads by caching
models for future I frame quality enhancement.

3.2.1 SR Integration into Video Decoder. Figure 6 shows the
workflow of client-side dcSR. As shown, we add dcSR as one addi-
tional layer of process to the existing video decoder process. Once
the client receives a video segment and the corresponding micro
SR model, the video decoder in the client decodes the I frame of
the video segment and temporarily stores it in the decoded picture
buffer (DPB) to be used to decode the subsequent P and B frames.
Note that we pause the remaining decoding process for the subse-
quent P and B frames to apply the SR to the I frame in the DPB.
Since the I frame in the DPB is in a YUV format by default, dcSR
converts the format of the frame into a RGB format which is the
type that a micro SR model accepts. After the color conversion,
dcSR enhances the quality of the I frame in the DPB using the micro
SR model. Before resuming the decoding process, dcSR converts the
enhanced I frame back into a YUV format which is required for the
remaining decoding process. After the conversion, dcSR resumes
the decoding process by referring the P and B frames to the I frame.

3.2.2 Micro SR Model Caching. As explained above, our dcSR
client downloads multiple micro SR models for the entire video,
instead of a single large model. When deploying multiple micro
SR models, we exploit the intermittent usage of each micro model
through long-term temporal correlations across video segments to
avoid redundant model downloads. For example, a segment in the
start of the video can belong to the same cluster of another segment
after a few minutes, and both segments can use the same model
trained for the corresponding cluster. To exploit this, we cache
models downloaded for earlier segments to avoid downloading the
duplicate models.

Figure 7 shows a walk-through example of our model caching.
Initially, dcSR downloads a video segment 0 and model 0. After
finishing the SR process for segment 0, dcSR stores model 0 in its
cache. When downloading segment 1, dcSR checks the correspond-
ing model label for segment 1. As segment 1 requires model 1 and
the cache does not have it, dcSR downloads model 1. For segment 2,
dcSR does not request a new micro model as it already has model
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1 in its cache. When downloading segment 3 and 6, dcSR fetches
model 2 and 3 respectively as its cache does not have them.

Algorithm 1 describes the flow of the micro model caching pro-
cess. 𝑉 , 𝐶 , 𝐻𝑎𝑠ℎ𝑀𝑎𝑝𝐿 , and 𝐻𝑎𝑠ℎ𝑀𝑎𝑝𝑀 represent a list of video
segment labels, a cache, a hashmap that maps a video segment label
to a model label, and a hashmap that maps a model label to the
corresponding model respectively, where 𝑛 is the number of video
segments. Given a video segment label 𝑣𝑖 as an input, 𝐻𝑎𝑠ℎ𝑀𝑎𝑝𝐿
returns the corresponding micro model label, 𝐿. Similarly, given a
model label 𝐿, 𝐻𝑎𝑠ℎ𝑀𝑎𝑝𝑀 returns the corresponding micro model.
For each video segment represented by 𝑣𝑖 , dcSR checks if the corre-
sponding model (L) for 𝑣𝑖 is in 𝐶 (line 3-4). If model 𝐿 is not in 𝐶 ,
dcSR downloads it and updates its cache (line 5-6).

Algorithm 1:Model Caching and Fetching

Input :𝑉 ,𝐻𝑎𝑠ℎ𝑀𝑎𝑝𝐿, 𝐻𝑎𝑠ℎ𝑀𝑎𝑝𝑀

1 𝐶 ← ∅;
2 for 𝑣𝑖 ∈ 𝑉 do
3 𝐿 = 𝐻𝑎𝑠ℎ𝑀𝑎𝑝𝐿 [𝑣𝑖 ];
4 if 𝐿 ∉ 𝐶 then
5 𝐶 ← 𝐶 ∪ 𝐿;
6 𝐻𝑎𝑠ℎ𝑀𝑎𝑝𝑀 [𝐿] = 𝐷𝑂𝑊𝑁𝐿𝑂𝐴𝐷 (𝐿)
7 end
8 𝑀𝑜𝑑𝑒𝑙 = 𝐻𝑎𝑠ℎ𝑀𝑎𝑝𝑀 [𝐿]
9 end

4 EVALUATION
We implement dcSR on top of H.264 video codec and integrate
with FFMPEG [9], an open-source multimedia framework for real-
time streaming. On the server-side, SR model training process runs
in Python using Tensorflow [10]. On the client-side, a SR model
runs in Python along with FFMPEG built in C. We refer to it as
SR-FFMPEG and release it for the community for further research
in this direction [2].

To evaluate dcSR, we compare it with two SR methods: NAS [27]
and NEMO [26]. In both these studies, one large SR model is trained
with all the video frames in each video, and is downloaded in the
beginning of the video streaming. While NAS applies SR on ev-
ery video frame, NEMO applies SR on a few selected frames for
faster inference. In our evaluation, NEMO is simplified to apply SR
only to I frames for fair comparison with dcSR. We evaluate the
performance of dcSR and benchmarks on 6 representative videos
from different genres from YouTube, following the recommended
encoding settings [28]. The average length of videos is 754 seconds
(≈ 12 minutes).

1 2 3 4 5 60Segment
Label

Model
Label

1 1 2 2 2 30

Model
Download

Model 0 Model 1 Model 2 Model 3

Cache
Status

Figure 7: Micro Model Caching in Client dcSR

Our evaluation focuses on the following— 1) can dcSR achieve a
real-time video quality enhancement on high resolution videos (e.g.,
HD, FHD and 4K) across different devices? 2) What is the power
consumption of SR inference? 3) What is the trade-off between the
quality and bandwidth?
Real-time SR Inference. To evaluate the inference speed, we use
three classes of devices (mobile-grade, laptop, and desktop). We
show the results from mobile-grade device (Jetson Xavier NX [19])
for brevity. Additional results are in Appendix (§A.2). We evaluate
dcSR with three distinct configurations that are deployed over 6
videos: dcSR-1, dcSR-2, and dcSR-3, increasing the model complex-
ity from 1 to 3. To provide the detailed information about those
configurations, dcSR-1, dcSR-2, and dcSR-3 are composed of 4, 12,
and 16 ResBlocks, each of which has 16 convolution filters. Note
that there can be multiple I frames in a segment in a practical setting
in order to avoid the quality drift. Hence we evaluate the inference
speed against enhancing i.e., SR inferencing multiple frames for a
given segment. This shows that dSR can be used in both variable
as well as constant length video segmentation.

Figure 8(a)-(c) compares the average inference time of dcSR with
NAS and NEMO on the Jetson platform, a mobile-grade device. The
horizontal dashed line represents the original video FPS (frames per
second) requirement which each method should meet. The X-axis is
the number of inferences made in each segment. Note that dcSR and
NEMO apply SR only to a few frames in a segment, while NAS does
to every frame. Thus, the number of inferences per segment on the
X-axis is only for dcSR and NEMO, while NAS has the number of
video frames per segment as the number of inference per segment.
To evaluate the practical FPS, we consider both the video decoding
latency and the inference latency.

The key takeaway from those figures is that dcSR can meet the
real-time 30 FPS requirement for all three resolutions in its low-
est configuration (dcSR-1). While NEMO achieves 30 FPS under
few instances for 720p resolution, it shows significantly low FPS
for 1080p. For both 720p and 1080p resolutions, NAS achieves less
than 1 FPS because of its bulky model complexity trained for the
entire 12 minute video. Interestingly, NAS and NEMO cannot even
run for 4K resolution because of running out of memory. On the
other hand, when the number of inference in a segment is 1, dcSR
achieves the target 30 FPS in its lowest configuration without run-
ning out of memory. Besides, dcSR achieves at least 5 FPS in a
higher configuration.
Power consumption during SR inference. SR models are very
power-hungry compared to traditional video codecs. As optimizing
the power consumption is essential for mobile devices, we measure
the power consumption of dcSR by monitoring the power rails and
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Figure 8: Inference rate (a-c) and power consumption (d) of dcSR on Jetson Xavier NX (a Mobile-grade device).
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Figure 9: Quality Comparison

carrier board on the Jetson board using the recommended guide
from Nvidia [20].

Figure 8(d) shows the power consumption of dcSR-1 compared
with NAS and NEMO. Among all methods, dcSR consumes the least
power (up to 2W) during the inference. The periodic power spikes
for NEMO and dcSR are due to the periodic SR inference, while
those for NAS are consistently high at 2.8W because it infers all the
frames. In total, dcSR saves 1.4× and 2.9× of energy compared to
NEMO and NAS, which shows a significant potential for running
dcSR models on mobile devices.
Video quality vs. bandwidth usage.Recall that the challengewith
the video-specific SR models is that we have to download the model
(s) along with the video, which leads to quality and bandwidth
trade-off. To this end, we compare the video quality and bandwidth
usage of dcSR with NAS and NEMO.

To evaluate the quality enhancement and bandwidth saving, we
generate low quality videos by setting constant rate factor (CRF)
to 51 in FFMPEG. The CRF scale ranges between 0 and 51, where
0 is lossless, and 51 is the worst quality. Note that there is no
bandwidth throttling in this evaluation since we do not do end-
to-end streaming experiments. Instead, we compare how much
bandwidth is needed with dcSR and existing methods.

Figure 9 shows the enhanced video quality of dcSR in terms
of PSNR and SSIM [25] metrics. Over all 6 videos, dcSR achieves
similar quality with NEMO, with both of them having no more than
1dB PSNR and 0.05 SSIM loss compared to NAS. According to the
experimental results from [25], the SSIM values in our experimen-
tal results show relatively small variance in mean opinion scores,
which can make a loss of 0.05 in SSIM acceptable.

Figure 10 shows the corresponding bandwidth usage. The Y-axis
is the normalized bandwidth usage against the NAS bandwidth us-
age. Figure shows that dcSR requires on average 25% less bandwidth
compared to NAS and NEMO. This is because dcSR being based
on the data-centric AI paradigm achieves the comparable quality
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Figure 10: Network Usage Comparison

improvement with smaller models. Note that micro SR models need
to be transmitted along with certain video segments in dcSR. This
may reduce the available bandwidth for the video segments in a
non-uniform fashion. However, it opens an opportunity to improve
the overall QoE for ABR algorithms that use dcSR. For example,
an ABR algorithm can use the decoded and super-resolved quality
level as an input to trade the network and compute capacity as
in [7, 27]. Finally, we also note that training dcSR micro models re-
quire significantly less training time (by 3×) compared to the large
model designs followed by NAS and NEMO. This can potentially
reduce the training costs significantly.

5 CONCLUSION
We have proposed a practical super-resolution approach, dcSR, that
enables real time neural video quality enhancement on commodity
devices. Unlike the existing approaches, dcSR follows a data-centric
paradigm in designing SR models on per-video basis by exploiting
the long term temporal correlations of video segments. We have
demonstrated that such a design has the promise of faster inference,
significantly less power consumption, and less bandwidth require-
ment with a comparable quality relative to the existing methods.
We envision that dcSR will be a practical option toward pervasive
SR for future coming 4K and 8K streaming service. As our future
work, we plan to design a user study to evaluate how our approach
affects users’ perceived quality improvement.
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𝑛𝑅𝐵

𝑛𝑓 4 8 12 16 20

4 0.276 0.454 0.633 0.813 1.0
8 0.344 0.566 0.789 1.000 1.2
16 0.599 0.988 1.4 1.8 2.2
32 1.6 2.7 3.7 4.9 5.8
64 5.6 9.3 13.0 16.7 20.5

Table 1: Model Size (MB) Over Different Model Configura-
tions (𝑛𝑓 : # of filters, 𝑛𝑅𝐵 : # of ResBlocks)

A APPENDIX
A.1 Finding The MinimumWorking Model
To find the minimum working model, we conduct tests on hyper-
parameters, and observed that the number of convolution filters
and the number of ResBlocks in EDSR [16] are the major factors to
affect both the model size and SR performance.

Based on the observation, we run the configuration grid search
incrementing those hyperparameter values, which generates a con-
figuration table. Table 1 shows how a micro model changes in its
size by those hyper-parameters. Given the configuration table of
model sizes, we iteratively build and evaluate a micro model with a
configuration in the table in an ascending order of model size.

Once we find the configuration that achieves the comparable SR
performance to the big model over the I frames, we have it as the
minimum working model configuration. Note that the big model is
trained on all the video frames in a video, whereas a micro model is
trained only on the I frames in a video. Besides, the image feature
based K-means clustering lowers the variance in the training data.
Thus, a micro model can achieve comparable SR performance to
the big model even with simpler model architecture. The distinct
configurations used for 6 videos are marked green. The big model
configuration is marked red.

Since we utilize the overfitting or memorization of neural net-
works to enhance the video quality, we can theoretically expect
that a model can memorize training data better or more easily given
fewer training data. To confirm it in practice, we tested the over-
fitting or memorization performance by increasing training data
size. To isolate the overfitting performance from different initial
weight values, we initialized a micro model with the same weight
for different training data sizes. As shown in Figure 11, the training
loss increases as the amount of data a micro model has tomemorize
or overfit increases. Since training data and test data for each micro
model are identical in our system, the training loss represents how
well a micro model can enhance the quality of video content. As
expected, the smaller data given to a model, the better visual quality
enhancement it can achieve. Thus, we can expect that each micro
model may memorize assigned training data better, as the average
amount of training data per micro model decreases. Besides, the
similarity between the training dataset for each model may further
simplify the training process.

A.2 Inference Speed on Laptop and Desktop
To evaluate the inference speed in laptop and desktop, we use a
laptop equipped with an Intel i7-7700HQ CPU and GEFORCE GTX

http://arxiv.org/abs/stat.ML/1312.6114
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Figure 11: Training Loss over Different Training Data Size (8
filters / 8 ResBlocks)
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Figure 12: Inference Rate in Laptop and Desktop

1060 GPU, and a desktop equipped with an Intel i7-8700 and RTX
2070 GPU. Figure 12 compares the inference time of dcSR on 4K
videos with those of NAS and NEMO. Since the performance of the
other methods on HD and FHD videos were already covered in the
literature [26, 27], we evaluate their performance on 4K videos.

While NEMO achieves 30 FPS under few instances, dcSR can
meet the real-time 30 FPS requirement regardless of device type and
the number of inference in a video segment. As in the mobile-grade
device, NAS fails to achieves the required FPS. Since the laptop
and desktop used in the experiment are high-performance devices,
it is expected that the FPS will decrease for commodity devices,
which will make it harder for NAS and NEMO to meet the FPS
requirement.
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