
CHAPTER 2

The Wireless Link

This chapter uses the example of communication between two users to informally
introduce some concepts related to the physical layer. These concepts will be useful in
understanding wireless protocol design and performance.

2.1 An Example Scenario

Let us consider two users, Mary and John, who communicate with each other using
a voice-over-IP application, as shown in Figure 2.1. Mary and John are both connected to
a computer, with the link connecting the two computers being a wireless link.

M J
Mary John

wireless
channel

Figure 2.1 Voice-over-IP over a wireless link

This chapter will discuss how Mary’s “signal” – that is, her speech, is delivered to
John’s ears. We will divide the “lifespan” of the signal in three phases: (I) processing at
the transmitter, (II) propagation through the wireless channel, and (III) processing at the
receiver. For this discussion, it will also be useful to refer to Figure 2.2, which illustrates
the different functional blocks at the transmitter and the receiver.
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Figure 2.2 A digital communication link

2.2 Processing at the Transmitter

At the transmitter, the speech produced by Mary must be somehow translated into
an electrical signal, in a form suitable for transmission on the wireless channel. Several steps
are typically used to achieve this goal, as discussed in this section.

2.2.1 Digital Representation of Information

Mary is speaking into a microphone attached to her computer. The words spoken
by Mary create an analog audio signal, which is translated into analog electrical signal by
the microphone. This signal can then be sampled, and the resulting sampled values can
be represented in binary. The sampled data may also be compressed so that the spoken
words can be represented using fewer bits. For instance, when Mary pauses every once
in while, the resulting silent intervals may be “compressed” to reduce the number of bits
necessary. In general, rather than bits, the signal may be represented using larger symbols,
each symbol corresponding to several bits. In our discussion, we will assume that each
symbol corresponds to a single bit.

2.2.2 Packetization

When Mary speaks into the microphone, a sequence of bits is generated as seen above.
Since Mary and John are having a conversation, we would like John to be able to quickly
start hearing Mary’s response to whatever he may have said. Because of this, we cannot
wait for Mary to complete her response – which may very well last several minutes! – before
we start sending the corresponding bits to John. To achieve this goal, the bits obtained
after source coding are divided into chunks of consecutive bits. We will refer to this process
as packetization. For instance, we may decide to form one chunk corresponding to each 20
ms duration of Mary’s speech. This implies that 50 packets may be formed for each second
for which Mary talks.
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2.2.3 Encapsulation

With packetization, we obtain a series of packets that contain the bits representing
Mary’s voice. Now these packets must be sent to John’s computer. We know that the
internet protocol (IP) may not deliver the packets in the correct order to John’s computer.
Also, some packets may be delivered very late, and would be useless in “playing back”
Mary’s voice to John. To allow identification of such late packets on John’s computer, it
is necessary to include additional information in each packet. This can be accomplished
by attaching an application layer header to the packets obtained above, and including in
this header the information that would be useful to the voice-over-IP application on John’s
computer in reproducing Mary’s voice correctly (such as a timestamp).

Having formed this application layer packet, we would now need to deliver it to
John’s computer. On John’s computer, many applications may be running simultaneously,
and we need some mechanism to ensure that Mary’s voice packets are delivered to the right
application. This goal can be accomplished using a transport protocol. For instance, we
can use User Datagram Protocol (UDP) for this purpose. By making use of the IP address
for John’s computer, and the UDP port used by John’s voice-over-IP application, UDP can
ensure that the packets are delivered to the right application. For this purpose, the packets
obtained above (including the application layer header) are encapsulated by attaching a UDP
header to the packet, to obtain a UDP segment.

The UDP protocol, which resides at the transport layer of the protocol stack, then
passes the segment to the Internet Protocol (IP). An IP header is attached to the above
segment, to obtain an IP datagram. Information in the IP header is useful in performing
routing.

IP then passes the datagram down to the link layer. If “Wi-Fi” or IEEE 802.11
protocol is used as the medium access control (MAC) protocol on the wireless link between
the two computers, then a IEEE 802.11 MAC header is added to the datagram to create an
IEEE 802.11 frame. The frame is then passed to the physical layer for transmission on the
wireless channel.

2.2.4 Error Control Codes (ECC)

When a signal is transmitted on the wireless channel, the received signal is not iden-
tical to the transmitted signal. The signal “deteriorates” during propagation from the trans-
mitter to the receive, and also affected by interference from other transmitters. Therefore,
sometimes the receiver has difficulty correctly determining the bits that were transmitted.
Thus, errors may occur, which cause a transmitted 0 bit to be received as a 1 and vice-
versa. To allow the receiver to detect and/or correct such errors, the channel coding module
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at the physical layer introduces redundancy in the transmitted data. For instance, the IEEE
802.11a physical layer uses a convolutional code to allow correction of some errors.

In practice, error control codes are also used at other layers of the protocol stack,
introducing redundancy at several layers. For instance, the TCP protocol uses a checksum
to detect errors in data and the TCP header. The TCP checksum is computed before passing
the packet to IP. When IP receives the packet from a higher layer protocol such as TCP
or UDP, it adds the IP header along with a checksum for the IP header. Suppose that IP
hands the datagram to the MAC layer for IEEE 802.11a. The IEEE 802.11 MAC header
includes a cyclic redundancy check, which can be used to detect some errors in a MAC
layer frame. As mentioned above, the IEEE 802.11a physical layer uses a convolutional code
when transmitting the MAC layer frame. At the receiver, all of these codes will be used
suitably at the various layers of the protocol stack, as the packet travels up the stack from
the physical layer.

Appendix A provides further discussion of error-control codes, including some simple
examples.

2.2.5 Modulation

Modulation is the process by which the packet to be transmitted (which is a sequence
of bits) is encoded on a “carrier”. The carrier frequency is chosen depending on the channel
characteristics, as well as policy restrictions. Each channel can efficiently carry information
at certain frequencies. Also, there are often policy restrictions on the frequencies that may
be used for a certain communication. The process of modulation allows us to use desired
frequency range for the communication.

The carrier frequency is normally chosen to be much larger than the bandwidth of
the signal to be transmitted. We will define the term bandwidth more precisely later in
this section, but intuitively, bandwidth is a measure of the amount of spectrum used by a
signal. If B is the signal bandwidth, and fc is the carrier frequency, then let us assume that
fc >> B. For instance, the wireless channel may be assigned B = 20 MHz bandwidth with
fc = 915 MHz. In this section, we will discuss the process of modulation that occurs at a
transmitter. Modulation can be performed in many different ways. As an example, we will
discuss one of the simpler modulation schemes, namely, binary pulse amplitude modulation
(binary PAM).

In case of binary PAM, the information is transmitted one bit at a time, that is,
with one bit per symbol. Alternatively, we can group several bits into a single symbol, and
encode them together on the carrier. For instance. QPSK (Quadrature Phase-Shift Keying)
encodes 2 bits per symbols. While the information in the symbols is digital, the signal
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produced as a result of the modulation process is an analog signal. This analog signal is
transmitted on the wireless channel.

Binary PAM can be divided into two steps [19]:

• Represent each information bit input using a “baseband” signal: We will use a suitably
designed pulse b(t), such that b(t) takes non-zero values only if 0 ≤ t ≤ T for some T .
One pulse will be transmitted each T time units.

With binary PAM, each symbol can take values 0 or 1, and a pulse corresponding to
one symbol is transmitted for each T duration. Thus, j-th pulse (j ≥ 1) is transmitted
during time interval from (j − 1)T to jT . In our discussion below, let us focus on the
very first symbol transmitted, with the corresponding pulse occupying time interval
[0, T ]. We encode values 0 and 1 for the first symbol as waveform s0(t) and s1(t),
respectively, as defined below:

s0(t) = −b(t)

s1(t) = b(t)

In general, to transmit 0 as the j-th symbol, the signal waveform will be given by
−b(t− (j − 1)T ), and to transmit 1 as the j-th symbol, the waveform will be given by
b(t − (j − 1)T ).

The above process results in the baseband signal corresponding to the sequence of bits
to be transmitted. The baseband signal is thus a sum of time-shifted copies of b(t)
and −b(t).

• Superimpose the signal on the carrier: This step “shifts” the baseband signal to a
higher carrier frequency. Let fc denote the carrier frequency. For pulse amplitude
modulation, modulation is achieved simply by multiplying the signal by the “carrier”.
Here we focus our attention on just the first symbol transmitted at time 0. In partic-
ular, to transmit value i (i is 0 or 1) at time 0, we transmit the waveform

wi(t) = si(t) cos(2πfct)

= Ai b(t) cos(2πfct)

where Ai = −1 for i = 0 and Ai = 1 for i = 1.

Frequency Spectrum after Modulation: To intuitively understand why multiplication
by the carrier cos(2πfct) results in a shift in frequency spectrum, let us consider multiplying
a baseband signal cos(2πft) by cos(2πfct), where f << fc. Then we have

cos(2πft) cos(2πfct) =
1

2
cos(2π(fc − f)t) +

1

2
cos(2π(fc + f)t)
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Thus, while the unmodulated signal is at frequency f , the modulated signal consists of
sinusoids at frequencies fc − f and fc + f . In general, above modulation process results in a
transmitted signal with the spectrum centered at the carrier frequency. This phenomenon
is easier to discuss using the Fourier transform for the signal. Fourier transform of a signal
is a way of representing the manner in which the signal “occupies” the frequency spectrum.
Appendix B provides some intuition behind the definition of Fourier transform. Specifically,
if X(f) is the Fourier transform of a signal x(t), then x(t) can be obtained using the following
inverse Fourier transform operation:

x(t) =
∫ +∞

−∞
X(f)ej2πft df

f in X(f) denotes frequency, and t in x(t) denotes time. Thus, X(f) is the frequency-domain
representation of a signal, and x(t) is the time-domain representation of the same signal. In
general, Fourier transform X(f) may be a complex number. f may be positive or negative.
It is easy to show that for real-valued signal x(t), the magnitudes of X(f) and X(−f) are
identical. A real-valued signal has bandwidth W if, for f ≥ 0, the Fourier transform is
non-zero only in a frequency band of width W . Since |X(f)| = |X(−f)|, it follows that, for
f ≤ 0 as well, the Fourier transform for the real-valued signal is non-zero only in a band of
width W . This is illustrated in Figure 2.3(a).

fl fl + Wfl + W fl 0

| X(f) |

f
)

W W

−( −

Figure 2.3 Bandwidth W of a real signal

It turns out that if X(f) is the Fourier transform of some signal x(t), then the Fourier
transform of signal x(t)cost(2πfct) is given by

1

2
X(f − fc) +

1

2
X(f + fc)

It follows that if x(t) is a baseband signal band-limited to [−B/2, B/2], the modulated
signal will be band-limited to frequencies f such that fc −B/2 ≤ |f | ≤ fc + B/2. Thus, the
modulated signal will have bandwidth B centered at fc. This explains how modulation can
be used to “shift” a baseband signal to the desired center frequency. In case of binary PAM,
the shape of the pulse b(t) will determine the spectrum occupied by the modulated signal.
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The modulated signal is then transmitted on the wireless channel from host M to
host J in our example in Figure 2.1. This signal propagates through the wireless channel to
the receiver. Processing is performed at the receiver to recover the transmitted signal. In
Section 2.3, we discuss propagation of the signal through the wireless channel, and processing
at the receiver is discussed in Section 2.4.

Energy and Power Content of a Signal: To aid in the discussion later in this chapter,
we now introduce the notion of energy content and power content of a signal. The energy
content of signal x(t) over duration [t1, t2] is defined as

Ex =
∫ t1

t2
|x(t)|2 dt (2.1)

Power content Px of a signal x(t) is defined as

Px = lim
T→∞

1

T

∫ + T

2

−T

2

|x(t)|2 dt (2.2)

Circuit theory tells us that voltage or current x(t) applied across a 1 Ω resistance will result
in power dissipation of x2(t). Thus, Px may be interpreted as the average amount of energy
that will be dissipated by a 1 Ω resistor in 1 second if x(t) is the voltage or current applied
to the resistor.

Previously we have seen that a time-domain signal can also be represented in the
frequency-domain using its Fourier transform. Similarly, while we defined power content
above using the time domain, it is also possible to define a frequency-domain function –
namely, power spectral density – to obtain power content of a signal. In particular, if we
denote power spectral density of signal x(t) as Sx(f), then power content of x(t) can be
obtained as

Px =
∫ +∞

−∞
Sx(f) df (2.3)

Power spectral density Sx(f) may be interpreted as a measure of the contribution of fre-
quency f to the power content of signal x(t). The above notion of power spectral density is
useful for deterministic signals for which the signal value at each time t is deterministically
chosen, as well as for non-deterministic signals (such as noise) for which the signal value
at time t is a random variable. For brevity, we will not discuss how to calculate the power
spectral density here. For future reference, note that when a signal has a finite bandwidth,
the power spectral density for the signal is non-zero only over the signal bandwidth.

Power content of a signal is measured in Watts (W). Decibel notations dBW and
dBm are often used to represent the power level. Power P in Watts can be converted to
the decibel units dBW using the formula 10 log10 P . Similarly, power P in milliwatts can be
converted to decibel units dBm using the formula 10 log10 P . In our discussion below, the
base of logarithms used in determining decibel quantities will be assumed to be 10, even if
the base is not specified explicitly.
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2.3 The Wireless Channel

The signal transmitted by the transmitter is eventually received by the receiver. The
received signal is different from the transmitted signal for three main reasons:

• Channel characteristics: When the signal propagates from the transmitter to the re-
ceiver, the signal attenuates as the distance increases. Also, the environment through
which the signal propagates includes objects that may also modify the signal. For in-
stance, if the signal propagates through walls, the materials in the walls will attenuate
the signal more than propagation through free space. Also, signal may be reflected
or scattered by the the objects in the environment, causing the signal to reach the
receiver along many different paths.

• Noise: Thermal noise is introduced by the hardware used for communication. Thus,
the receiver receives a composite of the signal and the noise.

• Interference: Simultaneous transmissions can pose interference to each other. Such an
interferer is not shown in Figure 2.1, although interference is commonplace in most
wireless environments.

The impact of the channel, noise, and interference can be characterized using a simple
equation as follows. Let r(t) be the received signal at receiver J at time t, and let x(t) be the
signal transmitted by host M at time t. Also, let n(t) denote the noise at time t, and let i(t)
be interfering signal at the receiver J at the time t. Note that i(t) is the composite of the
interference from all the interference sources, which are not shown in Figure 2.1. Assuming
that the signal travels from the transmitter to the receiver along different paths, with path i
having a delay of τi and attenuation factor ai, the received signal can be obtained as follows:

r(t) =
∑

i

ai x(t − τi) + n(t) + i(t) (2.4)

where the summation is over all the paths taken by the signal when propagating from the
transmitter to the receiver. In general, the channel conditions can be time-varying, making
ai and τi functions of time.

The noise n(t) in the above equation is typically modeled using an Additive White
Gaussian Noise (AWGN) process. Each of the words Additive, White, Gaussian and process
deserves some explanation. The term additive refers to the fact that noise adds to the signal,
as seen in the above equation. The term process implies that the noise n(t) at each time t
is a random variable. For the AWGN process, the noise at different instants of time is inde-
pendent of each other. The term Gaussian represents that n(t) has a Gaussian distribution
with zero mean. It is customary to denote the variance of this Gaussian distribution as N0

2 .
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If N denotes the Gaussian random variable for additive white Gaussian noise at a certain
time, then

p(N = n) =
1√
πN0

e−
n
2

N0 (2.5)

p(N = n) above is the probability that the actual additive noise amplitude at time t is equal
to n.

The term white in AWGN implies that the power spectral density for the noise is
“flat” or constant for all frequencies. Thus, the noise power only depends on the bandwidth,
not which part of the spectrum is utilized. In fact, it turns out that the noise power spectral
density for the AWGN channel is equal to the variance N0

2 of the Gaussian random variable
in Equation 2.5. Thus, if the bandwidth for the signal of interest is W , then the noise
introduced over that bandwidth will have power N = N0

2 (2W ) = N0W Watts. Recall that
by our definition of bandwidth for real signals, a signal with bandwidth W occupies positive
frequencies over a band of width W , and also negative frequencies over a band of width W ,
for a total of 2W . Hence the noise power is given by N0

2 (2W ). For instance, when W is 10

MHz and N0/2 is 4 × 10−21 W/Hz, we have noise power equal to 8 × 10−14 Watts or −131
dBW or −101 dBm.

AWGN model is an approximation of the reality: since the total amount of spectrum
is infinite, the total noise power over the entire spectrum will be ∞! Obviously, we don’t
have noise with infinite power content. However, in practice, we use only a small fraction
of the available spectrum, and over the bandwidths of interest, the approximation of “flat”
power spectral density is adequate.

2.4 Processing at the Receiver

When the transmitted signal propagates to the receiver, the receiver must perform
several steps to recover the transmitted information. As seen earlier, the signal obtained after
the modulation step is transmitted on the wireless channel. At the receiver, demodulation
is performed, to attempt to recover the transmitted symbols. As an illustration, this section
discusses demodulation of binary PAM signals. We will make several simplifying assumptions
in our discussion:

• Let us assume that there is only a line-of-sight path between the transmitter and the
receiver with delay τ .

• Equation 2.4 tells us how the received signal can be related to the transmitted signal.
Let us assume that there is no interference (that is, i(t) = 0), or equivalently, that the
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interference appears similar to noise, and therefore, the interference can be absorbed
into the n(t) term in Equation 2.4.

This assumption, together with the assumption of a single line-of-sight path implies
that, the received signal can be written as follows, where a is a constant, and x(t) is
the transmitted signal:

r(t) = a x(t − τ) + n(t) (2.6)

• Let us assume that the transmitter and the receiver are perfectly synchronized, and
the receiver knows when the bit boundaries occur (such a demodulator is said to be
a coherent demodulator). Under these conditions, intuitively, we can run the clock
at the receiver behind the clock at the transmitter by τ , allowing us to rewrite the
equation for r(t) as follows:

r(t) = a x(t) + n(t) (2.7)

In essence, we can ignore the delay τ .

• In practical systems, the pulses transmitted for adjacent bits may potentially overlap,
leading to intersymbol interference (ISI). We will make the simplifying assumption
that there is no inter-symbol interference (ISI). This assumption allows us to analyze
the demodulation for a bit without having to take into account ISI.

Let us consider demodulation of the received signal corresponding to the very first
bit received by the receiver. Each subsequent bit can be demodulated similarly. The first
step in the demodulation is to remove the carrier. Recall that the transmitted signal for bit
value i (i = 0 or 1) is wi(t). Thus, from equation 2.7, the waveform received at the receiver
is given by r(t) = a wi(t) + n(t), where n(t) is the noise. Assume the AWGN model, with
variance of n(t) being N0/2.

Let us denote Eb as the energy content in a wi(t) – which is the signal received at the
receiver ignoring noise – over bit duration [0, T ]. This can be viewed as the energy-per-bit
received from the transmitter. Then,

Eb =
∫ T

0
(a wi(t))

2dt

= a2
∫ T

0
b2(t) cos2(2πfct)dt

To remove the carrier, the demodulator performs the following operation:

z =
1√
Eb

∫ T

0
r(t) a b(t) cos(2πfct) dt

To perform this operation, the demodulator will need to know the value of a (using which it
can also computer Eb). Thus, we are implicitly assuming that the receiver somehow knows

c⃝ 2010 Vaidya 19



a. This assumption is not quite necessary, but makes the analysis more appealing. As you
can see soon, removing a√

Eb
from the above expression will simply result in a linear scaling

of z. The above expression can be rewritten as

z =
1√
Eb

∫ T

0
r(t) a b(t) cos(2πfct) dt =

1√
Eb

∫ T

0
a wi(t) [a b(t) cos(2πfct)] dt +

1√
Eb

∫ T

0
n(t) [a b(t) cos(2πfct)] dt (2.8)

Now, let us consider the first integral on the right hand side of Equation 2.8.

1√
Eb

∫ T

0
a wi(t) a b(t) cos(2πfct) dt =

1√
Eb

a2
∫ T

0
Ai b

2(t) cos2(2πfct)dt

=
1√
Eb

Ai Eb

= Ai

√

Eb

Now, let us consider the second integral on the right hand side of Equation 2.8, and denote
its value by m. Thus,

m =
1√
Eb

∫ T

0
n(t) a b(t) cos(2πfct) dt

Since n(t)’s are independent Gaussian random variables with mean 0, the above integral can
be viewed as a linear combination of independent zero-mean Gaussian random variables,
namely, n(t), 0 ≤ t ≤ T . Therefore, it follows that m is also a Gaussian random variable
with mean 0. It can also be shown that m has variance N0/2.

The above discussion implies that the output of the demodulator is given by

z = Ai

√

Eb + m

where m is a Gaussian random variable with mean 0 and variance N0/2. In the absence
of noise (or, with m = 0), the output will be −

√
Eb if the transmitted bit is 0, and +

√
Eb

if the transmitted bit is 1. Now, suppose that the transmitter transmits bits 0 and 1 with
equal probability. Then, since m is a random variable symmetric around 0, it follows that
the optimal decision rule to decide whether the transmitter has sent 0 or 1 is as follows:

• 0 if z < 0

• 1 if z > 0

• 0 or 1 (arbitrary choice) when z = 0
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The received bit will be erroneous, if the transmitter sends 1 but the demodulator output
is 0, and vice-versa. In other words, the decision at the receiver will lead to an error if
m >

√
Eb when the transmitted bit is 0, and m < −

√
Eb when the transmitted bit is 1.

Since m is a Gaussian variable with variance N0/2, the bit error probability Pb is then given
by

Pb =
∫ ∞

√
Eb

1√
πN0

e−
u
2

N0 du = Q

⎛

⎝

√
Eb

√

N0/2

⎞

⎠

= Q

(

√

2Eb

N0

)

where Q(v) is defined as probability that a Gaussian variable with mean 0 and variance 1

is greater than v, that is, Q(v) =
∫∞
v

1√
2π

e−
u
2

2 du.

Observe that the error probability is a decreasing function of Eb, which is the energy-
per-bit in the received signal. If we denote received power as Pr and the bit rate as R,
then it follows that Eb = Pr/R. Thus, the error probability is a function of Pr/N0, or the
signal-to-noise ratio (SNR). In general, the reception may also encounter interference from
other sources, and the presence of interference may increase the error probability.

The receiver can demodulate each bit in a packet and form the received packet. Now,
as seen above, some of the demodulated bits may be in error. Such errors may be detected
(and possibly corrected) using error control codes used in the channel coding stage. After
error correction at the physical layer, the packet is passed to the link layer for processing.
The link layer may apply its own error checks to the received packet and in absence of any
detected errors, pass the packet to the next layer. Similarly, IP will verify the checksum for
the IP header, and discard the packet if an error is detected. Why do we need such checks
at multiple layers of the protocol stack? First, the error control code at a lower layer cannot
correctly fix all possible errors in a packet. Thus, checks at higher layers can potentially
detect errors that occur despite the use of codes at the lower layer(s). Also, errors may
potentially be introduced at the lower layers due to software bugs, or memory corruption.
Higher layer checks can help detect such errors as well.

In our example, when a packet eventually reaches the application layer on John’s
computer, the application layer will translate the received samples of Mary’s voice into an
audible signal using a speaker, which can then be heard by John.
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2.5 Throughput Limit for a Wireless Link

Performance of a traffic flow can be measured using various parameters, such as
throughput, packet loss rate, delay, and jitter. For the voice-over-IP flow in our example,
all of these parameters may of interest. For a bulk data transfer, we may be more interested
in just the throughput, that is, the rate at which data is delivered reliably between the two
hosts.

Shannon introduced the notion of capacity to characterize the best achievable rate of
reliable information delivery. Reliable communication is feasible only at rates that do not
exceed the capacity. While determining capacity is a difficult problem in general, in some
specific cases, precise formulations of capacity are known. In this section, we summarize one
such result, which will be used later in the book.

Consider a wireless link between a pair of hosts as in Figure 2.1. Suppose that the
channel between these hosts is a AWGN channel with noise power spectral density N0/2.
The capacity C of such a link is given by

C = W log2

(

1 +
P

N0W

)

bits/second

where P is the received signal power (at the receiver), and W is the channel bandwidth (in
Hz), assuming interference I = 0.

In general, there may also be interference from other transmitters. Suppose that the
interference power at the receiver is I. If the receiver treats the interference similar to noise,
then assuming Gaussian noise and interference, we get

C = W log2 (1 + SINR) in bits/second (2.9)

where SINR = P
I+N0W , is the signal-to-interference-and-noise ratio. As the capacity ex-

pression suggests, for fixed I + N0W , capacity can be improved by increasing the transmit
power, which will result in higher received power P , increasing the SINR. SINR in decibel

notation is obtained as 10 log
(

P
I+N0W

)

dB.
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Bandwidth, Capacity, Bit-Rate and Throughput: The terms bandwidth, capacity,
transmission rate, and throughput are often used differently by different user/research com-
munities. In this book, we will use these terms as follows. Bandwidth, as defined earlier,
is a measure of the amount of spectrum occupied by a signal transmitted on a channel.
Bandwidth is measured in units of Hertz (Hz). Capacity is the maximum possible rate of
reliable information delivery. Transmission rate is the rate at which information is trans-
mitted on the channel. We will sometimes use the term bit-rate to refer to transmission
rate. Throughput is the rate at which data is reliably delivered between a pair of peers. Ca-
pacity, transmission rate and throughput can all be expressed in the units of bits-per-second
(bps). As an example, a host S may transmit to host R using a IEEE 802.11g device, with
transmission rate 54 Mbps. The bandwidth used in this case is 22 MHz, with the center
frequency of approximately 2.4 GHz. The throughput achieved for transmissions from S to
R may possibly be only 10 Mbps. Why would the throughput smaller than the transmission
rate? There are overheads incurred during transmission, such as overhead of packet headers,
and medium access control overhead (for instance, as per the protocol specification, host S
cannot transmit all the time, and must remain idle intermittently). Also, packet losses may
occur due to interference from other transmitters. For similar reasons, the capacity of the
wireless channel would also be higher than the achieved throughput. The goal is to design
the system such that the achieved throughput approaches the capacity.

2.6 Link Formation

Our discussion of binary PAM demodulation showed that the bit error probability
depends on Eb/N0. Although we ignored interference in our analysis, it should be clear
that greater interference will generally result in higher error probability. What does this tell
us about “link reliability” or the probability that a packet transmission on a link will be
received reliably?

• Since error probability decreases with increasing Eb, higher transmission power will
result in higher link reliability.

• Decreasing the transmission rate, while maintaining the transmit power constant, will
result in higher energy-per-bit, improving link reliability.

• Increasing the packet size, while keeping all other parameters fixed (including the
amount of redundancy for ECC), will decrease link reliability, since there are more
bits in the packets that could be received erroneously.

• Poorer channel conditions (or, small a in Equation 2.6) will result in lower received
power and lower Eb, which will reduce link reliability.
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The channel conditions and interference can vary over time and space both, causing the link
reliability to also vary over time and space. This has two consequences that affect design
and performance of practical protocols.

• A host may reliably receive some packet transmissions from another host, but may not
reliably receive other packet transmissions from the same host.

When should we say that a wireless link “exists” between a pair of hosts? The ab-
straction of a “link” is often useful in designing higher layer protocols, particularly,
routing protocols. As the above discussion suggests, there is no way to guarantee that
a packet transmission between a pair of hosts will always be received reliably. Thus,
we have to allow for unreliable transmissions on any such “link”. For future reference,
we will say that a link exists from host A to host B, if reliable packet transmissions
can be performed from host A to host B with a sufficiently high probability. Similarly,
a previously existing link from host A to host B would be said to be “broken” when
its reliability becomes inadequate. Recall from the PAM discussion that this reliabil-
ity depends on the packet size as well as the transmission rate, thus the “adequate
reliability” is implicitly assumed to be for a certain set of operating parameters, such
as transmission rate, power, and packet size.

Conversely, when we say that a link does not exist from host A to host B, it does
not necessarily mean that signals from host A do not propagate to host B causing
interference at B, or that host B can never reliably receive A’s transmission. Rather
it simply means that reliability of transmission from A to B is not sufficiently high
under the chosen operating parameters.

When a link is deemed to be present between from host A to host B, we would say
that B is host A’s neighbor.

• One host at distance d from a transmitter may receive a packet transmission reliably,
but another host within distance d may not receive the same transmission reliably. Due
to this phenomenon, we cannot assume that all hosts within some constant distance
of a host will receive its transmissions reliably. In other words, a broadcast performed
by a host is not always received reliably by all the nearby hosts.

2.7 SINR-Threshold Model

The discussion Section 2.4 suggests that the probability of reliable reception of a
packet is a function of the SINR at the receiver. In our discussion in later chapters, we will
find it convenient to use an approximate model to determine whether a packet transmission
is reliable or not. In particular, this approximate model, referred to as the SINR-threshold
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model, makes the simplifying assumption that a packet will always be received reliably if the
SINR at the receiver exceeds a certain threshold, say, β. In reality, even with SINR greater
than β, the packet may be sometimes received unreliably. Thus, the SINR-threshold model
should be viewed as a deterministic approximation of a non-deterministic phenomenon.

2.8 Path Gain and Path Loss

To calculate SINR, it is useful to know the received signal power. The received signal
power is a function of the channel conditions, and the transmit power. We now introduce
path gain to characterize the channel conditions. In particular, if transmit signal power is
Ps and the received power for this signal is Pr, then path gain g is defined as

g =
Pr

Ps

Clearly, path gain g is dependent on the channel gain. Inverse of path gain is called path
loss. Thus, path loss is obtained as Ps

Pr
. Despite the use of the word gain in the term path

gain, the received power Pr is never greater than the transmit power Ps.

The path loss can be divided into two components, large scale path loss and small
scale path loss. Large scale path loss can be viewed as a measure of the average channel
conditions at a given location, with the small scale component characterizing the variation
around the average.

In an attempt to describe the large scale behavior of the path loss, several different
large scale path loss models have been introduced. We summarize a few such models here.

Free Space Propagation Model:

Free space propagation model determines received signal power in the “free space”
environment wherein there is a line-of-sight (LoS) path between transmitter and receiver,
and there are no other paths or obstacles between the two hosts. Let d denote the distance
between the transmitter and the receiver. As per the free-space model,

Pr(d) ∝ Ps

d2

Considering that the surface area of a sphere at distance d from the transmitter is 4πd2, it
should seem reasonable that the received power varies inversely with d2. If we denote the
constant of proportionality above as K, then

Pr(d) = K
Ps

d2
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Note that the channel does not amplify the signal (that is, Pr ≤ Ps). Thus, the path loss
expression above cannot hold for “small” values of d. We will not formally define “small”
distance d here, but we will assume that the above model holds for some suitably large d0,
and all d ≥ d0. Then it follows that, for d ≥ d0,

Pr(d) = Pr(d0)
d2

0

d2

In many applications (for instance, many wireless LANs), the distance between transmitter
and receiver is indeed “large” enough, however, in certain applications (for instance, some
RFID devices) the distance may be very small, and the above path loss model does not
apply.

Recall that path loss is defined as Ps

Pr
. Also, path loss in decibel (dB) is obtained as

10 log Ps

Pr
. Let us denote path loss in dB at distance d as PL(d). Then, for d ≥ d0, we have

PL(d) = PL(d0) + 20 log
d

d0

Two-Ray Ground Propagation Model:

Two-ray ground propagation model accounts for a direct line-of-sight (LoS) path,
and a second path reflected from the ground. When the distance d between transmitter and
receiver is large compared to antenna height from the ground, the two-ray model concludes
that:

Pr ∝
Ps

d4

The exponent of d above is called the path loss exponent. The path loss exponent in this
case is 4, larger than the path loss exponent of 2 for free space. Thus, signal attenuates
much faster than in case of free space. For large enough d0 and d ≥ d0,

Pr(d) = Pr(d0)
d4

0

d4

Log-Distance Path Loss Model:

Generalizing on the free space and two-ray models, we can obtain the following log-
distance model, for a path loss exponent α. In this case, for large enough d0 and d ≥ d0,

Pr(d) = Pr(d0)
dα

0

dα

and for path loss PL(d) expressed in decibel,

PL(d) = PL(d0) + 10α log
d

d0
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Log-Normal Shadowing:

The above models only take into account the distance between the transmitter and
the receiver. However, the path loss at a given distance from the transmitter is not constant,
due to environmental obstructions. That is, all hosts at distance d from the transmitter do
not see the same signal attenuation. Between the transmitter and a receiver A there may be
a hill, whereas between the transmitter and another receiver B, the terrain may be flat. The
path loss with “shadowing” caused by such obstructions is often modeled by the log-normal
model. As per the log-normal model:

PL(d) = PL(d) + Xσ

where PL(d) is the average large scale path loss at distance d, and Xσ is a Gaussian (normal)
random variable with zero mean and standard deviation σ. In the above expression, Xσ,
PL(d) and PL(d) are in dB.

Many other path loss models have also been developed. For instance, some models
account for additional path loss that occurs when signal travels through materials such as
building walls (in contrast, the models listed above only account for the distance between
the transmitter and the receiver).

Models versus Reality:

The various path loss models discussed above are approximations of reality. In
general, it is unlikely that a simple model can capture the channel characteristics precisely.
However, a simplified model can be potentially useful in analytical evaluation of performance
of a system, and also in performing simulations, or to estimate system performance prior
to deployment. When the exact channel characteristics may not be known (for instance, at
design time), we are forced to rely on such models. As we will see later, for a protocol to
be able to adapt to the channel characteristics, it is often useful to estimate the channel
conditions dynamically, instead of relying on a simplified model of the channel.

2.8.1 Small-Scale Fading

The previous section discussed the models for large scale path loss. Large scale path
loss characterizes the average path loss for the channel between a receiver and transmitter.
Small scale effects introduce variations in the path loss. These variations may be over time
and space both. The term “small” here refers to the scale of variations; the small scale
variations cause relatively rapid changes in path loss over time and space, in contrast to the
large scale effects. We briefly discuss two factors that lead to small scale variations.

• Movement of objects: Due to movement of objects (such as the transmitter, receiver or
other obstacles in the environment) the length of the path traveled from the transmitter
and the receiver changes with time, resulting in the Doppler effect.
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• Multipath: In an environment containing many obstacles, such as an indoor environ-
ment or downtown of a city, there are many paths from the transmitter to the receiver
that the signal may take, with the received signal being a composite of the signals re-
ceived along the various paths. Different paths incur differing delays, thus the signals
along the different paths do not necessarily arrive in phase.

Object movements and multipath cause fading, or relatively fast changes in the signal am-
plitude over time or space. Two fading models are in common use in wireless system
evaluations:

• Rayleigh fading: This model is used when there are a large number of paths from the
transmitter to the receiver, and none of them is dominant.

• Ricean fading: In contrast to Rayleigh fading, Ricean fading model is used to capture
the presence of a dominant path.

For a given pair of hosts, say A and B, at a given instant of time, the path loss is
identical in both directions, that is, regardless of whether A transmits to B, or B transmits
to A (due to the principle of reciprocity), provided that the same antenna beamforms are
used for transmission and reception. However, the path loss experienced by the transmis-
sions from A and B (to each other) at different points of time can be different due to the
large scale and small scale variations discussed above. Thus, transmissions from A to B and
transmissions from B to A may potentially encounter different channel conditions, and dif-
ferent link reliability. In addition, differences in hardware implementation at the two hosts
can result in different link characteristics in the two directions.

2.9 Summary

In this chapter, we defined the terms bandwidth, capacity, path gain and path loss. We
also introduced a few path loss models. In addition, the chapter briefly discussed a simple
modulation scheme, and the relationship between the bit error probability and the SNR.
Understanding of these concepts related to the physical layer will help in understanding
design decisions made in wireless protocol design.
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APPENDIX A

Error Control Codes

As discussed in Section 2.2.4, error control codes are useful at different layers of the
protocol stack, to perform error detection and error correction. For instance, as elaborated
in Section 2.4, a receiver demodulates the received signal to obtain a sequence of bits as
an estimate of the transmitted bit sequence. Let us refer to the demodulated bits as the
received bits. As also seen in Section 2.4, due to the noise (or interference), the received
bits may be erroneous. For instance, the transmitted bits may be 0111 whereas the received
bits may be 0110. Unless additional precautions are taken, the receiver will not be able to
recover the correct data. In fact, the receiver may not even detect that the received bits
are in error. To allow a receiver to detect the errors, and possibly correct the errors, some
redundancy must be incorporated in the transmitted bits. Error control codes (ECC) are
used for this purpose.

For the purpose of illustration, Let us consider a simple error control code, which
is an example of a family called the Hamming codes. The coding process for this example
code is illustrated in Table A.1. In this case, the sender encodes 4 bits of data into a 7-bit
codeword, and the code is said to be a (7,4) code. For instance, when the four data bits are
0010, the codeword is 0010 111. The rate of the code is 4

7 , since on average 4
7 bits of data is

encoded in each bit transmitted on the channel.

If the transmitter wants to send more than four bits while using the (7,4) Hamming
code, then the transmitted bits are divided into block of four bits each, and each block
encoded separately using the Hamming code. Similarly, at the receiver, the receiver will
decode each received vector independently.

The 3 bits added during the encoding process are called checkbits. The redundant
information encoded in the checkbits can be useful to correct errors. In fact, with this code,
any single bit error can be corrected. The algorithm for error correction is quite simple:
when a vector v is received (possibly containing an error), choose the codeword u from
Table A.1 that differs from v in the fewest number of bits. The first four bits of u will be
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the output of the decoder at the receiver. The number of bits in which v and u differ is said
to be the hamming distance between v and u.

The Hamming code has the interesting property that, if at most one transmitted bit
becomes erroneous, then two conditions hold: (a) the transmitted codeword differs from the
received vector in 1 bit, (b) all other codewords differ from the received vector in more than
1 bit. These conditions guarantee that, if at most one bit in the codeword is erroneous,
the above decoder will choose the codeword u, and the decoded data will be correct. For
instance, suppose that the transmitted codeword is 0010 111 and the most significant bit is
corrupted during transmission, such that the received vector is 1010 111. Observe that the
transmitted codeword is, in fact, the closest codeword. In particular, the received vector
differs only in one bit from the transmitted codeword, and at least in 2 bit positions from
every other codeword. Thus, the single transmission error can be corrected by assuming
that the codeword closest to the received vector is the correct codeword.

How does error correction help in improving reliability of transmission? Suppose
that our “packet” contains 4 bits of data, and suppose that bit error probability is p. If
we do not use any error control code, then the probability that the 4 bit data packet will
be received unreliably is given by 1 − (1 − p)4. If p = 10−3 then the packet unreliability is
1 − (1 − p)4 = 0.004. On the other hand, if we use the (7,3) single-error correcting (SEC)
code, then the packet unreliability is given by 1− (1 − p)7 − 7p(1 − p)6 = 0.00002. Clearly,
the use of error correcting code can improve reliability of transmissions.

While the above Hamming code can correct single bit errors, it cannot correct two
errors. For instance, assume that the transmitted codeword is 0010 111, and that the two
most significant received bits are erroneous. Thus the received vector will be 1110 111,
which will be decoded to the closest codeword 1111 111, with the decoded data being 1111.
Clearly, in this case, the decoded data is erroneous. The receiver will use decoded data 1111
without realizing that the data is incorrect. In general, which error patterns can be corrected
depends on the set of codewords used. More redundancy generally allows the decoder to
correct more errors.

It is also possible to design codes that allow the receiver to correct some of the errors,
and detect a larger class of errors. For instance, Table A.2 shows an (8,4) code obtained
by adding an even parity bit to the codewords in the (7,4) code in Table A.1. In this code,
any pair of codewords differs in at least 4 bit positions. This property can be exploited to
design a decoding algorithm that can obtain the correct codeword if at most 1 received bit is
erroneous, and detect the presence of 2 erroneous bits. Thus, the code is said to be a single
error-correcting double error-detecting (SEC-DED) code. In particular, here is the decoding
algorithm to be applied to received vector v:

• If a codeword u differs from v in at most 1 bit position, assume that u is the transmitted
codeword.
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Data Codeword

0000 0000 000
0001 0001 011
0010 0010 111
0011 0011 100
0100 0100 110
0101 0101 101
0110 0110 001
0111 0111 010
1000 1000 101
1001 1001 110
1010 1010 010
1011 1011 001
1100 1100 011
1101 1101 000
1110 1110 100
1111 1111 111

Figure A.1 (7,4) Hamming code

• If all codewords differ from v in at least two bit positions, then declare that more than
1 received bit is erroneous. In this case, the receiver will reject the received vector,
and not produce any decoded data.

The (8,4) code includes greater redundancy than the (7,4) code, and the (8,4) code improves
on the (7,4) code by being able to detect two errors. But the new code still cannot correct
more than one error. Also, the above algorithm can result in incorrect outcome if more than
two errors exist in the received vector.

For a given code, we can trade-off its ability to correct errors with its ability to detect
errors. In particular, again consider the (8,4) code. We used it above as a SEC-DED code.
Instead, we can also use the code to perform only error detection. In this case, we will not
attempt to perform any error correction, but as a trade-off, we will now be able to detect
up to 3 errors. The decoding algorithm for this purpose is simple: (a) if the received vector
is identical to a codeword, decode to this codeword, (b) else declare that the received vector
is erroneous.

The above simple examples make three important points:

• The ability to detect and correct errors is a function of the redundancy incorporated
in the code. A greater capability requires greater levels of redundancy.
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Data Codeword

0000 0000 0000
0001 0001 0111
0010 0010 1110
0011 0011 1001
0100 0100 1101
0101 0101 1010
0110 0110 0011
0111 0111 0100
1000 1000 1011
1001 1001 1100
1010 1010 0101
1011 1011 0010
1100 1100 0110
1101 1101 0001
1110 1110 1001
1111 1111 1111

Figure A.2 (8,4) Single error-correcting, double error-detecting code
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• The ability to detect errors and correct errors can be traded with each other. With
a given level of redundancy, in order to be able to improve the probability of error
detection, we have to be willing to accept a lower probability of obtaining correct
decoded data.

• No error control code can correct an arbitrary set of errors. Similarly, no useful error
control code can detect an arbitrary set of errors.

The last observation above has led to the use of error control codes (ECC) at various levels of
the protocol stack. In particular, while the higher layers of the protocol stack benefit from
the error control capabilities incorporated at the lowers layers, the higher layers usually
include some error detection and/or correction capabilities as well, to protect against the
possibility that the lower layer error control may fail. We discuss some examples:

• The IEEE 802.11a physical layer uses a convolutional code to perform error correction.
As noted earlier, some errors patterns in the received bits may result in incorrect
decoding. Thus, the higher layers need to use additional error protection.

• The IEEE 802.11 MAC header includes cyclic redundancy check, which can be used
to detect some errors in a MAC layer frame.

• Despite the use of error correction and detection mechanisms at the physical and
link layers, the packets received by the network layer (IP) may still contain errors.
In addition, errors may also be inserted into a packet due to hardware failure (for
instance, due to memory corruption in a buffer at a router). To facilitate detection
of such errors, IP uses a header checksum in each IP header. This checksum only
allows detection of errors in the IP header, offering no protection to the data in an IP
datagram. If errors are detected in the IP header, the datagram is discarded – this
event is perceived as a packet loss by the higher layers.

• TCP header also contains a checksum that covers the TCP header as well as the data in
a TCP segment. This checksum is used only for error detection. If errors are detected
in the TCP segment, the segment is discarded, and this event is viewed as a packet
loss by the TCP receiver.

• The ultimate responsibility for achieving reliability rests at the application layer.
Therefore, many applications incorporate additional application-layer mechanisms to
achieve the desired level of reliability. For instance, consider an application that needs
to transmit data reliably from source computer A to computer B. This goal may pos-
sibly be achieved by using a TCP connection between A and B, by relying on TCP’s
retransmission mechanism. An alternative is to use a UDP connection from A to B. In
this case, however, some of the packets sent by A may be lost, either due to detection
of errors at the lower layers (for instance, using the IP checksum), or due to buffer
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overflow at an intermediate host. To allow recovery of the data despite such packet
losses, the sender host A can send the data packets, followed by redundant packets
obtained as a function of the data packets. If the redundant packets are designed cor-
rectly, then after a sufficient number of redundant packet transmissions, the recipient
can recover all the data packets, despite the loss of a small number of such packets.

Despite the use of error control codes at the various layers of the protocol stack, there is
always a non-zero probability that some errors may escape detection by all the error control
mechanisms. In practice, this probability can be made small enough by using adequate
redundancy at the different layers of the protocol stack.
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APPENDIX B

Frequency-Domain Representation of Signals

The frequency-domain representation discussed here associates complex “weights”
corresponding to each frequency component in the signal. Therefore, we begin this section
with a brief discussion of complex numbers. A complex number has two parts: real and
imaginary. For instance, in the complex number a + jb, a is the real part and b is the
imaginary part. j represents

√
−1 (the imaginary unit). Complex number a + jb can be

represented on a two-dimensional graph as depicted in Figure B.1(a), where the horizontal
axis corresponds to the real part of the complex number, and the vertical axis corresponds
to the imaginary part. An alternative representation for a + jb is using a vector pointing
from the origin to a + jb, as shown in Figure B.1(b). Let φ denote the angle made by this
vector with the positive direction of the horizontal axis, and let m denote the length of the
vector. m and φ are the magnitude and phase of the vector, respectively. It follows that

m =
√

a2 + b2

a = m cos φ

b = m sin φ

a + jb = m(cos φ + j sin φ)

Euler’s formula tells us that cosφ + j sin φ = ejφ. Thus,

a + jb = mejφ

Now, what if φ is a function of time? Specifically, let us consider

mej(2πft+θ)

where t represents time, and m represents magnitude (thus, t and m are both non-negative).
f and θ are constants, whose significance should become clearer soon. Recall that

mej(2πft+θ) = m cos(2πft + θ) + jm sin(2πft + θ)
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The vector representation for mej(2πft+θ) will consist of a vector of length m making an angle
of 2πft + θ with the horizontal axis. The vector at time t = 0 is shown in Figure B.1(c),
assuming that θ = −π/4. Figure B.1(d) depicts the vector at time t = 1

4f , when f is positive,

and Figure B.1(e) depicts the vector at time t = −1
4f , when f is negative.

You should try this for other values of time t. It should be clear that the vector
rotates counter-clockwise with increasing time when f is positive, and clockwise when f is
negative. The vector rotates one full circle for each time interval of duration 1/|f |, thus
rotating |f | times per second. We will refer to f as the frequency – thus, the frequency can
also be negative.

φ

(c)

m
π/4

(c)

(d) (e)

(a)

a+jb a+jb

m

π/4

m

a a

b b

π/4m

Figure B.1 Vector representation of complex numbers

Euler’s formula implies that j = ej π

2 , −j = ej 3π

2 , and

sin(2πft) =
j

2
e−j2πft − j

2
ej2πft
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cos(2πft) can be represented similar to the sin function above. Specifically,

cos(2πft) =
1

2
e−j2πft +

1

2
ej2πft

Then it follows that any signal that can be represented as a linear combination of sin and
cos functions of time can also be represented as a linear combination of terms of the form
ej2πft. For instance, function

h(t) = sin(2πf0t + φ0) + cos(2πf1t + φ1)

can be represented as

h(t) =
[

j

2
ej(−2πf0t−φ0) − j

2
ej(2πf0t+φ0)

]

+
[

1

2
ej(−2πf1t−φ1) +

1

2
ej(2πf1t+φ1)

]

(B.1)

= H(−f0) ej2π(−f0)t + H(f0) ej2πf0t + H(−f1) ej2π(−f1)t + H(f1) ej2πf1t (B.2)

where H(−f0) = j
2e

−jφ0, H(f0) = − j
2e

jφ0, H(−f1) = 1
2e

−jφ1, and H(f1) = 1
2e

jφ1. This is said
to be a frequency-domain representation of the signal. Observe that the H(f) coefficients
above are complex numbers (in other cases, the coefficients may also be real numbers). Note
that frequency f in H(f) may be negative or non-negative. The coefficients H(f) above are
“weights” that determine the contribution of frequency f to the function h(t).

While the above approach of representing a function of time as a discrete sum of
terms of the form H(f) ej2πft suffices for some signals, the methodology can be generalized
to obtain frequency-domain representation for a larger class of signals. This approach,
namely Fourier Transform, is quite useful in digital signal processing. Fourier transform of
a signal is a way of representing the manner in which the signal “occupies” the frequency
spectrum. Specifically, if X(f) is the Fourier transform of a signal x(t), then x(t) can be
obtained using the following inverse Fourier transform operation:

x(t) =
∫ +∞

−∞
X(f)ej2πft df (B.3)

f in X(f) denotes frequency, and t in x(t) denotes time. Thus, X(f) is the frequency-domain
representation of a signal, and x(t) is the time-domain representation of the same signal. In
general, Fourier transform X(f) may be a complex number. f may be positive or negative.
Notice that the simple addition of the terms of the form H(f) ej2πft in Equation B.2 has
been replaced by an integral in Equation B.3.
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