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Abstract

An ad hoc network is a collection of wireless mobile hosts forming a temporary network without the
aid of any established infrastructure or centralized administration. In such an environment, it may be
necessary for one mobile host to enlist the aid of other hosts in forwarding a packet to its destination,
due to the limited range of each mobile host’s wireless transmissions. This paper presents a protocol
for routing in ad hoc networks that uses dynamic source routing. The protocol adapts quickly to routing
changes when host movement is frequent, yet requires little or no overhead during periods in which
hosts move less frequently. Based on results from a packet-level simulation of mobile hosts operating in
an ad hoc network, the protocol performs well over a variety of environmental conditions such as host
density and movement rates. For all but the highest rates of host movement simulated, the overhead of
the protocol is quite low, falling to just 1% of total data packets transmitted for moderate movement rates
in a network of 24 mobile hosts. In all cases, the difference in length between the routes used and the
optimal route lengths is negligible, and in most cases, route lengths are on average within a factor of 1.01
of optimal.

1. Introduction
Mobile hosts and wireless networking hardware are becoming widely available, and extensive work has
been done recently in integrating these elements into traditional networks such as the Internet. Oftentimes,
however, mobile users will want to communicate in situations in which no fixed wired infrastructure such
as this is available, either because it may not be economically practical or physically possible to provide
the necessary infrastructure or because the expediency of the situation does not permit its installation. For
example, a class of students may need to interact during a lecture, friends or business associatesmay run into
each other in an airport terminal and wish to share files, or a group of emergency rescue workers may need
to be quickly deployed after an earthquake or flood. In such situations, a collection of mobile hosts with
wireless network interfaces may form a temporary network without the aid of any established infrastructure
or centralized administration. This type of wireless network is known as an ad hoc network.

A version of this paper will appear as a chapter in the book Mobile Computing, edited by Tomasz Imielinski and Hank Korth,
Kluwer Academic Publishers, 1996.



If only two hosts, located closely together, are involved in the ad hoc network, no real routing protocol
or routing decisions are necessary. In many ad hoc networks, though, two hosts that want to communicate
may not be within wireless transmission range of each other, but could communicate if other hosts between
them also participating in the ad hoc network are willing to forward packets for them. For example, in
the network illustrated in Figure 1, mobile host C is not within the range of host A’s wireless transmitter
(indicated by the circle aroundA) and host A is not within the range of hostC’s wireless transmitter. If A and
C wish to exchange packets, they may in this case enlist the services of host B to forward packets for them,
since B is within the overlap between A’s range and C’s range. Indeed, the routing problem in a real ad hoc
network may be more complicated than this example suggests, due to the inherent nonuniform propagation
characteristics of wireless transmissions and due to the possibility that any or all of the hosts involved may
move at any time.

Routing protocols in conventional wired networks generally use either distance vector or link state
routing algorithms, both of which require periodic routing advertisements to be broadcast by each router. In
distance vector routing [9, 17, 26, 27, 29], each router broadcasts to each of its neighbor routers its view of
the distance to all hosts, and each router computes the shortest path to each host based on the information
advertised by each of its neighbors. In link state routing [10, 16, 18], each router instead broadcasts to all
other routers in the network its view of the status of each of its adjacent network links, and each router then
computes the shortest distance to each host based on the complete picture of the network formed from the
most recent link information from all routers. In addition to its use in wired networks, the basic distance
vector algorithm has also been adapted for routing in wireless ad hoc networks, essentially treating each
mobile host as a router [11, 19, 25].

This paper describes the design and performance of a routing protocol for ad hoc networks that instead
uses dynamic source routing of packets between hosts that want to communicate. Source routing is a routing
technique in which the sender of a packet determines the complete sequence of nodes through which to
forward the packet; the sender explicitly lists this route in the packet’s header, identifying each forwarding
“hop” by the address of the next node to which to transmit the packet on its way to the destination host.
Source routing has been used in a number of contexts for routing in wired networks, using either statically
defined or dynamically constructed source routes [4, 5, 12, 20, 22, 28], and has been used with statically
configured routes in the Tucson Amateur Packet Radio (TAPR) work for routing in a wireless network [14].
The protocol presented here is explicitly designed for use in the wireless environment of an ad hoc network.
There are no periodic router advertisements in the protocol. Instead, when a host needs a route to another
host, it dynamically determines one based on cached information and on the results of a route discovery
protocol.

We believe our dynamic source routing protocol offers a number of potential advantages over conven-
tional routing protocols such as distance vector in an ad hoc network. First, unlike conventional routing
protocols, our protocol uses no periodic routing advertisement messages, thereby reducing network band-
width overhead, particularly during periods when little or no significant host movement is taking place.
Battery power is also conserved on the mobile hosts, both by not sending the advertisements and by not
needing to receive them (since a host could otherwise reduce its power usage by putting itself into “sleep” or
“standby” mode when not busy with other tasks). Distance vector and link state routing, on the other hand,
must continue to send advertisements even when nothing changes, so that other mobile hosts will continue
to consider those routes or network links as valid. In addition, many of the “links” between routers seen
by the routing algorithm may be redundant [11]. Wired networks are usually explicitly configured to have
only one (or a small number) of routers connecting any two networks, but there are no explicit links in an
ad hoc network, and all communication is by broadcast transmissions. The redundant paths in a wireless
environment unnecessarily increase the size of routing updates that must be sent over the network, and
increase the CPU overhead required to process each update and to compute new routes.
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Figure 1 A simple ad hoc network of three wireless mobile hosts

In addition, conventional routing protocols based on link state or distance vector algorithmsmay compute
some routes that do not work. In a wireless environment, network transmission between two hosts does not
necessarily work equally well in both directions, due to differing propagation or interference patterns around
the two hosts [1, 15]. For example, with distance vector routing, even though a host may receive a routing
advertisement from another mobile host, packets it might then transmit back to that host for forwarding may
not be able to reach it. Our protocol does not require transmissions between hosts to work bidirectionally,
although we do make use of it when afforded, for example, by MAC-level protocols such as MACA [13] or
MACAW [2] that ensure it.

Finally, conventional routing protocols are not designed for the type of dynamic topology changes that
may be present in ad hoc networks. In conventional networks, links between routers occasionally go down
or come up, and sometimes the cost of a link may change due to congestion, but routers do not generally
move around dynamically. In an environment with mobile hosts as routers, though, convergence to new,
stable routes after such dynamic changes in network topology may be slow, particularly with distance vector
algorithms [20]. Our dynamic source routing protocol is able to adapt quickly to changes such as host
movement, yet requires no routing protocol overhead during periods in which such changes do not occur.

Section 2 of this paper details our assumptions about the network and the mobile hosts. The basic
operation of our dynamic source routing protocol is described in Section 3, and optimizations to this basic
operation are described in Section 4. In Section 5, we present a preliminary evaluation of the performance
of our protocol, based on a packet-level simulation. In Section 6, we discuss related protocols for wireless
network routing and for source routing, and in Section 7, we present conclusions and future work.

2. Assumptions
We assume that all hosts wishing to communicate with other hosts within the ad hoc network are willing to
participate fully in the protocols of the network. In particular, each host participating in the network should
also be willing to forward packets for other hosts in the network.

We refer to the number of hops necessary for a packet to reach from any host located at one extreme
edge of the network to another host located at the opposite extreme, as the diameter of the network. For
example, the diameter of the ad hoc network depicted in Figure 1 is two. We assume that the diameter of an
ad hoc network will be small but may often be greater than one.
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Hosts within the ad hoc networkmaymove at any time without notice, but we assume that the speedwith
which hosts move is moderate with respect to the packet transmission latency and wireless transmission
range of the particular underlying network hardware in use. In particular, we assume that hosts do not
continuously move so rapidly as to make the flooding of every packet the only possible routing protocol.

We assume that hosts can enable a promiscuous receive mode on their wireless network interface
hardware, causing the hardware to deliver every received packet to the network driver software without
filtering based on destination address. Although we do not require this facility, it is common in current LAN
hardware for broadcast media including wireless, and some of our optimizations take advantage of it. Use
of promiscuous mode does increase the software overhead on the CPU, but we believe that wireless network
speeds are more the inherent limiting factor to performance in current and future systems. We believe that
portions of the protocol are also suitable for implementation directly in hardware or within a programmable
network interface unit to avoid this overhead on the CPU.

3. Basic Operation
3.1. Overview
To send a packet to another host, the sender constructs a source route in the packet’s header, giving the
address of each host in the network through which the packet should be forwarded in order to reach the
destination host. The sender then transmits the packet over its wireless network interface to the first hop
identified in the source route. When a host receives a packet, if this host is not the final destination of
the packet, it simply transmits the packet to the next hop identified in the source route in the packet’s
header. Once the packet reaches its final destination, the packet is delivered to the network layer software
on that host.

Each mobile host participating in the ad hoc network maintains a route cache in which it caches source
routes that it has learned. When one host sends a packet to another host, the sender first checks its route
cache for a source route to the destination. If a route is found, the sender uses this route to transmit the
packet. If no route is found, the sender may attempt to discover one using the route discovery protocol.
While waiting for the route discovery to complete, the host may continue normal processing and may send
and receive packets with other hosts. The host may buffer the original packet in order to transmit it once the
route is learned from route discovery, or it may discard the packet, relying on higher-layer protocol software
to retransmit the packet if needed. Each entry in the route cache has associated with it an expiration period,
after which the entry is deleted from the cache.

While a host is using any source route, it monitors the continued correct operation of that route. For
example, if the sender, the destination, or any of the other hosts named as hops along a route move out of
wireless transmission range of the next or previous hop along the route, the route can no longer be used to
reach the destination. A route will also no longer work if any of the hosts along the route should fail or be
powered off. This monitoring of the correct operation of a route in use we call route maintenance. When
route maintenance detects a problem with a route in use, route discovery may be used again to discover a
new, correct route to the destination.

This section describes the basic operation of route discovery and route maintenance. Optimizations to
this basic operation of the protocol are then described in Section 4.

3.2. Route Discovery
Route discovery allows any host in the ad hoc network to dynamically discover a route to any other host
in the ad hoc network, whether directly reachable within wireless transmission range or reachable through
one or more intermediate network hops through other hosts. A host initiating a route discovery broadcasts
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a route request packet which may be received by those hosts within wireless transmission range of it. The
route request packet identifies the host, referred to as the target of the route discovery, for which the route
is requested. If the route discovery is successful the initiating host receives a route reply packet listing a
sequence of network hops through which it may reach the target.

In addition to the address of the original initiator of the request and the target of the request, each route
request packet contains a route record, in which is accumulated a record of the sequence of hops taken by the
route request packet as it is propagated through the ad hoc network during this route discovery. Each route
request packet also contains a unique request id, set by the initiator from a locally-maintained sequence
number. In order to detect duplicate route requests received, each host in the ad hoc network maintains a
list of the initiator address, request id pairs that it has recently received on any route request.

When any host receives a route request packet, it processes the request according to the following steps:

1. If the pair initiator address, request id for this route request is found in this host’s list of recently
seen requests, then discard the route request packet and do not process it further.

2. Otherwise, if this host’s address is already listed in the route record in the request, then discard the
route request packet and do not process it further.

3. Otherwise, if the target of the request matches this host’s own address, then the route record in the
packet contains the route by which the request reached this host from the initiator of the route request.
Return a copy of this route in a route reply packet to the initiator.

4. Otherwise, append this host’s own address to the route record in the route request packet, and
re-broadcast the request.

The route request thus propagates through the ad hoc network until it reaches the target host, which then
replies to the initiator. The original route request packet is received only by those hosts within wireless
transmission range of the initiating host, and each of these hosts propagates the request if it is not the
target and if the request does not appear to this host to be redundant. Discarding the request because
the host’s address is already listed in the route record guarantees that no single copy of the request can
propagate around a loop. Also discarding the request when the host has recently seen one with the same
initiator address, request id removes later copies of the request that arrive at this host by a different route.
In order to return the route reply packet to the initiator of the route discovery, the target host must have a

route to the initiator. If the target has an entry for this destination in its route cache, then it may send the route
reply packet using this route in the sameway as is used in sending any other packet (Section 3.1). Otherwise,
the target may reverse the route in the route record from the route request packet, and use this route to send
the route reply packet. This, however, requires the wireless network communication between each of these
pairs of hosts to work equally well in both directions, which may not be true in some environments or with
some MAC-level protocols. An alternative approach, and the one we have currently adopted, is for this
host to piggyback the route reply packet on a route request targeted at the initiator of the route discovery to
which it is replying. This use of piggybacking is described in Section 4.2.

3.3. Route Maintenance
Conventional routing protocols integrate route discovery with route maintenance by continuously sending
periodic routing updates. If the status of a link or router changes, the periodic updates will eventually reflect
the changes to all other routers, presumably resulting in the computation of new routes. However, using
route discovery, there are no periodic messages of any kind from any of the mobile hosts. Instead, while a
route is in use, the route maintenance procedure monitors the operation of the route and informs the sender
of any routing errors.
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Since wireless networks are inherently less reliable than wired networks [1], many wireless networks
utilize a hop-by-hop acknowledgement at the data link level in order to provide early detection and retrans-
mission of lost or corrupted packets. In these networks, route maintenance can be easily provided, since at
each hop, the host transmitting the packet for that hop can determine if that hop of the route is still working.
If the data link level reports a transmission problem for which it cannot recover (for example, because the
maximum number of retransmissions it is willing to attempt has been exceeded), this host sends a route
error packet to the original sender of the packet encountering the error. The route error packet contains the
addresses of the hosts at both ends of the hop in error: the host that detected the error and the host to which it
was attempting to transmit the packet on this hop. When a route error packet is received, the hop in error is
removed from this host’s route cache, and all routes which contain this hop must be truncated at that point.

If the wireless network does not support such lower-level acknowledgements, an equivalent acknowl-
edgement signal may be available in many environments. After sending a packet to the next hop mobile
host, the sender may be able to hear that host transmitting the packet again, on its way further along the
path, if it can operate its wireless network interface in promiscuous mode. For example, in Figure 1, host
A may be able to hear B’s transmission of the packet on to C. This type of acknowledgement is known
as a passive acknowledgement [11]. In addition, existing transport or application level replies or acknowl-
edgements from the original destination could also be used as an acknowledgement that the route (or that
hop of the route) is still working. As a last resort, a bit in the packet header could be included to allow a
host transmitting a packet to request an explicit acknowledgement from the next-hop receiver. If no other
acknowledgement signal has been received in some time from the next hop on some route, the host could
use this bit to inexpensively probe the status of this hop on the route.

As with the return of a route reply packet, a host must have a route to the sender of the original packet in
order to return a route error packet to it. If this host has an entry for the original sender in its route cache, it
may send the route error packet using that route. Otherwise, this host may reverse the route from the packet
in error (the route by which the packet reached this host) or may use piggybacking as in the case of a route
reply packet (Section 4.2). Another option in the case of returning a route error packet is for this host to
save the route error packet locally in a buffer, perform a route discovery for the original sender, and then
send the route error packet using that route when it receives the route reply for this route discovery. This
option cannot be used for returning a route reply packet, however, since then neither host would ever be able
to complete a route discovery for the other, if neither initially had a route cache entry for the other.

Route maintenance can also be performed using end-to-end acknowledgements rather than the hop-by-
hop acknowledgements described above, if the particular wireless network interfaces or the environment in
which they are used are such that wireless transmissions between two hosts do not work equally well in both
directions. As long as some route exists by which the two end hosts can communicate (perhaps different
routes in each direction), route maintenance is possible. In this case, existing transport or application
level replies or acknowledgements from the original destination, or explicitly requested network level
acknowledgements,may be used to indicate the status of this host’s route to the other host. With hop-by-hop
acknowledgements, the particular hop in error is indicated in the route error packet, but with end-to-end
acknowledgements, the sender may only assume that the last hop of the route to this destination is in error.

4. Optimizations
A number of optimizations are possible to the basic operation of route discovery and route maintenance
as described in Section 3.2, that can reduce the number of overhead packets and can improve the average
efficiency of the routes used on data packets. This section discusses some of those optimizations.
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4.1. Full Use of the Route Cache
The data in a host’s route cache may be stored in any format, but the active routes in its cache in effect form
a tree of routes, rooted at this host, to other hosts in the ad hoc network. For example, Figure 2 shows an
ad hoc network of five mobile hosts, in which mobile host A has earlier completed a route discovery for
mobile host D and has cached the route to D through B and C. Since hosts B and C are on the route to D,
host A also learns the route to both of these hosts from its route discovery for D. If A later performs a route
discovery and learns the route to E through B and C, it can represent this in its route cache with the addition
of the single new hop from C to E. If A then learns it can reach C in a single hop (without needing to go
through B), A can use this new route to C to also shorten the routes to D and E in its route cache.

A host can add entries to its route cache any time it learns a new route. In particular, when a host
forwards a data packet as an intermediate hop on the route in that packet, the forwarding host is able to
observe the entire route in the packet. Thus, for example, when host B forwards packets from A to D, B can
add the route information from that packet to its own route cache. If a host forwards a route reply packet,
it can also add the route information from the route record being returned in that route reply, to its own
route cache. Finally, since all wireless network transmissions are inherently broadcast, a host may be able
configure its network interface into promiscuous receive mode, and can then add to its route cache the route
information from any data or route reply packet it can overhear.

A host may use its route cache to avoid propagating a route request packet received from another host.
In particular, suppose a host receives a route request packet for which it is not the target and is not already
listed in the route record in the packet, and for which the pair initiator address, request id is not found
in its list of recently seen requests; if the host has a route cache entry for the target of the request, it may
append this cached route to the accumulated route record in the packet, and may return this route in a route
reply packet to the initiator without propagating (re-broadcasting) the route request. Thus, for example, if
mobile host F needs to send a packet to mobile hostD, it will initiate a route discovery and broadcast a route
request packet. If this broadcast is received by A, A can simply return a route reply packet to F containing
the complete route to D consisting of the sequence of hops A, B, C, and D.

A particular problem can occur, however, when several mobile hosts receive the initiator’s broadcast of
the route request packet, and all reply based on routes found in their route caches. In Figure 2, for example, if
both A and B receive F’s route request broadcast, they will both be able to reply from their route caches, and
will both send their replies at about the same time since they both received the broadcast at about the same
time. Particularly when more than the two mobile hosts in this example are involved, these simultaneous
replies from the mobile hosts receiving the broadcast may create packet collisions among some or all of
these replies and may cause local congestion in the wireless network. In addition, it will often be the case

Figure 2 An example ad hoc network illustrating use of the route cache
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that the different replies will indicate routes of different lengths. For example, A’s reply will indicate a route
to D that is one hop longer than that in B’s reply.

We avoid the problems of many simultaneous replies and attempt to eliminate replies indicating routes
longer than the shortest reply, by causing each mobile host to delay slightly before replying from its cache.
Before replying from its route cache, a host performs the following actions:
1. Pick a delay period 1 , where is the length in number of network hops for the
route to be returned in this host’s reply, is a random number between 0 and 1, and is a small
constant delay to be introduced per hop.

2. Delay transmitting the route reply from this host for a period of .

3. Within this delay period, promiscuously receive all packets at this host. If a packet is received by
this host during the delay period addressed to the target of this route discovery (the target is the final
destination address for the packet, through any sequence of intermediate hops), and if the length of
the route on this packet is less than , then cancel the delay and do not transmit the route reply from
this host; this host may infer that the initiator of this route discovery has already received a route reply,
giving an equal or better route.

Another problem that can occur when hosts reply to route requests from their cache, is the formation
of a loop in the route sent in the route reply packet. The route record in the route request cannot contain a
loop, and no entry in a route cache ever is set to a route containing a loop, yet the concatenation of the route
record and the entry from the replying host’s route cache for the target may contain a loop. For example,
in Figure 2, if host B does not have a route cache entry for D, it will need to initiate a route discovery
before sending a packet to D. In this case, A could immediately reply from its route cache with the route
to D through B and C. This, however, would form the concatenated route of A-B-C-D for B to then use in
sending packets to D, creating a loop from B to A and then back to B. In order to avoid this problem, if
a host receives a route request and is not the target of the request but could reply from its cache, the host
instead discards the request if the route in its reply would contain a loop; this restriction also implies that a
host will only reply from its cache with a route in which the host itself is on the route, at the end of the route
recorded in the route request packet and at the beginning of the path obtained from the host’s route cache.

As a last optimization involving full use of the route cache, we have added the ability for the initiator
of a route request to specify in the request packet, the maximum number of hops over which the packet
may be propagated. If another host near the initiator has a cache entry for the target of a route request, the
propagation of many redundant copies of the route request can be avoided if the initiator can explicitly limit
the request’s propagation when it is originally sent. Currently, we use this ability during route discovery as
follows:
1. To perform a route discovery, initially send the route request with a hop limit of one. We refer to this
as a nonpropagating route request.

2. If no route reply is received from this route request after a small timeout period, send a new route
request with the hop limit set to a predefined “maximum” value for which it is assumed that all useful
routes in the ad hoc network are less than this limit (currently 10).

This procedure uses the hop limit on the route request packet to inexpensively check if the target is currently
within wireless transmitter range of the initiator or if another host within range has a route cache entry for
this target (effectively using the caches of this host’s neighbors as an extension of its own cache). Since
the initial request is limited to one network hop, the timeout period before sending the propagating request
can be quite small. This mechanism could also be used to implement an “expanding ring” search for the
target, in which the hop limit is gradually increased in subsequent retransmissions of the route request for
this target, but we have not yet experimented with this approach.
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4.2. Piggybacking on Route Discoveries
As described in Section 3.2, when one host needs to send a packet to another, if the sender does not have a
route cached to the destination host, it must initiate a separate route discovery, either buffering the original
packet until the route reply is returned, or discarding it and relying on a higher-layer protocol to retransmit
it if needed. The delay for route discovery and the total number of packets transmitted can be reduced by
allowing data to be piggybacked on route request packets. Since some route requests may be propagated
widely within the ad hoc network, though, the amount of data piggybacked must be limited. We currently
use piggybacking when sending a route reply or a route error packet, since both are naturally small in
size; small data packets such as the initial SYN packet opening a TCP connection [23] could also easily be
piggybacked, but we have not yet experimented with this option.

One problem, however, arises when piggybacking on route request packets. If the route request is
received by some host and is replied to based on the host’s route cache without propagating the request
(Section 4.1), the piggybacked data would be lost when the host discards the route request. In this case,
before discarding the packet, the host must construct a new packet containing the piggybacked data from
the route request packet, setting the route in this packet from the route being returned in the route reply. The
route should appear as if the new packet had been sent by the initiator of the route discovery and had been
forwarded normally to this host: the first portion of the route is taken from the accumulated route record in
the route request packet, and the remainder of the route is taken from this host’s route cache. The sender
address in the packet should also be set to the initiator of the route discovery.

4.3. Reflecting Shorter Routes
While two hosts are communicating with each other using cached routes, it is desirable for the hosts to
begin using shorter routes if the hosts move sufficiently closer together. In many cases, the basic route
maintenance procedure is sufficient to accomplish this, since if one of the hosts moves enough to allow the
route to be shortened, it will likely also move out of transmission range of the first hop on the existing route.

An improvement to this method of reflecting shorter routes is possible if hosts operate their network
interfaces in promiscuous receive mode. Suppose somewhere in the forwarding of a packet, mobile host
B transmits a packet to C, with D being the next hop after C in the route in the packet, as illustrated in
Figure 3. If D receives this packet, it can examine the packet header to see that the packet reached it from B
in one hop rather than two as intended by the route in the packet. In this case, D may infer that route may
be shortened to exclude the intermediate hop through C. D then sends an unsolicited route reply packet to
the original sender of the packet, informing it that it can now reach D in one hop from B. As with other
route reply packets, other hosts which also receive this route reply (in particular, other hosts also operating
in promiscuous receive mode) may also incorporate this change into their route caches. We believe that this
method will ensure that the shortest routes will be used, although we have not yet added this method to our
simulator.

Figure 3 Mobile host D notices that the route can be shortened
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4.4. Improved Handling of Errors
One common error condition that must be handled in an ad hoc network is the case in which the network
effectively becomes partitioned. That is, two hosts that wish to communicate are not within transmission
range of each other, and there are not enough other mobile hosts between them to form a sequence of hops
through which they can forward packets. If a new route discovery were to be initiated for each packet
sent by a host in this situation, a large number of unproductive route request packets would be propagated
throughout the subset of the ad hoc network reachable from this host. In order to reduce the overhead from
such route discoveries, we use exponential backoff to limit the rate at which new route discoveries may
be initiated from any host for the same target. If the host attempts to send additional data packets to this
same host more frequently than this limit, the subsequent packets may be buffered until a route reply is
received, but they do not initiate a new route discovery until the minimum allowable interval between new
route discoveries for this target has been reached. This limitation on the maximum rate of route discoveries
for the same target is similar to the mechanism required by Internet hosts to limit the rate at which ARP
requests are sent to any single IP address [3].

An additional optimization possible to improve the handling of errors is to use promiscuous receive
mode to allow hosts to eavesdrop on route error packets being sent to other hosts. For example, Figure 4
shows the return of a route error packet to mobile host A from host B. If hosts C, D, and E are operating
in promiscuous receive mode, they will be able to receive the route error packet. Since a route error packet
names both ends of the route hop causing the error, any host receiving the error packet can update its route
cache to reflect the fact that the two hosts indicated in the packet can no longer directly communicate. A
host receiving a route error packet can simply search its route cache for any routes using this hop, and for
each such route found, the route is truncated at this hop. All hosts on the route before this hop are still
reachable on this route, but subsequent hosts are not.

It is possible, however, that a route error packet being returned to the original sender of a data packet
may take a different route to the sender than the data packet took to the point at which the error was
encountered. For example, in a network environment in which radio transmission between two hosts does
not work equally well in both directions, a route discovery used by the host returning the route error packet
may discover a different route back to the original sender. Thus, some hosts that may have cached the
route in error may not be able to receive the route error packet, even using promiscuous receive mode. This
situation can be improved by extending the handling of route error packets such that, once the route error
packet reaches the original sender of the data packet, that original sender also retransmits the route error
packet back to the point of error along the path originally used for the data packet, if this path differs from
the one along which it received the route error packet.

Figure 4 Mobile host B is returning a route error packet to A
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A last optimization to improve the handling of errors is to support the caching of “negative” information
in a host’s route cache. Suppose, in Figure 4, that none of these optimizations for handling errors are in
use. When A receives B’s route error packet, it may initiate a route discovery in order to find a new route
to the same target. However, if hosts C, D, or E have an entry in their route cache for this target, they will
likely reply to A from their cache with a cached copy of the same route that A just removed from its cache.
If instead, A could enter into its cache when it receives B’s route error packet, an indication that this hop is
not currently working (rather than simply removing this hop from any routes currently in its cache), then
A could ignore future replies from C, D, and E that include this hop from their caches. A short expiration
period must be placed on this negative cached information, since while this entry is in its cache, A will
otherwise refuse to allow this hop in any route entries in its cache, even if this hop begins working again.

We have not currently included this caching of negative information in our simulation, due to the
difficulty of picking a suitable expiration period, and since it appears to not be necessary in most cases, if
hosts also promiscuously receive route error packets. For example, in Figure 4, if C, D, and E also receive
B’s route error packet, they will have removed this hop from their caches before A’s new route discovery is
initiated, thus avoiding the problem.

5. Performance Evaluation
5.1. The Simulation
To evaluate the performance of our dynamic source routing protocol, we constructed a packet-level simu-
lator which allowed us to observe and measure the protocol’s performance under a variety of conditions.
In addition to a number of parameter choices in the protocol, the simulator allowed us to vary certain
environmental factors such as the number of mobile hosts, the pattern and speed of host movement, and the
distribution of the hosts in space. The simulator implements the basic protocol along with all optimizations
described in Section 4 with the exceptions of reflecting shorter routes (Section 4.3) and the caching of
negative information (Section 4.4).

The basic simulation parameters were chosen to model an ad hoc network consisting of a collection
of mobile hosts moving around in a medium-sized room. The area in which the hosts move is square, 9
meters on a side. Each host moves with a velocity between 0.3 and 0.7 meters per second (somewhere
between a slow walk and a quick stroll), and each transceiver has a range of 3 meters. These parameters
could represent, for example, a group of hosts using diffuse infrared transceivers, or since the parameters are
related and can be scaled linearly, they could also represent a number of cars with radio-equipped portables
driving (very quickly) around an area of 1 square kilometer.

Each host is initially placed at a random position within in the simulation area. As the simulation
progresses, each host pauses at its current location for a period, which we call the pause time, and then
randomly chooses a new location to move to and a velocity between 0.3 and 0.7 meters per second at
which to move there. Each host continues this behavior, alternately pausing and moving to a new location,
for the duration of the simulation. Using this model, hosts appear to wander through the room with their
restlessness determined by the pause time constant.

Whenever a host transmits a packet, some method must be used to determine which of the surrounding
hosts will receive a copy of the packet. While our simulation’s transmission model is admittedly simple,
it still allows us to estimate the basic performance of the protocol. In the simulation, each host can be the
originator of up to 3 conversations at a time, with the other participant in the conversation chosen randomly
from among the other hosts. In actual use, we would expect hosts to communicate mostly with a small
common subset of the available hosts (such as servers), which would reduce the number of route discoveries
required. While a host is the initiator of less than three conversations, it initiates a new conversation
with a randomly chosen partner after an average period of 15 seconds (using an exponential distribution).
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Each conversation lasts for a predetermined number of packets, the number being chosen from a geometric
distribution with an average of 1000 packets. Again, in actual use, we would expect some (or all) of the
conversations to be of longer duration than this, depending on the mix of network application programs in
use. Short conversations, however, give a more conservative measure of the performance of the protocol,
since more route discoveries are required as each host more frequently changes which other hosts it is
communicating with.

During a conversation, packets are sent to the partner at exponentially distributed sending times with
a uniformly chosen average rate between 2 and 5 packets per second. Packet lengths are chosen with a
distribution such that 70% of the packets are long packets (1000 bytes) and the remainder are short packets
(32 bytes). To give the appearance of a two way conversation, the partner sends a return packet back to
the originator for every packet it receives. These return packets have the same length distribution as the
originator’s packets.

Packet transmission in the simulator is based on a network using link level acknowledgements at each
hop. Transmissions to a host that is out of range always fail while transmissions to a host in range fail with a
probability of 5%. The data link layer in the simulator will make up to 2 retransmission attempts if the first
transmission fails. Each time a sender transmits a packet, the other hosts in range of the sender each have a
95% chance of overhearing the packet. The bandwidth for transmitting data is 100 Kbytes per second.

There are a number of parameters such as timeouts and holdoff periods which must be configured within
the protocol. The values used in the simulator are shown in Table 1. Although we have attempted to choose
reasonable values for these parameters and believe that our results are not particularly sensitive to these
choices, we have not yet experimented with the effects of possible alternate choices.

The simulator does not attempt to model channel contention. Given a suitable data link layer protocol
such as MACAW [2], the chance of data being lost to collision during periods of channel contention grows
small, although at the expense of more delay in packet sending and receipt as each host waits for its turn to
use the bandwidth. Therefore, while our model should accurately show the numbers of packets that will be
received, we cannot completely evaluate the latency of any individual packet exchange.

The simulator also does not model possible one-way links between hosts. This choice is necessarily
implied by our desire to implement the protocol on top of a data-link layer with link level acknowledgements.
However, as described above, the protocol will still work in the absence of link layer acknowledgements.

A final minor limitation of our simulation is that our simulated environment is assumed to be devoid
of obstacles to transmission or movement. Further, transmission failures are assumed to be uniformly
distributed and independent, which does not take into account spatially localized failures due to sources
such as microwave ovens, in the case of radio, or windows and reflections, in the case of infrared.

Table 1 Parameter values used in the simulation

Parameter Value

Period between nonpropagating route requests 5 sec.
Nonpropagating route request time out 100 msec.
Route request time out 500 msec.
Route request slot length 500 msec.
Maximum route request period 10 sec.
Route reply holdoff per-hop delay 4 msec.
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5.2. Results
We executed 20 runs of the simulator for each of a number of different movement rates and numbers of
mobile hosts in the simulated ad hoc network. Each run simulated 4000 seconds of execution (just over
one hour), with each mobile host moving and communicating as described in Section 5.1. The movement
rate of the mobile hosts was determined by the pause time described above, with pause times ranging from
0 to 4000. With a pause time of 0, all hosts are constantly in motion, whereas with a pause time of 4000,
hosts do not move during the run from their initial randomly chosen locations. The ad hoc network in each
run consisted of either 6, 12, 18, or 24 mobile hosts. We present here the average over the 20 runs of the
simulator for each of these cases; standard deviation for all cases was within 7% and in general was 2% or
less of the average value for each case.

Figure 5 shows the total number of packet transmissions performed relative to the optimal number of
transmissions for the data packets sent during the simulation. The optimal number of transmissions is the
number of hops for each data packet needed to get from the sender of a packet to the intended receiver, if
perfect routing decisions are made for each packet and if no transmission errors occur. The total number
of packets actually transmitted includes the number of hops for each data packet based on the source route
used by the sender, plus all packet transmissions used for route request, route reply, and route error packets.
This ratio shows the work efficiency of the protocol: a value of 1.0 indicates a perfectly efficient protocol
with no overhead packets present.

For all but the shortest pause times in the simulated environment, the total number of packets trans-
mitted by the protocol is very close to optimal, and falls to an overhead of about 1% (a ratio of 1.01)
for pause times greater than 1000 with 24 mobile hosts, as shown in Figure 5. For very short pause
times, representing very frequent host movement, the protocol overhead is higher, reaching a maxi-
mum ratio of 2.6 for a pause time of 0, representing all hosts in constant motion. In such situations,
source routes become invalid quickly after they are discovered, and additional overhead is spent dis-
covering new routes. However, because the route maintenance procedure can quickly detect when a
route in use is no longer working, nearly all data packets can be successfully delivered even in peri-
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ods of such extreme host movement. Distance vector protocols, on the other hand, would be unable
to keep up with the rate of change in the network and would be unable to deliver most data pack-
ets.

The performance results for protocol overhead presented here are affected by the occurrence of discon-
nected components of the mobile hosts within the area of the ad hoc network. When placing a number of
mobile hosts at random locations within the simulation area, there is a chance that some groups of hosts
will be unable to communicate with other groups of hosts since all hosts in each group are out of wireless
transmission range of all hosts in other groups. This effectively forms a partition of the ad hoc network.
For example, Figure 6 illustrates a typical placement of 24 mobile hosts, which happened to form two
disconnected components. With fewer mobile hosts spread over the same area, we have observed similar
(but worse) occurrences of disconnected components.

For each data packet sent with the receiver outside the sender’s disconnected component, the basic
protocol would initiate a route discovery, although we have included an optimization to limit the rate of new
discoveries using an exponential backoff, as described in Section 4.4. The remaining extra route discoveries
still performed in such situations show in increased protocol overhead, such as in the higher overhead values
for 6 and 12 hosts shown in Figure 5, although the number of such extra route discoveries due disconnected
components is greatly reduced by this optimization.

Figure 7 shows the average length of a source route used in sending a data packet relative to the
optimal route length for the packets sent during the simulation. The optimal route length here is the num-
ber of hops needed to reach the destination if perfect routing information were available. In Figure 7,
a different scale has been used on the y-axis than was used in Figure 5 in order to show the relevant
detail in the shape of each graph. The ratio of the length of routes used relative to optimal shows
the degree to which the protocol finds and maintains optimal routes as the mobile hosts move about.
As shown here, the protocol finds and uses close to optimal routes, even without the route shortening
optimization using promiscuous receive mode described in Section 4.3. The difference in length be-

Figure 6 Example of disconnected clusters with 24 hosts
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tween the routes used and the optimal route lengths is negligible. In most cases, the route lengths used
are on average within a factor of 1.01 of optimal, and in all cases are within a factor of 1.09 of opti-
mal.

6. Related Work
Research on packet routing in wireless networks of mobile hosts dates back at least to 1973 when the
U.S. Defense Advanced Research Projects Agency began the DARPA Packet Radio Network (PRNET)
project [11] and its successor the Survivable Adaptive Networks (SURAN) project [15]. PRNET supports
the automatic set up and maintenance of packet switched communication routes in a network of moderately
mobile hosts communicating via radios. The PRNET routing protocol uses a form of distance vector
routing, with each node broadcasting a routing update packet (called a packet-radio organization packet, or
PROP, in PRNET) every 7.5 seconds. The header of each data packet contains the source and destination
node addresses, the number of hops taken so far from the source, and the number of hops remaining to
reach the destination (based on the sender’s routing table). Nodes promiscuously receive all packets and
may update their routing tables based on this header information. The data link protocol uses hop-by-hop
acknowledgements, using either explicit (active) acknowledgements or passive acknowledgements from
these promiscuously received packets.

The amateur radio community has also worked extensively with routing in wireless networks of (some-
times) mobile hosts [14], holding an annual packet radio computer networking conference sponsored by
the American Radio Relay League (ARRL) since 1981. Amateur packet radio networking originally used
only source routing with explicit source routes constructed by the user, although some had considered the
possibility of amore dynamic source routing scheme [7]. A system known asNET/ROMwas also developed
to allow the routing decisions to be automated, using a form of distance vector routing protocol rather than
source routing [6, 8]. NET/ROM also allows updating of its routing table based on the source address
information in the headers of packets that it receives.
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A particular problem with the use of distance vector routing protocols in networks with hosts that move,
is the possibility of forming routing loops. In order to eliminate this possibility, Perkins and Bhagwat have
recently proposed adding sequence numbers to routing updates in their Destination-Sequenced Distance
Vector (DSDV) protocol [19]. These sequence numbers are used to compare the age of information in a
routing update, and allow each node to preferentially select routes based on the freshest information. DSDV
also uses triggered routing updates to speed route convergence. In order to damp route fluctuation and reduce
congestion from large numbers of triggered updates after a route changes, each node in DSDV maintains
information about the frequency with which it sees route changes and may delay some routing updates.

Our dynamic source routing protocol is similar in approach to some source routing protocols used in
wired networks, such as in the IEEE 802 SRT bridge standard [20], in FLIP [12], and in SDRP [5, 28]. Our
route request packet serves essentially the same role in route discovery as an “all paths explorer” packet.
However, in wired networks, a bridge can copy an all paths explorer from one network interface onto each
of its other interfaces and be sure that the explorer will flood the network in an orderly and complete way.
Our protocol includes optimizations such as caching initiator address, request id pairs to efficiently flood
explorers through a wireless network. We also make extensive use of caching and can effectively make use
of promiscuous receive mode in the network interface to optimize route discovery.

The Internet Address Resolution Protocol (ARP) [21] is used to find the MAC address of a host on the
same LAN as the sender. ARP is somewhat similar to our nonpropagating route request packets, except
that a mobile host may answer the route request from its cache whereas ARP requests are normally only
answered by the target host itself. In cases in which several LANs have been bridged together, the bridge
may run “proxy” ARP [24], which allows the bridge to answer an ARP request on behalf of another host. In
this sense, our nonpropagating route requests are also similar to proxy ARP in that they expand the effective
size of a single host’s route cache by allowing it to cheaply make use of the caches of neighboring hosts to
reduce the need for propagating request packets.

One tradeoff between source routing and distance vector routing is in the handling of partioned networks,
as mentioned in Section 5.2. Under dynamic source routing, if a host wishes to communicate with an
unreachable host, the rate at which route requests are made will be reduced by a back off mechanism; the
protocol, however, continues to make periodic efforts to find a route to the unreachable host, consuming
some network resources. Under distance vector routing, with the assumption that routes have had time
to converge once the host became unreachable, no network resources are spent trying to send packets to
an unreachable host, as none of the hosts in the sender’s partition of the network have a routing table
entry for the destination. In practice, the problem of attempting to route packets to unreachable hosts is
less significant, as connection-oriented protocols typically give up after a certain timeout or number of
attempts, and human users will likewise give up eventually on any attempt to reach an unreachable host. In
our simulation, however, a host continues to attempt sending packets to the destination host for the entire
duration of each simulated conversation.

In general, when hosts move quickly enough and frequently enough, the best strategy that any routing
protocol can use is to flood data packets throughout the network in hopes that the moving host will run into
one of the many copies. On the other hand, when host movement is very slow or infrequent, ideally no
overhead should be required for routing, since none of the routing information changes. Dynamic source
routing moves easily between these two regimes, driven by the rate at which route requests are initiated.
If a host with which another host wants to communicate is moving very quickly, source routing floods the
network with a route request and then sends a data packet as soon as the destination is found and a route
reply returned. Hosts uninterested in talking to this quickly moving host may see some of the available
bandwidth consumed by the route requests but will have their own routes left unaffected. Likewise, if host
motion slows, the rate at which routes cease working will slow and routing overhead will thus be reduced
due to less frequent need for new route discoveries.
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7. Conclusion
This paper has presented a protocol for routing packets between wireless mobile hosts in an ad hoc network.
Unlike routing protocols using distance vector or link state algorithms, our protocol uses dynamic source
routing which adapts quickly to routing changes when host movement is frequent, yet requires little or
no overhead during periods in which hosts move less frequently. Based on results from a packet-level
simulation of mobile hosts operating in an ad hoc network, the protocol performs well over a variety of
environmental conditions such as host density and movement rates. For all but the highest rates of host
movement simulated, the overhead of the protocol is quite low, falling to just 1% of total data packets
transmitted for moderate movement rates in a network of 24 mobile hosts. In all cases, the difference in
length between the routes used and the optimal route lengths is negligible, and in most cases, route lengths
are on average within a factor of 1.02 of optimal.

We are currently expanding our simulations to incorporate some additional optimizations and to quantify
the effects of the individual optimizations on the behavior and performance of the protocol. We are also
continuing to study other routing protocols for use in ad hoc networks, including those based on distance
vector or link state routing, as well as the interconnection of an ad hoc network with a wide-area network
such as the Internet, reachable by some but not all of the ad hoc network nodes. Although this paper does not
address the security concerns inherent in wireless networks or packet routing, we are currently examining
these issues with respect to attacks on privacy and denial of service in the routing protocol. Finally, we
are beginning implementation of the protocol on notebook computers for use by students in an academic
environment.
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